Active Damping Control using Optimal Integral Force Feedback

Yik R. Teo, Andrew J. Fleming

Abstract—This article shows an improvement to Integral Force Feedback (IFF) for active damping control of precision mechanisms. The benefits of IFF include robustness, guaranteed stability and simplicity. However, the damping performance depends on the stiffness of the system; hence, some systems cannot be adequately controlled. In this article, an extension to the classical integral force feedback control scheme is proposed. The new method achieves arbitrary damping for any mechanical system by introducing a feed-through term in the system.

I. INTRODUCTION

The speed and resolution of many scientific and industrial machines are limited by the presence of lightly damped mechanical resonances. Examples include scanning probe microscopy [1]–[5], nanofabrication [6], precision optics [7] and aerospace systems [8].

Traditional passive damping methods have includes viscoelastic damping and tuned-mass absorbers; however, these methods can be bulky and may not perform well at low frequencies. In contrast, active damping is an alternative method to increase the performance. Active damping control utilizes a sensor and feedback loop to artificially increase the damping ratio of a system. A number of successful damping control techniques include Positive Position Feedback (PPF) [9], polynomial based control [10], shunt control [11]–[13], resonant control [14], Force Feedback [15]–[18], and Integral Resonance Control (IRC) [19]–[21]. Among these techniques, PPF controllers, velocity feedback controllers, force feedback controllers, and IRC controllers have been shown to guarantee stability when the plant is strictly negative imaginary [22]. Optimal controllers with automatic synthesis have also been successfully applied to damping control applications, for example, robust H_{∞} controllers [23], [24].

In references [15]–[18] integral force feedback (IFF) is described for vibration control and positioning applications. This technique utilizes a force sensor and integral controller to directly augment the damping of a mechanical system. The major advantages of IFF are the simplicity of the controller, guaranteed stability and excellent performance robustness. However, the maximum damping achievable with IFF is a function of the system properties, in particular the system stiffness relative to the actuator stiffness. Hence, some systems can be critically damped using IFF while other exhibit negligible damping improvement.

In this work, an extension to IFF is described for an arbitrary damping ratio to be achieved for any mechanical system. The modification amounts to replacing the integral controller with a first-order equivalent low-pass filter. Although the additional complexity is negligible, the damping performance is significantly improved. This is an exceptional result that allows integral force feedback to be extended to systems that were not previously suited.

II. CLASSICAL INTEGRAL FORCE FEEDBACK (CIFT)

Integral Force Feedback (IFF) control has been widely applied for augmenting the damping of flexible structures [16]. The feedback law is simple to implement and under common circumstances provides excellent damping performance with guaranteed stability. Fig. 1 illustrates a structure G equipped with a piezoelectric actuator that produces a force F_a with internal stiffness K_a. A force sensor is collocated with the piezoelectric actuator and measures the axial force F_s acting on the system G. The variable d represents the mechanical displacement.

The classical integral force feedback controller (CIFT) has a block diagram representation illustrated in Fig. 2. The transfer function between the unconstrained piezo expansion δ to the sensor force F_s is [25]

$$G_{F_s,\delta}(s) = \frac{F_s}{\delta} = K_a \left\{ 1 - \sum_{i=1}^{n} \frac{v_i}{1 + s^2/\omega_i^2} \right\},$$ (1)
Fig. 3. Typical root locus plots.

![Root Locus Plots](image)

(a) Classical method. (b) Optimal method.
A. Mechanical Dynamics and System Properties

Fig. 5 shows a second-order mechanical system with mass \(M_p = 250 \) g, flexure stiffness \(k_f = 300 \) N/\(\mu \)m, actuator stiffness \(K_a = 100 \) N/\(\mu \)m and flexure damping \(c_f = 10 \) N/ms\(^{-1}\).

The equation of motion for this system is

\[
M_p \ddot{d} + c_f \dot{d} + (K_a + k_f) d = F_a,
\]

where \(M_p \) is the mass of the platform and the stiffness and damping coefficient of the flexures are denoted by \(k_f \) and \(c_f \) respectively. The force of the actuator is \(F_a \) and the stiffness is \(K_a \). A force sensor is collocated with the actuator and measures the load force \(F_s \).

