An Algorithm for Transmitter Optimization in Electromagnetic Tracking Systems

Mohd Noor Islam, Andrew J. Fleming
School of Electrical Engineering and Computer Science
The University of Newcastle
Callaghan, Australia

Electromagnetic (EM) tracking systems are used extensively in biomedical devices, gaming consoles, and animation because they are inexpensive and do not require line of sight. However, the measurement range is limited by the amplitude of the induced voltage in the sensing coil. The induced voltage is a function of the transmitter parameters such as the coil dimensions, signal power and frequency. The transmitted power is typically restricted by the physical constraints in the application. This article develops an algorithm to optimize the dimensions of the transmitting coil for maximum induced voltage. The proposed method is suitable for a transmitter consisting of three concentric, orthogonal transmitting coils of the type commonly used in 6-DOF localization. Simulation and experimental results are presented which demonstrate the efficacy of the proposed method.

Index Terms—Electromagnetic (EM) tracking system, Transmitting coil, Sensing Coil.

I. INTRODUCTION

A Six-degree-of-freedom (6-DOF) electromagnetic (EM) tracking system is composed of three concentric, orthogonal transmitting and sensing coils [1]–[12]. The transmitting coils are excited by AC signals to create magnetic dipoles which induce voltage in the sensing coils. EM systems are extensively used in applications such as catheter and endoscope tracking [13]–[22], helmet tracking in the military [21], real-time motion tracking in games and the film industry [23], flight simulation, and virtual reality. EM tracking systems are inexpensive and do not require line of sight.

Although EM systems have many advantageous characteristics, the measurement range is limited by the dramatic signal attenuation in space [2], [15], [18]. The sensitivity and range can be increased by increasing the signal power, optimizing the sensing coils [24], [25], and/or optimizing the transmitting coils. This article develops an algorithm for optimizing the transmitting coil dimensions for a given power level.

Signal frequency has a major impact on the transmitter optimization. Commercially available tracking systems use a low frequency signal (e.g. as 25 Hz [26], 120 Hz [21] or 144 Hz [22]). These frequencies minimize any distortion created by nearby metallic objects. However, low frequencies also limit the measurement rate [26] and may be susceptible to mains interference [27]. On the other hand, by increasing the frequency, resonance coupling [15] can be implemented, which increases the sensitivity of the sensing circuit. The distortion effect can be compensated by using a calibration technique [28]. This article demonstrates that higher frequencies result in lower mass and greater sensitivity and range. The maximum signal frequency is limited by the proximity of metal objects and, for example, the loss due to body tissue which increases sharply above 1 MHz [29].

The proposed algorithm is demonstrated for an example transmitter where the power is restricted to 9 W and the volume is restricted to (0.12 m × 0.12 m × 0.12 m). In this work, the range is defined as the distance between the coils when the induced voltage drops to 1 mVpk or -60 dB Vpk. The orientation of the coil is assumed to be near the worst case of 5° relative to the flux lines. Using this definition, a maximum sensing range of 400 mm is achieved at 220 kHz.

In the next section, model for the induced voltage is derived. In section 3, the simulation and experimental results are presented. The transmitter optimization algorithm is described in section 4, then the paper is concluded in section 5.

II. MATHEMATICAL ANALYSIS

A 6-DOF electromagnetic tracking system composed of concentric, orthogonal transmitting and sensing coils is shown in Fig. 1 [31]. The transmitting coils are energized to create magnetic dipoles parallel to the X-axis, Y-axis or Z-axis. The system parameters are summarized in Table I.

