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ABSTRACT
Piezoelectric transducers are commonly used as strain actuators in the control of mechanical vibration. One
control strategy, termed piezoelectric shunt damping, involves the connection of an electrical impedance to the
terminals of a structurally bonded transducer. Many passive, non-linear, and semi-active impedance designs
have been proposed that reduce structural vibration. This paper introduces a new technique for the design and
implementation of piezoelectric shunt impedances. By considering the transducer voltage and charge as inputs
and outputs, the design problem is reduced to a standard linear regulator problem enabling the application
of standard synthesis techniques such as LQG, H2, and H∞. The resulting impedance is extensible to multi-
transducer systems, is unrestricted in structure, and is capable of minimizing an arbitrary performance objective.
An experimental comparison to a resonant shunt circuit is carried out on a cantilevered beam. Previous problems
such as ad-hoc tuning, limited performance, and sensitivity to variation in structural resonance frequencies are
significantly alleviated.
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1. INTRODUCTION
Active feedback control involves the use of sensors and actuators to minimize structural vibration. The vibration
is sensed directly and used to derive an actuator voltage Va counter-active to the applied disturbance. Typical
vibration sensors include accelerometers, velocimeters, and strain sensors. The foremost difficulties associated
with active feedback control are due mainly to the intrinsic nature of the plant G. Mechanical systems are of high
order and contain a large number of lightly damped modes. The modeling and control design for such systems
is well known to pose significant challenges. In addition, environmental variation of the structural resonance
frequencies can further complicate the problem by compromising stability margins and restricting performance.
Examples of active feedback control incorporating piezoelectric actuators can be found in references1–3 .

In active vibration control, and many other applications, piezoelectric transducers are used exclusively as
either sensors or actuators. Dosch, Inman, Garcia4 and Anderson, Hagood, Goodliffe5 were able to demonstrate
a technique now referred to as piezoelectric self-sensing, or sensori-actuation. By subtracting the capacitive
voltage drop from the applied terminal voltage, a reconstruction of the internal piezoelectric strain voltage
can be obtained. The reconstructed strain voltage can be employed as an active feedback sensor effectively
eliminating the need for an auxiliary transducer. In addition to the usual problems associated with active
feedback control, piezoelectric self-sensing systems are also highly sensitive to the transducer capacitance value.
A sensing capacitance not perfectly matched to the transducer capacitance can result in significant errors in the
strain estimation. If the estimate is used within a feedback control loop, such uncertainty may severely affect
performance or cause instability. An attempt to address the problem of capacitance sensitivity can be found
in6, 7 .

Another technique, first appearing in8 , termed shunt damping, involves the connection of an electrical
impedance to the terminals of a piezoelectric transducer. Impedance designs have included resistors9 , inductive
networks10, 11 , switched capacitors12 , switched networks13 , negative capacitors14 , and active impedances15 .
Shunt damping has a number of benefits and disadvantages when compared to active feedback control. Shunt
circuits do not require a feedback sensor, and in some circumstances, may not require any support electronics
or power supply at all. Typically, a shunt damping strategy involves a specific impedance structure which is
designed to damp a number of targeted structural modes. Another advantage of shunt damping is that the
circuits can be fine-tuned online to compensate for any modeling errors experienced during the design process.
Automatic online tuning techniques have also been presented16 .
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Figure 1. A general piezoelectric laminate structure excited by a distributed force f(r, t) and the voltage Va(t) applied
to a disturbance patch. The resulting vibration d(r, t) is suppressed through the presence of an electrical impedance
connected to the shunt transducer.

This paper presents a fully automatic technique for the design and implementation of piezoelectric shunt
damping circuits. By viewing the transducer voltage and charge as inputs and outputs, the task of impedance
design can be cast as a standard regulator problem. Synthesis techniques such as LQG, H2, and H∞ are
readily applied to procure a suitable impedance. Unlike present methodologies, the impedance is unrestricted in
structure, is multi-port for multi-transducer systems, and can be designed to meet any performance specification
set within the flexibility of the synthesis process.