The configuration of the system is such that the actuator and flexure appear mechanically in parallel, hence, the stiffness coefficients can be grouped together \(k = K_a + k_f \). This simplifies the equation of motion (15) to

\[
M_p \ddot{d} + c_f \dot{d} + k = F_a.
\]

The transfer function from actuator force \(F_a \) to the displacement of the mass \(d \) is

\[
G_{dF_a}(s) = \frac{d}{F_a}, \quad \frac{1}{M_p s^2 + c_f s + k}.
\]

The sensor force \(F_s \) can be written as

\[
F_s = F_a - dK_a, \\
= F_a - K_a F_a G_{dF_a}(s), \\
= F_a (1 - K_a G_{dF_a}(s)). \tag{18}
\]

The transfer function between the applied force \(F_a \) and measured force \(F_s \) is found by rearranging (18).

\[
G_{F_sF_a}(s) = \frac{F_s}{F_a}, \quad 1 - K_a G_{dF_a}(s). \tag{19}
\]

The force developed by the actuator \(F_a \) is

\[
F_a = K_a \delta, \tag{20}
\]

recall that \(\delta \) is the unconstrained piezo expansion. Substituting (20) into (19), we obtain the transfer function from the unconstrained piezo expansion \(\delta \) to the force of the sensor \(F_s \)

\[
G_{F_s\delta} = \frac{F_s}{\delta}, \quad K_a \frac{F_s}{F_a}, \quad K_a (1 - K_a G_{dF_a}(s)). \tag{21}
\]

A valid assumption is that the effect of the damping in the flexure \(c_f \) is small and thus negligible.

The imaginary parts of the open-loop poles and zeros are

\[
\omega_1 = \sqrt{\frac{k}{M_p}}, \quad \frac{K_a + k_f}{M_p}, \quad \frac{k_f}{M_p}. \tag{22}
\]

For this system the open-loop poles and zeros of the system are \(\omega_1 = 6.37 \text{ kHz} \) and \(z_1 = 5.5 \text{ kHz} \).

B. Damping Control Design

1) Classical Integral Force Feedback (CIFF): The open-loop frequency response of \(G_{F_sF_a}(s) \) is shown in Fig. 6. One key observation is that its phase response of the system lies between 0 and 180\(^\circ\). This is a general property of flexible structures with inputs and outputs proportional to the applied and measured forces. Recall that the classical integral force feedback controller is

\[
C_{d1}(s) = \frac{K_{d1}}{K_{ds}}. \tag{23}
\]

The integral controller has a constant phase lag of 90\(^\circ\) so the loop-gain of the system lies between -90 and 90\(^\circ\). Hence, the closed-loop system has an infinite gain margin and phase margin of 90\(^\circ\). The solution for the optimal feedback gain
Fig. 7. Case Study: Root locus of the system using CIFF and OIFF at different values of ζ_{max}.

Fig. 8. Detail Block Diagram of the CIFF system for analysis

K_d has already been derived in [16] and further generalised for nanopositioning systems in [17]. The optimal feedback gain K_d and corresponding maximum closed-loop damping ratio ζ_{max} are

$$K_{d1} = \omega_1 \sqrt{\frac{\omega_1}{z_1}},$$ \hspace{1cm} (24)

and

$$\zeta_{\text{max}} = \omega_1 - \frac{z_1}{2z_1},$$ \hspace{1cm} (25)

The numerical root-locus plot in Fig. 7 validate these values. The numerically optimal gain is 4.57×10^4 and the corresponding damping ratio is 0.077. This correlates closely with the predicted values which supports the accuracy of the assumptions made in deriving the optimal gain.

Fig. 8 shows a detailed block diagram of the system with sensor force F_s and platform displacement d as outputs. A disturbance w is also considered. The transfer function from the disturbance w to the sensor force F_s is

$$G_{F_s w}(s) = \frac{F_s}{w} = \frac{G_{F_s \delta}}{1 + C_d G_{F_s \delta}}.$$ \hspace{1cm} (26)

The simulated open-loop and closed-loop frequency responses of (26) are plotted in Fig. 9.

Fig. 9. Case Study: Frequency response from the input disturbance w to the sensor force F_s.