The magnetic flux density at any position \((x, y, z)\) from the center of a transmitting coil \((a, b, c)\) as shown in Fig. 1 can
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMAG.2017.2703653, IEEE Transactions on Magnetics

TABLE I: Parameters of EM tracking system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
</table>
| G | Construction parameter which is equal to
\[(k_1 \times l_{tc} + k_2 \times r + k_3 \times t_c) \]. The values of \(k_1, k_2 \) and \(k_3 \) are defined by Wheeler [30]. For a single turn coil, \(k_1 = 0 \) and \(k_2 = 0 \). For single layer coil, \(k_3 = 0 \). |
| \(\vec{m} \) | Total magnetic dipole moment of transmitting coils. |
| \(r \) | Radius of the transmitting coil. |
| \(t_c \) | Thickness of the transmitting coil. |
| \(l_{tc} \) | Length of the transmitting coil. |
| \(R_{tc} \) | Resistance of the transmitting coil. |
| \(X_{tc} \) | Inductive reactance of the transmitting coil. |
| \(C_{tc} \) | Self-capacitance of the transmitting coil. |
| \(V_a \) | Voltage applied to the transmitting coil. |
| \(N \) | Number of turns in the transmitting coil |
| \(\zeta \) | Total turns-area of the sensing coil \(\sum_{i=1}^{n} A_i \). |
| \(A \) | Area of the sensing coil. |
| \(\mu_{tc} \) | Permeability of the core used in the transmitting coil. |
| \(\mu_m \) | Permeability of the medium of the tracking system. |
| \(D_{cu} \) | Diameter of the insulated wire used for transmitting coil. |
| \(D_c \) | Diameter of the wire used for the transmitting coil without insulation. |
| \(D_{core} \) | Inner diameter of the transmitting coil or the outer diameter of the core. |
| \(\mu_{cu} \) | Permeability of the wire used for transmitting coil. |
| \(I_a \) | Current in transmitting coil. |
| \(V_{coil} \) | Voltage induced in the sensing coil. |
| \(\tau \) | Sensing range of the system. |

be written as [32].

\[
\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k} = \frac{\mu}{4\pi} \left(\frac{3[m_1, \vec{r}] \vec{r}}{r^5} - \frac{\vec{m}}{r^3} \right) \tag{1}
\]

where the distance vector \(\vec{r} = [(x-a), (y-b), (z-c)]^T \), and the distance between the transmitter and the sensing coil is \(\tau = \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} \). \(m_i = (m_{i1}, m_{i2}, m_{i3})^T \), where \(m_1, m_2 \) and \(m_3 \) represent the magnetic dipole moments to the \(X, Y \) and \(Z \) axes, respectively. The dipole moments are equal to \(\pi N r_i^2 I_a \), where \(r_i \) represents the radius of the transmitting coils and \(i = \{1,2,3\} \). From equation (1), the components of the magnetic flux density \(B \) at \((x, y, z)\) are

\[
B_x = \frac{\mu}{4\pi} \left\{ \frac{3[m_1(x-a) + m_2(y-b) + m_3(z-c)](x-a)}{r^5} - \frac{m_1}{r^3} \right\} \tag{2}
\]

\[
B_y = \frac{\mu}{4\pi} \left\{ \frac{3[m_1(x-a) + m_2(y-b) + m_3(z-c)](y-b)}{r^5} - \frac{m_2}{r^3} \right\} \tag{3}
\]

\[
B_z = \frac{\mu}{4\pi} \left\{ \frac{3[m_1(x-a) + m_2(y-b) + m_3(z-c)](z-c)}{r^5} - \frac{m_3}{r^3} \right\} \tag{4}
\]

Consider the transmitting coil of radius \(r \) that creates a magnetic dipole parallel to the \(X \)-axis, and a sensing coil at \((x, y, z)\) as shown in Fig. 2. So, \(\vec{m} = (m_1, 0, 0)^T \) and \(m_1 = \pi N r_i^2 I_a \). Let the center of the transmitting coil be \((0, 0, 0)\). From equations (1), (2), (3) and (4), the magnetic flux density at \((x, y, z)\) can be written as

\[
B = \begin{bmatrix} B_x \\ B_y \\ B_z \end{bmatrix} = \Upsilon Q(x, y, z) \sin(\omega t), \tag{5}
\]

where \(Q(x, y, z) \) and \(\Upsilon \) are introduced for notational simplicity, and are defined by

\[
Q(x, y, z) = \frac{1}{\tau^5} \begin{bmatrix} 2x^2 - y^2 - z^2 \\ 3xy \\ 3xz \end{bmatrix} \tag{6}
\]

and

\[
\Upsilon = \frac{\mu_m}{4} N r_i^2 I_a \tag{7}
\]

\[
= \frac{\mu_m v^2 N V_a}{4Z_{tc}}. \tag{8}
\]