The following two sections, Impedance Synthesis, and Modeling, review the basic concepts of impedance
synthesis and introduce a simple, charge based modeling technique for piezoelectric laminate structures. Section
4 outlines the control objectives and presents H2, and H∞ approaches to the task of impedance synthesis.
Experimental results in Section 5 show superior performance to passive shunt damping circuits. The results and
contributions are summarized in Section 6.

2. MODELING
With the aim of facilitating active shunt design, this section introduces a charge-based modeling technique for
piezoelectric laminate structures.

Consider the piezoelectric laminate structure shown in Figure 1. Through the use of a shunt patch driven
by the voltage Vz, the goal is to suppress vibration resulting from two disturbances: Va, the voltage applied
to a disturbance patch, and f(r, t) a generally distributed external force. The implemented transfer function
between the measured charge q and applied voltage Vz effectively presents an electrical impedance Z(s) to the
transducer. The remainder of this section is dedicated to modeling the interaction between structure, transducer,
and impedance.

2.1. Composite piezoelectric-mechanical system
Consider the piezoelectric laminate structure shown in Figure 2 (a). The structure is disturbed by m transducers
on the left side, and controlled by a further m collocated transducers on the other. Each piezoelectric transducer
is modeled electrically as a capacitor Cpm in series with a strain-dependent voltage source vpm

4, 9, 17 .

The task of modeling the composite piezoelectric-mechanical system will proceed much as that presented in18

. The possibility of multiple transducers will be considered. To begin, let us define,

Vz =




Vz1

Vz2

...
Vzm


 Vp =




Vp1

Vp2

...
Vpm


 Va =




Va1

Va2

...
Vam


 i =




iz1

iz2

...
izm


 (1)
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Figure 2. A shunted multi-transducer structure (a). Synthetic implementation of the impedance (b).

By applying Ohm’s law, and writing Kirchoff’s Voltage Law around the kth loop, we obtain

Vz(s) = Z(s) i(s) (2)

Vzk(s) = Vpk(s) − 1
Cpks

i(s). (3)

Assembling the results for each loop,

Vz(s) = Vp(s) − 1
s
Λ i(s), (4)

q = −Λ−1Vz + Λ−1Vp, (5)

where,

Λ =




1
Cp1

1
Cp2

. . .
1

Cpm




(6)

After applying the principle of superposition, the strain contribution from each disturbance and shunt voltage is

Vp(s) = Gav(s)Va(s) + Gvv(s)Vz(s) , (7)

where Gva(s) and Gvv(s) are the multi-variable transfer functions from an applied disturbance and shunt voltage
to the piezoelectric voltage Vp, i.e.

Gva(s) = Vp(s)
Va(s) Gvv(s) = Vp(s)

Vz(s)
. (8)

In the case where each disturbance and shunt transducer pair are identical, collocated, and poled in opposite
directions, Gva(s) = −Gvv(s).
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Note that this analysis does not require an equal number of disturbance and shunt transducers. This special
case is considered only to allow a simplified representation of the feed-back diagram associated with the system.

The shunted composite system, alternatively referred to as the closed-loop system, can be obtained from
equations (2), (3), and (7),

Vp(s) =

[
I − Gvv(s) Z(s)

(
Z(s) +

1
s
Λ

)−1
]−1

Gva(s) Va(s). (9)

In a similar fashion, the composite displacement transfer function can also be derived,

d(r, s) =

[
I − Gvv(s) Z(s)

(
Z(s) +

1
s
Λ

)−1
]−1

Gda(s) Va(s). (10)

where Gda(s) is the transfer function from an applied disturbance Va to the resulting displacement d at a point
r.

The effect of a generally distributed disturbance force f(r, s), and a feedback interpretation of the shunt
circuit can be found in19 .