Fig. 10. Case Study: Frequency response from the input disturbance w to the displacement of the platform d.

The transfer function from the disturbance w to the displacement of the platform d is

$$G_{dw}(s) = \frac{d}{w},$$ \hspace{1cm} (27)

The simulated open-loop and closed-loop frequency responses of (27) are plotted in Fig. 10.

2) Optimal Integral Force Feedback (OIFF): The CIFF method can be extended to include the feed-through term β as illustrated in Fig. 4(a). The equivalent controller $\hat{C}_d(s)$ is found by equating the systems in Fig. 4(b) and Fig. 11,

$$\hat{C}_d(s) = \frac{C_d(s)}{1 + C_d(s) \beta}.$$ \hspace{1cm} (28)

For the case study, the relationship between β and ζ described in (14) is plotted in Fig. 12. The maximum
modal damping with CIFF is 0.077; however, with OIFF, the maximum modal damping can be varied from 0.077 to 1 at different values of \(\beta \).

The root locus of the system is shown in Fig. 7. The optimal feedback gain, maximum damping ratio and corresponding value of \(\beta \) is given in Table I. These values can be validated by the numerical root-locus plot in Fig. 7 and is summarize in Table I. These values correlates closely with the predicted values which supports the accuracy of the assumptions made in deriving the optimal gain.

Fig. 13 shows a detailed block diagram of the system with sensor force \(F_s \) and platform displacement \(d \) as outputs. A disturbance \(w \) is also considered. The transfer function from the disturbances \(w \) to the sensor force \(F_s \) is

\[
G_{F_s,w}(s) = \frac{F_s}{w} = \frac{G_{F_s\delta}}{1 + \hat{C}_dG_{F_s\delta}}. \tag{29}
\]

The simulated open-loop and closed-loop frequency responses of (29) is shown in Fig. 9.

The closed-loop transfer function measured from the reference, \(r \), to the sensor force, \(F_s \), is

\[
G_{F_s,r}(s) = \frac{F_s}{r} = \frac{\hat{C}_dG_{F_s\delta}}{1 + \hat{C}_dG_{F_s\delta}}. \tag{30}
\]

The transfer function from the disturbance \(w \) to the displacement of the platform \(d \) is

\[
G_{dw}(s) = \frac{d}{w} = \frac{K_dG_{dF_s}(s)}{1 + \hat{C}_dG_{F_s\delta}}. \tag{32}
\]

The simulated open-loop and closed-loop frequency responses of (32) are plotted in Fig. 14. The frequency response when \(s = 0 \)

\[
G_{F_s}(0) = \frac{\hat{C}_dG_{F_s\delta}(0)}{1 + \hat{C}_dG_{F_s\delta}(0)} = \frac{\hat{C}_dG_{F_s\delta}(0)}{1 + \hat{C}_dG_{F_s\delta}(0) + \beta}. \tag{31}
\]

This shows that the DC gain of the closed-loop increases as \(\beta \) decreases such that \(K_d(v_t - 1) < \beta < 0 \) holds. Recall that the maximum damping ratio of the closed-loop system increases as \(\beta \) is decrease.

The transfer function from the disturbance \(w \) to the displacement of the platform \(d \) is

\[
G_{dw}(s) = \frac{d}{w} = \frac{K_dG_{dF_s}(s)}{1 + \hat{C}_dG_{F_s\delta}}. \tag{32}
\]

The simulated open-loop and closed-loop frequency responses of (32) are plotted in Fig. 14. The frequency response
of this transfer function is shown in Fig. 14. The sensitivity of the control action toward input disturbance increases as the desired damping ratio is increased.

V. CONCLUSION

This article describes an extension to integral force feedback control that allows arbitrary mechanical damping to be achieved for any mechanical system. An additional feedthrough term is added to the system to provide an extra degree of freedom that can be used to arbitrarily manipulate the modal zeros and maximum damping.

Simulation results on a simple mechanical system demonstrate an increase in the maximum achievable damping from 0.077 to 1 using integral force feedback. This result will allow high-performance mechanical systems to be critically damped with a first-order control law.

Future work will include experimental application, extension to systems with multiple actuators, and modeling using a negative imaginary framework.

REFERENCES