The equivalent circuit of a transmitting coil is shown in Fig. 3. Let \(Z_1 = \sqrt{R_{tc} + X_{tc}^2} \), and \(Z_c = 1/2\pi f C_{tc} \). Therefore, \(Z_{tc} = Z_1 || Z_c \). \(R_{tc} \) and \(X_{tc} \) are the resistance and inductive reactance of the transmitting coil, respectively. Both \(R_{tc} \) and \(X_{tc} \) are functions of frequency. \(R_{tc} = \frac{2\pi N}{D_{cu}} \left(\sqrt{\frac{\mu \mu_c \mu_o}{c}} \right) \), \(X_{tc} = \frac{2\pi N r_i^2 \mu_m}{D_{cu}} \) or \(X_{tc} = \frac{2\pi N r_i^2 \mu_m}{D_{cu}} \). The expression for \(G \) and the value of \(\eta \) can be found in the inductance formulas given by Wheeler [30]. For a single layer helical, spiral, and

![Fig. 2: Electromagnetic induction in the sensing coil due to a magnetic dipole which is parallel to the X-axis](image)

![Fig. 3: (a) Equivalent circuit of a transmitter (b) Circuit diagram to estimate \(C_{tc} \) by applying the resonance method.](image)
multi-layer coils, the values of G are $9r + 10l_{tc}, 8r + 11l_{tc}$ and $6r + 9l_{tc} + 10l_{tc}$ and the values of η are 39.37×10^{-6}, 31.5×10^{-6} and 39.37×10^{-6}, respectively. C_{tc} also depends on the structure of the coil. The turn-turn capacitance can be calculated by [33]

$$C_{tt} = \frac{\epsilon_0 l_t}{\ln \left(\frac{D_{ext}}{D_{core}} \right)} + \cot \left(\frac{\theta^*}{2} \right) - \cot \left(\frac{\pi}{12} \right)$$

(9)

where, D_c is the diameter of the wire without insulation, ϵ_r is the relative permittivity of the insulation material, $\epsilon_0 = 8.85 \times 10^{-12}$, turn length $l_t = \pi \times D_{core}$, $\theta^* = \arccos \left(1 - \ln \left(\frac{D_{ext}}{D_a} \right) / \epsilon_r \right)$, $N \geq 10$. The self-capacitance of the coil is $C_{tc} = \gamma C_{tt}$, where $\gamma = 1.618$ for a two-layer coil [33]. Experimentally the capacitance can be estimated by creating an electric resonance using an external capacitor, which is shown in Fig. 3b. Let the resonance frequencies are f_1 and f_2 for external capacitances C_{ext1} and C_{ext2}, respectively. The self-capacitance can be determined by,

$$C_{tc} = \left(\frac{f_2}{f_1} \right)^2 C_{ext2} - C_{ext1} \left(\frac{1}{1 - \left(\frac{f_2}{f_1} \right)^2} \right)$$

(10)

The impact of signal frequency on the coil impedance is shown in Fig. 4. For frequencies less than or equal to one tenth of the self-resonance frequency (SRF), $Z_{tc} \approx Z_1$. In this frequency range, when $X_{tc} \gg R_{tc}$, the inductive reactance of a transmitting coil becomes approximately equal to its impedance i.e., $X_{tc} \approx Z_{tc}$. Equation (5) can be written as

$$\Upsilon = \frac{V_a G \mu_m}{8 \pi f \eta N}$$

(11)

or

$$\Upsilon = \frac{V_a \mu_{m tc}}{8 \pi^2 f N \mu_{tc}}$$

(12)

Let the magnetic flux through the sensing coil be $\phi = BA'$, where A' is the area of the sensing coil. According to Faraday’s