Specific models for the transfer functions Gva, Gda, and Gvv will be required throughout the upcoming process
of control design. The technique of modal analysis20, 21 has been used extensively throughout the literature for
obtaining structural models. Under certain assumptions20 , the force, transducer voltage, or moment applied
to a linear structure can be related to the resulting sensor voltage, strain, or displacement through a transfer
function of the following form,

G(s) =
∞∑

k=1

Ψk

s2 + 2ςkωks + ω2
k

, (11)

where G(s) is intuitively parameterized by the structural resonance frequencies ωk, modal damping ratios ςk, and
vector coefficients Ψk. In practical applications, where only the first N modes are of importance, the summation
is usually truncated accordingly. A feed-through term D is included to correct in-bandwidth zero locations that
are perturbed by the truncation of higher order modes22 . Hence, we define the system transfer function Gvv as

Gvv(s) =
N∑

k=1

Ψvv
k

s2 + 2ςkωks + ω2
k

+ Dvv. (12)

Likewise for the transfer functions Gva, Gda, Gdf and Gvf .

2.2. Abstracted plant model
The general input-output model of a piezoelectric laminate structure is shown in Figure 3. In conformance with
the standard MIMO control formulation, the plant contains two sets of inputs: the disturbance signals w, and
the control signals u. For the case under consideration, the disturbance and control signals are realized through
a set of voltages Va and Vz applied to a number of laminated piezoelectric patches. The system outputs Vp,
d(r, t), and q, correspond respectively to the piezoelectric voltages induced in each shunt patch, the dynamic
displacement measured at a point r, and the charge resident on each patch. The displacement signal d(r, t) is
chosen as our performance variable z, while the measured charge q is our feedback variable y. Although the
induced shunt piezoelectric voltages Vp are not required during the design, their inclusion aids in the modeling
process. Given a specific s-impedance, the signal Vp also allows us to compute the equivalent collocated active
feedback controller. A state-space realization of (12) is easily generated to represent the system P .

ẋ = Ax + B
[

Va

Vz

]
(13)

[
Vp

d(r)
q

]
= Cx + D

[
Va

Vz

]
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Figure 4. The standard H2 and H∞ design problem containing the composite plant P and a secondary performance
signal weighting the applied shunt voltage Vz.

where,

A =




0 1
−ω2

1 −2ςiω
2
1

. . .
0 1

−ω2
N −2ςNω2

N




B = [ B1 B2 ] =




0 0
F1 H1

...
...

0 0
FN HN




(14)

C =

[ C1

C2

CpC1

]
=

[
E1 0 · · · EN 0
1 0 · · · 1 0

CpE1 0 · · · CpEN 0

]
D =

[
D11 D12

D21 D22

D11Cp −Cp + D12Cp

]
(15)

where Fk and Hk k ∈ {1, 2, · · ·N} are the state-input weightings of each disturbance and shunt transducer. The
vectors Ek k ∈ {1, 2, · · ·N} represent the contribution of each mode to the induced piezoelectric voltages.

As an alternative to the parameterized modeling approach presented above, a multi-variable time or frequency
domain system identification technique could be employed to estimate the plant P directly from experimental
data.

3. S-IMPEDANCE CONTROL DESIGN
Given the composite model discussed in Section 2, the problem of designing an appropriate impedance can be
cast as a standard H2 or H∞ regulator problem. As shown in Figure 4, the regulator C(s) accepts the measured
charge q to provide a control signal Vz counteractive to the applied disturbance Va. The objective is to minimize
the structural displacement d(r, t) subject to a weighting on the magnitude of the required terminal voltage Vz.
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In an H2 sense, the goal is to minimize the transfer function from an applied disturbance w to the performance
signal z, i.e. we seek to minimize

J =
∥∥∥∥

z(s)
w(s)

∥∥∥∥
2

(16)

=
∥∥∥∥

d(r, s) + kuVz(s)
Va(s)

∥∥∥∥
2

.

where the H2 norm ‖F (s)‖2 of F (s) is defined as

‖F (s)‖2
2 =

1
2π

∫ ∞

−∞
tr {F (jω)F (jω)′} dω. (17)

By Parseval’s equality, the optimal H2 controller minimizes the expected root-mean-square (RMS) value of
z. An optimal H2 controller can be found through the solution of an algebraic Ricatti equation.

Disadvantages associated with H2 and LQG methods include the unrealistic Gaussian disturbance model, and
problems related to integral performance constraints. H∞ optimization and robust control, originally championed
by Zames23 , is an alternative to H2 and LQG methods.

Applying H∞ control to the problem of s-impedance synthesis involves finding a controller C(s) that minimizes

J =
∥∥∥∥

z(s)
w(s)

∥∥∥∥
∞

(18)

=
∥∥∥∥

d(r, s) + kuVz(s)
Va(s)

∥∥∥∥
∞

.

where the H∞ norm ‖F (s)‖∞ of F (s) is defined as

‖F (s)‖∞ = max
ω

σ̄ (F (jω)) (19)

where σ̄ denotes the maximum singular value.
In the time domain, H∞ control can be interpreted as minimizing the worst-case induced 2-norm of z, i.e.

∥∥∥∥
z(s)
w(s)

∥∥∥∥
∞

= max
w(t) �=0

‖z(t)‖2

‖w(t)‖2

(20)

where ‖f(t)‖2
2 =

∫ ∞
0

∑
i |fi(t)|2 dt.

Closely resembling the solution to H2 synthesis, an optimal H∞ controller can be found through the solution
of an algebraic Ricatti equation24, 25 .

Linear Quadratic Gaussian methods (LQG) are also readily applied19 .

4. EXPERIMENTAL RESULTS
In the following sub-sections, an H∞ s-impedance controller is designed and applied experimentally to control a
piezoelectric laminate cantilever beam.

4.1. Experimental Apparatus
The experimental apparatus, shown in Figure 6 and pictured in Figure 5, consists of a uniform aluminium
cantilever beam. Three piezoelectric transducers are laminated onto the front face and connected electrically
in series to the voltage source Vz. A single collocated disturbance transducer, identical to each of the shunt
transducers, is also mounted on the back face and driven with the disturbance voltage Va. Physical parameters
of the beam and piezoelectric transducers can be found in Tables 1 and 2.

The displacement measurement d(r, t) is acquired using a Polytec PSV300 scanning laser vibrometer.
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4.1.1. Voltage Driver with Charge Instrumentation
Details of a voltage amplifier with charge instrumentation can be found in19 .

4.2. Parameter Identification
To determine the model parameters shown in equation (13), a simple optimization scheme is employed. From
an initial guess, ωi and ςi, are found through a simplex optimization based on the measured disturbance to
displacement transfer function d(r,s)

Va(s) , i.e.

[ ωk ςk ] = arg min
∥∥∥P̃dVa

(s) − PdVa
(s)

∥∥∥
2
, (21)

where P̃dVa
(s) is the measured transfer function from an applied disturbance Va(s) to the displacement d(r, s).

With these parameters in hand, those remaining are determined from a final global optimization,

arg min
∥∥∥P̃ (s) − P (s)

∥∥∥
2, W

. (22)

As gains from channel to channel vary greatly, a multivariable frequency weight W is required to normalize the
cost of each error transfer function.

The magnitude and phase response of the measured system and resulting model are shown in Figures 7 and
8. The model is an accurate representation of the measured system. Note the close pole-zero spacing in the
transfer function from an applied shunt voltage Vz to the charqe q. Referring to Eq (15), this behaviour is due
to the transducer capacitance which results in a large direct feed-through.

In the following sections it will be of interest to examine the robustness of each control strategy to a change
in the structural resonance frequencies. Experimentally, such variation is accomplished by affixing a mass 60
mm from the beam tip. The corresponding change in structural resonance frequencies is illustrated in Figure 9.