The fractional area of the sensing coil perpendicular to ϕ varies with the rotation function $\Gamma(\alpha, \beta, \gamma)$. The angles α, β and γ are the rotation angles of the sensing coil about the X, Y and Z-axes, respectively. So, the fractional area is $A' = A \Gamma(\alpha, \beta, \gamma)$, where A is the cross-sectional area of the coil. $\Gamma(\alpha, \beta, \gamma)$ is given by where $\Gamma(1, 1) = \cos(\beta) \cos(\gamma)$, $\Gamma(3, 3) = \cos(\alpha) \cos(\beta)$, $\Gamma(2, 1) = \cos(\gamma) \sin(\alpha) \sin(\beta) + \cos(\alpha) \sin(\gamma)$, $\Gamma(3, 1) = \sin(\alpha) \sin(\gamma) - \cos(\alpha) \cos(\gamma) \sin(\beta)$, $\Gamma(1, 2) = -\cos(\beta) \sin(\gamma)$, $\Gamma(2, 3) = -\cos(\beta) \sin(\alpha)$, $\Gamma(2, 2) = \cos(\alpha) \cos(\gamma) - \sin(\alpha) \sin(\gamma)$, $\Gamma(3, 2) = \cos(\gamma) \sin(\alpha) + \cos(\alpha) \sin(\beta) \sin(\gamma)$, $\Gamma(1, 3) = \sin(\beta)$.

Therefore, the magnitude of the sensing voltage is

$$V_{coil} = -nA \omega \Upsilon Q(x, y, z)$$

$$= -\frac{V_a G \mu_m}{4 \pi f N} \Upsilon Q(x, y, z)$$

$$= -\frac{V_a G \mu_m}{4 \pi f N} K$$

$$= -F \times K$$

where

$$K = \begin{bmatrix} K_1 \\ K_2 \\ K_3 \end{bmatrix} = \Gamma(\alpha, \beta, \gamma)Q(x, y, z)$$

(16)

and

$$F = \frac{1}{4 \pi} \times \frac{V_a \times G}{N} \times \zeta \times \mu_m$$

(17)

or based on (12), the equation for F can be written as

$$F = \frac{1}{4 \pi} \times \frac{V_a}{N} \times \frac{\mu_m}{\mu_{tc}} \times \zeta \times l_{tc}$$

(18)

K is a function of the position and orientation of the sensing coil. For a static sensing position, $V_{coil} \propto F$. From (17), the induced voltage depends on parameters such as the applied voltage and the dimensions of the transmitting and sensing coils. Therefore, to maximize the induced voltage, the transmitter dimensions and construction need to be optimized. It is also clear from (17) that the induced voltage does not vary with signal frequency. As the signal frequency increases, the magnitude of the flux density decreases but this is compensated by an increase in the rate of change $\frac{d\phi}{dt}$.

$$\Gamma(\alpha, \beta, \gamma) = \begin{bmatrix} \Gamma(1, 1) & \Gamma(1, 2) & \Gamma(1, 3) \\ \Gamma(2, 1) & \Gamma(2, 2) & \Gamma(2, 3) \\ \Gamma(3, 1) & \Gamma(3, 2) & \Gamma(3, 3) \end{bmatrix}$$

(14)
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMAG.2017.2703653, IEEE Transactions on Magnetics

10 kHz 100 Vpk

Supply current, I

Vcoil

wire which results in a total turns-area ζ with lowest possible resistivity and should be high. The conductor should be as thick as possible and decreased radius on induced voltage. (b) Experimental setup for testing impact of the applied voltage and dimensions of the transmitting coil are tested. The sensing coil used in the experiment is an invar coil and the number of turns is varied from 25 to 50. The applied voltage and frequency were 10 Vpk and 43.5 kHz. The results are plotted in Fig. 7a. The induced voltage is observed to increase with supply voltage. While testing the impact of the number of turns, the length of the coil was 4 cm and the number of turns is varied from 25 to 50. The applied voltage and frequency were 10 Vpk and 43.5 kHz. The results are plotted in Fig. 7b. It can be observed that when the number of turns in the transmitting coil is increased, the induced voltage in the sensing coil decreases.

The relationship between the length of the transmitting coil and the induced voltage is also verified. This experiment also uses the setup shown in Fig. 5b. The length of a 50 turn coil with a radius of 0.025 m was varied from 0.04 m to 0.07 m. The transmitting coil is placed 10 mm from the sensing coil.

III. SIMULATION AND EXPERIMENTAL ANALYSIS

In this section, the relationship between the induced voltage and the system parameters is experimentally verified. First, the invariance of induced voltage to frequency is verified. Then the impact of the applied voltage and dimensions of the transmitting coil are tested. The sensing coil used in the experiment is an air cored cylinder with a 2.5 cm length and 10 mm diameter. The sensing coil has 25 turns of 0.45 mm enamelled copper wire which results in a total turns-area ζ of 1950 turn.mm².

The experimental setup is shown in Fig. 5. The single layer air cored transmitting coil is placed at (0,0,0) on the XY plane and the sensing coil is placed at (0.115 m, 0 m, 0.01 m). The orientation of the sensing coil is (α = 0°, β = 90°, γ = 0°). The other parameters are \(V_a = 10 \) Vpk, \(ζ = 1950 \) turn.mm², \(D_{cu} = 1 \times 10^{-3} \) m, \(μ_{cu} = 1.256629 \times 10^{-6} \) H/m, \(D_c = 0.95 \) mm, \(N = 50 \), \(D_{core} = 48.5 \) mm, and \(ρ = 1.68 \times 10^{-8} \) Ω.m. The experimentally determined parameters are \(L_{tc} = 80 \) μH, \(C_{tc} = 45 \) pF. Using (9), the calculated value of \(C_{tc} \) is 33 pF, which is close to the experimentally estimated value. The transmitting coil is energized by an AC signal and the induced voltage in the sensing coil was recorded.

In Fig. 6, the induced voltage is observed to independent of frequency from 5 kHz to 160 kHz. On the other hand, the current reduces with the frequency as the impedance of the transmitting coil increases.

The experimental setup in Fig. 5 is also used to verify the impact of applied voltage and the number of turns on the induced voltage. In this experiment, the applied voltage is varied from 2.5 Vpk to 20 Vpk. Both simulation and experimental results are plotted in Fig. 7c. The induced voltage is observed to increase with supply voltage. While testing the impact of the number of turns, the length of the coil was 4 cm and the number of turns is varied from 25 to 50. The applied voltage and frequency were 10 Vpk and 43.5 kHz. The results are plotted in Fig. 7d. It can be observed that when the number of turns in the transmitting coil is increased, the induced voltage in the sensing coil decreases.

In this section, the relationship between the induced voltage and the system parameters is experimentally verified. First, the invariance of induced voltage to frequency is verified. Then the impact of the applied voltage and dimensions of the transmitting coil are tested. The sensing coil used in the experiment is an air cored cylinder with a 2.5 cm length and 10 mm diameter. The sensing coil has 25 turns of 0.45 mm enamelled copper wire which results in a total turns-area ζ of 1950 turn.mm².

A. Condition to make \(X_{tc} \gg R_{tc} \) or \(X_{tc} \approx Z_{tc} \)

The derived induced voltage is simplified by the condition,

\[
\frac{X_{tc}}{G} \gg \frac{2πfN^2r^2}{μ_{cu}} D_{cu} \quad \eta \quad \frac{N\sqrt{f}}{\left(1+\sqrt{π/η}\right)G/r} \left(\frac{G}{D_{cu}}\right)^{1/2} \left(\frac{ρ_{cu}}{D_{cu}}\right)^{1/2}
\]

In order to satisfy this condition, the value of \(N \) and \(f \) should be high. The conductor should be as thick as possible with lowest possible resistivity and \(G \) should be minimized.

Equation (15) implies that an increased \(G \) and decreased \(N \) will increase the induced voltage and reduce the inductive reactance. Therefore, by increasing frequency, a greater voltage can be applied without increasing current, which increases the induced voltage.

The sensing coil has 25 turns of 0.45 mm enamelled copper wire which results in a total turns-area ζ of 1950 turn.mm².

The simulation and experimental results that illustrate the relationship between the induced voltage in the sensing coil and the signal frequency and current.