4.3. Passive Shunt Design
For the sake of comparison, each LQG and H∞ shunt impedance will be judged against a traditional resonant
piezoelectric shunt damping circuit applied to the same structure. A current-flowing shunt circuit26 was designed
and tuned to minimize the H2 norm of the cantilever beam. The schematic and component values can be found
in Figure 10 and Table 3.

4.4. H∞ Shunt Design
This sub-section documents the design and implementation of an H∞ s-impedance. As discussed in Section 3,
an H∞ s-impedance is designed to minimize the following cost function,

J =
∥∥∥∥

d(r, s) + kuVz(s)
Va(s)

∥∥∥∥
∞

, (23)

where ku, the control signal weighting, was chosen to be 3.2×10−7. A random auxiliary input of negligible
influence was also included to avoid plant inversion. For a discussion on plant inversion and its avoidance, see
Fleming 200419 .

The complex s-impedance of the resulting H∞ controller is plotted in Figure 11.
Examining the open- and closed-loop pole locations shown in Figure 12, the controller is clearly augmenting

the system damping. Corresponding mitigation of the transfer function from an applied disturbance to the
measured displacement can be seen in both the frequency domain, Figure 13, and the time domain, Figure 15.
The magnitude of the first and second structural modes are reduced by 30.3 and 24.0 dB respectively. Damping
ratios are increased from 0.00246 and 0.0011 to 0.0288 and 0.00766.

An unexpected feature of the s-impedance is its smooth frequency response; there are no localized peaks at the
resonance frequencies. In contrast, active strain-, velocity-, or acceleration-feedback controllers characteristically
apply a highly localized gain at the frequencies of structural resonance. In the advent of model variation, such
localized behavior can result in considerable performance degradation. In order to examine system robustness,
the nominal system is perturbed by adding a mass 60 mm from the beam tip. Aside from the disturbance to
the underlying partial differential equation, the first and second resonance frequencies are decreased by 13.5 and
2.2 % respectively. The consequence on both passive and active shunt circuits is shown in Figure 14. While the
H∞ shunt loses only 3.3 and 0.8 dB from its unperturbed attenuation of the first and second modes, the passive
shunt loses 13.4 and 4.8 dB. Corresponding time domain results are shown in Figure 15.
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Length, L 376 mm
Thickness, h 3 mm
Width, W 50 mm
Density, ρ 2.770×103 kg/m3

Young’s Mod., E 7.00×1010 N/m2

Table 1. Beam Parameters

Length, Lpz 50 mm
Thickness, hpz 0.25 mm
Width, Wpz 15 mm
Charge Constant, d31 -210×10−12 m/V
Voltage Constant, g31 -11.5×10−3 V m/N
Coupling Coefficient, k31 0.34
Capacitance, Cp 43 nF
Young’s Mod., Epz 63×109 N/m2

Table 2. Properties of the Physik Instrumente Transducers
(PIC151 Ceramic)

Figure 5. The cantilever beam.

Vz

dSpace

q

Figure 6. A front elevation of the cantilever beam. A single
co-located disturbance transducer excited by the voltage Va,
is also mounted on the back face.