![Fig. 6: Simulation and experimental results that illustrate the relationship between the induced voltage in the sensing coil and the signal frequency and current.](image)

The sensing coil has 25 turns of 0.45 mm enamelled copper wire which results in a total turns-area ζ of 1950 turn.mm².
at (0,0,0) and the 6D position of the sensing coil was (0.115 m, 0 m, 0.01 m, α = 0°, β = 90°, γ = 0°). The simulation and experimental results are plotted in Fig. 7b. The induced voltage is approximately proportional to the transmitting coil length. The discrepancy between the simulated and experimental results is due to the approximate nature of Wheeler’s formula.

The voltage induced in the sensing coil also depends on the radius of the transmitting coil. In order to verify this relation, the radius of the transmitting coil is varied from 15 mm to 46 mm, as shown in Fig. 5b. The experimental setup is shown in Fig. 5a. The 6D position and orientation of the sensing coil was (0,0,0) and the 6D position of the sensing coil was plotted in Fig. 6. The voltage induced in the sensing coil is plotted in Fig. 7b. The induced voltage is approximately proportional to the transmitter radius. The discrepancy between the simulation and experimental results is due to the approximate nature of Wheeler’s approximation.

IV. TRANSMITTER OPTIMIZATION

A 6-DOF localization system can be constructed from several combinations of transmitting and sensing coils, such as multiple coplanar transmitting coils and one sensing coil [17], [18], [34] or an LC marker [14], [15], [19]; two transmitting and three sensing coils [3], [4], [10] or three transmitting and two sensing coils [5]. The transmitting and sensing coils could be arranged in different ways, such as coplanar [18], [34], collocated, orthogonal, or non-planar and non-collocated [35]. In a tracking system, the orthogonal and concentric arrangement of transmitting coils [5]–[8] or sensing coils [3], [4], [10] is preferred due the simplification provided by the shared center points. Due to the simplicity and ease of construction, this configuration is used almost exclusively in the literature unless application requirements prevent it [36]. Therefore, the orthogonal and concentric arrangement is the only configuration considered in this article.

A. Transmitting Coil Modeling

The transmitting coil can be designed with a single or multilayer structure. In this article each of the transmitting coils are considered to be multilayer. Three concentric, orthogonal transmitting coils are shown in Fig. 8a. These coils are placed on the YZ, ZX and XY planes respectively and create magnetic fields parallel to the X, Y and Z axes. Let the diameters of the three coils be \(D_1 \), \(D_2 \), and \(D_3 \), and the lengths be \(l_1 \), \(l_2 \) and \(l_3 \).

Coil 1 exists from \(-X\) to \(+X\), where \(X = l_1/2 \). The coil is air cored and cylindrical in shape. To explain the dimensions of the three coils in Fig. 8a, an imaginary cuboid is shown in Fig. 8b, which exists inside the innermost coil. The height and depth of the cuboid are equal to \(d_1 \). The maximum length of the coil is the length of the cuboid. The diameter of coil 1 can then be written as

\[
D_1 = \sqrt{2}d_1 + t_c
\]

Assume the maximum length of coil 1 is equal to the height or depth of the cuboid

\[
l_{1\text{max}} = d_1
\]

Coil 2 exists from \(-Y\) to \(+Y\), where \(Y = l_2/2 \). Therefore, the diameter of coil 2 is

\[
D_2 = \sqrt{(d_2^2 + l_1^2)} + t_c
\]

where \(d_2 = D_1 + t_c \) and the maximum length of coil 2 is

\[
l_{2\text{max}} = d_2 = \sqrt{2}l_1 + 2t_c
\]

Coil 3 exists from \(-Z\) to \(+Z\), where \(Z = l_3/2 \). The diameter of coil 3 is

\[
D_3 = \sqrt{(d_3^2 + l_2^2)} + t_c
\]

where \(d_3 = D_2 + t_c \) and the maximum length of the coil is

\[
l_{3\text{max}} = d_3 = \sqrt{(2l_1 + 2t_c)^2 + l_1^2 + 2t_c}
\]

Let the length of each side of a cubic space restricted by the application be \(T \), determined by

\[
T = D_3 + t_c = \left(\sqrt{(2t_c + \sqrt{(2d_1 + 2t_c)^2 + l_1^2})^2 + l_1^2} + 2t_c \right)
\]

The above equations are verified by PTC Creo parametric.

B. Algorithm Analysis

The input parameters for the algorithm are the: length of the restricted cubic space, maximum power \(P_{\text{max}} \), frequency \(f \), NF, SNR and \(\zeta \). The steps of the algorithm are summarized in Algorithm [1].
The algorithm will be demonstrated on the example endoscopy parameters listed in Table I. The center of the transmitting coils is considered to be at (0, 0, 0). The initial position of the sensing coil is at (0.13 m, 0.07 m, 0.06 m), which is then moved by 0.002 m steps in all directions. The orientation of the sensing coil, which is perpendicular to the X-axis, is (\(\alpha = 5^\circ\), \(\beta = 5^\circ\), \(\gamma = 5^\circ\)). The desired induced voltage at full range is \(V_{coil} = -60\) dB Vpk or 1 mV pk.

Fig. 9 shows the optimal coil dimensions when the length of the transmitting coil is fixed at 20 mm. In the figure, the values at 74.1 kHz are considered optimal since the transmitting coil is single layer and the sensing range \(\tau\) is maximum at that frequency.

Fig. 10 shows the optimal coil dimensions as a function of length, and the achievable sensing ranges \(\tau\) at different signal frequencies. \(V = 15\) Vpk, \(I = 0.6\) A, \(t_c = 1\) mm, \(l_{tc} = 1 \sim 45\) mm. The radius of the transmitting coils are \(r_1\), \(r_2\) and \(r_3\).

Algorithm 1 Algorithm to determine the transmitting coil’s dimensions

Inputs: Width of each coil \(t_c\), the length of the given cubic space \(O\), maximum power \(P_{max}\) \((V_{a,max}, I_{s,max})\) and the frequency \(f\), Noise floor (NF), SNR and \(\zeta\)

Outputs: Optimized dimensions of the transmitting coil.

1: Calculate the required minimum voltage in the sensing coil \(V_{coil}\) as \(V_{coil} = 10^{\left(\frac{A_{l}}{I_{s,cu,2}}\right)}\)

2: Find the maximum \(d_1\), which is multiple times of \(D_{cu}\), that satisfies \(T \approx O\).

3: Based on \(d_1\) and \(t_c\), calculate \(l_{1max}\), \(l_{2max}\) and \(l_{3max}\) using (21), (22) and (23) respectively. Fix the value of \(l_1\), \(l_2\) and \(l_3\), where \(l_1 \leq l_{1max}\), \(l_2 \leq l_{2max}\) and \(l_3 \leq l_{3max}\). In order to make the design simple, consider \(l_1 = l_2 = l_3\).

4: Determine \(D_1\), \(D_2\) and \(D_3\).

5: Determine the measurement range for \(V_{a,max}\) by shifting the sensing coil until it satisfies (15).

6: Calculate \(N = \frac{l_{1x} l_{3}}{D_{cu}^2}\) and \(R_{tc}, X_{tc}, C_{tc}, Z_{tc}\) and \(I_a = V_a/Z_{tc}\).

7: If \(I_a \leq I_{a,max}\) and \(f \leq (1/10) \ast SRF\) then

8: go to 13

9: else

10: Increase \(t_c\), or \(N \left(\frac{l_{1x} l_{3}}{D_{cu}^2} \geq N\right)\). Update all the dimensions.

11: go to 5

12: end if

13: Print out parameters \(D_1, D_2, D_3, \tau, t_c, N, l_1, l_2\) and \(l_3\).

Fig. 11: The sensing range for optimal coil dimensions versus (a) applied voltage, and (b) enclosed transmitter volume.

(a) \(P = 9\) W, \(V_a = 10 \sim 40\) Vpk, (b) \(P = 9\) W, \(O = 5 \sim 13\) cm, \(l_{tc} = 20\) mm, \(O = 10\) cm

in Fig. 11. The improvement of sensing range at higher applied voltage is clearly observed. For a preexisting system, the range can be increased by increasing the applied voltage since \(r_2 = \left(\frac{V_{2max}}{V_{ coil}}\right)^{\frac{2}{\alpha}} \times r_1\) where the frequency of the signal should be \(f_2 = \left(\frac{V_{ coil}}{V_{2max}}\right) \times f_1\) to maintain an identical current.