C1 10 nF C2 10 nF
L1 11690 H L2 348 H
R1 15 kΩ R2 9 kΩ

Table 3. Component values of the current-flowing shunt
circuit.
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Figure 7. The simulated (- -) and experimental (—) mag-
nitude frequency response (in decibels) of the shunt voltage
controlled piezoelectric beam.
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Figure 8. The simulated (- -) and experimental (—) phase
frequency response (in degrees) of the shunt voltage con-
trolled piezoelectric beam.
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Figure 9. The experimental frequency response (in deci-
bels) from an applied disturbance voltage Va (V ) to the
resulting tip displacement d (m). Free (- -), With Mass
(—).
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Figure 10. A dual-mode current-flowing piezoelectric shunt
damping circuit.26
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Figure 11. Complex s-impedance of the H∞ (—), and ideal
negative capacitor (- -) shunt controller.
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Figure 12. The open- (©), and closed-loop (×) pole loca-
tions of the H∞ shunt controlled system.
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Figure 13. The experimental (—), and simulated (- -),
H∞ shunt controlled frequency responses (in decibels) from
an applied disturbance voltage Va (V ) to the resulting tip
displacement d (m). The open-loop response is also shown
(—).
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Figure 14. The free (- -), and with-mass (—), passive (a)
and H∞ shunt controlled (b) experimental frequency re-
sponses (in decibels) from an applied disturbance voltage
Va (V ) to the resulting tip displacement d (m).
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Figure 15. The free (left column) and with-mass (right col-
umn) tip displacement response d (m) to a step disturbance
in Va. Experimental open-loop (a), passive shunt controlled
(b), and H∞ shunt controlled (c) systems.
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5. CONCLUSIONS
A framework has been presented for the design of active shunt impedances. By viewing a piezoelectric laminate
structure as a system with transducer voltage inputs and charge outputs, the task of shunt impedance design can
be accomplished through the solution of a standard control problem e.g. by LQG, H2, or H∞ synthesis. The
resulting controller, effectively the derivative of impedance, can be implemented directly with a voltage amplifier
and charge measurement.

Although the fundamental goal in smart structure design is often to the augment system damping, this
cannot be specified directly as an LQG, H2, or H∞ performance objective. The approach has been to achieve
this indirectly through mitigation of the performance transfer function d(s)

Va(s) .

Experimentally, the active shunts have proven to introduce significant system damping, up to 30.3 dB atten-
uation of the first cantilever mode.

While achieving levels of performance previously only available through sensor-based feedback control, active
shunt impedances are remarkably insensitive to variation in the structural resonance frequencies. A 13.5 %
change in the first resonance frequency resulted in only a slight loss in performance. By comparison, the same
variation had a disastrous consequence on the performance of a passive shunt damping circuit. Such sensitivity
has limited the practical application of smart structures incorporating either active feedback or passive shunt
vibration control systems.

Another well known problem associated with passive shunt damping is the lack of control influence. Given
a lightly damped structure, even the small counteractive forces associated with passive shunt circuits can sig-
nificantly increase system damping. Many practical mechanical structures naturally exhibit higher levels of
damping. In such cases, passive piezoelectric shunt circuits are of limited use. As the amount of control influ-
ence associated with active shunt impedances is arbitrary, the possibility now exists for controlling more heavily
damped systems. In such cases, the control voltage Vz is expected to become quite large. At high drive voltages
it may be necessary to address the inherent piezoelectric hysteresis.

The reader will appreciate that the presented techniques are quite general and valid for structures incorporat-
ing multiple piezoelectric transducers. Although the application of sensor-based feedback control is well defined
and feasible for structures with multiple sensors and actuators, the same can not be said for multi-transducer
shunt circuits18 . Present multi-transducer, multi-mode shunt circuits are simply a direct extension of single
transducer shunt circuits. Each circuit is restricted to be independent and attached to a single transducer. If
a single mode is to be targeted by two or more transducers, the task of tuning the shunt circuit can become
extremely tedious. In addition to the complicated interaction between transducers at those frequencies, there
are now as many more tuning parameters as there are transducers per mode. The design freedom afforded
with active shunts not only eliminates the complicated task of tuning, but allows for full utilization of each
patch. The resulting impedance is unstructured, multivariable, and able to exploit benefits that may arise from
inter-transducer coupling.

Possible applications of active piezoelectric shunt impedances include sensor-less, high performance vibration
control of acoustic panels, flexible structures, and positioning systems. Future work includes multi-transducer
structures and restricted impedance design. The LQG and H∞ impedance designs contained negative reactive
components and are unstable in a systems perspective. Although the connection of the transducer and control
impedance is stable, an inherently stable controller is desirable. It is presently unclear if an unstable controller
is necessary to result in effective vibration reduction.
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