The improvement of measurement range due to increased transmitter volume can be observed in in Fig. 11 where \(O\) is varied from 5 \sim 13 cm. Since the inductance of the transmitter increases with diameter, a reduced frequency is required to maintain a current constant.

The impact of the transmitting coil width \(t_c\) on the range is plotted in Fig. 12. When the number of layers in the transmitting coil is reduced, the diameter of the coil can be increased. For example, a single layer coil has the maximum diameter. Due to the proportional relationship of induced voltage with the
diameter as shown in Fig. 12, the sensing range increases with a decrease in t_c. Therefore, a single layer transmitting coil provides better range than a multilayer coil.

C. Example Comparison

To illustrate the possible improvements in range that can be achieved by optimizing the transmitter coil construction, the following example compares a naively constructed coil to an optimized coil. The transmitting coil former under consideration has a radius of 39 mm, a length of 20 mm and a maximum width of 4 mm. Using 0.9 mm diameter wire, the available volume permits 60 turns in 4 layers. With a driving frequency of 9 kHz, a 7.07 Vrms source results in 0.3 Arms, which is an apparent power of 2.1 VA. Using the endoscope capsule described in Table II, the induced voltage reduces to 1 mVpK at a range of 225 mm (when orthogonal to the transmitter).

By following the proposed optimization procedure, a single layer coil of 20 turns is found to be optimal. To maintain an apparent power of 2.1 VA, a 33 kHz driving signal resulted in the same voltage and current. The sensing range was extended from 225 mm to 310 mm.

Therefore, by optimizing the coil geometry, a 37% improvement in range is achieved. Although it is not possible to generalize this comparison, it is a useful illustration of the performance gains that are achievable. Although some of the optimal construction and operation parameters are obvious, others are less so, or even counter-intuitive, which motivates the use of the proposed algorithm.

V. Conclusion

This article describes an algorithm for optimizing the dimensions of transmitting coils in electromagnetic tracking applications. The restrictions considered include the applied signal power, frequency, and available volume. Simulation results are verified by experiments which illustrate the impact of transmitter dimensions on the magnitude of induced voltage. The key findings were:

- Increasing the transmitter volume increases the induced voltage.
- Therefore, to maximize the induced voltage, it is desirable to maximize the applied voltage, radius and length of the transmitting coil, while minimizing the number of turns.
- Maximizing the induced voltage is particularly important in applications with a limited sensor volume, such as capsule endoscopy, electronic pills, and catheter tracking. The sensitivity and range of these application can be maximized by the proposed method.

REFERENCES

Mohd Noor Islam received his B.Sc in Electrical & Electronic Engineering from Khulna University of Engineering and Technology, Khulna, Bangladesh in 2003. He has completed his M.Sc in Electronic Engineering from Kookmin University, Seoul, Korea in 2009. He had been teaching as a Lecturer and then as an Assistant Professor in the Department of Electrical and Electronic Engineering in Khulna University of Engineering and Technology since 2004. Now he is pursuing his PhD in Electrical Engineering in the school of Electrical Engineering and Computer Science in the University of Newcastle, Callaghan, Australia. His research interests are implanted devices and their communications, Electromagnetic localization, robotic endoscope capsule etc.

Dr. Andrew Fleming graduated from The University of Newcastle, Australia with a Bachelor of Electrical Engineering in 2000 and Ph.D in 2004. Dr. Fleming is now an Australian Research Council Future Fellow and Director of the Precision Mechatronics Lab at The University of Newcastle, Australia. His research includes nanofabrication, micro-robotics, meteorological sensing, nano-positioning, and high-speed scanning probe microscopy. Dr. Flemings research awards include the IEEE Transactions on Control Systems Technology Outstanding Paper Award, The University of Newcastle Researcher of the Year Award, and the Faculty of Engineering and Built Environment Award for Research Excellence. He is the co-author of three books and more than one-hundred Journal and Conference papers. Dr. Fleming is the inventor of several patent applications and in 2012 he received the Newcastle Innovation Rising Star Award for Excellence in Industrial Engagement.