Design and Control of Pneumatic Systems for Soft Robotics: a Simulation Approach

Matheus S. Xavier©, Andrew J. Fleming© and Yuen K. Yong©

Abstract—Pressure control plays a major role in the overall performance of fluid-driven soft robots. Due to the increasing demand for higher speed actuation and precision, a need exists for a practical design methodology that converts actuator performance specifications to a set of minimum pneumatic specifications, such as receiver volume and pressure, and valve conductance. This article presents a systematic parameter selection approach for pneumatic soft robotic systems by taking into consideration the desired closed-loop pressure responses. The two controllers under evaluation here are the PI controller with anti-windup and the on-off controller with hysteresis. Simulations are developed within Simscape Fluids to evaluate the effect of physical components and controller parameters on the actuator performance. The proposed parameter selection procedures are then applied on three soft actuators and their closed-loop pressure responses are experimentally evaluated. The measured pressure responses are in close agreement with the simulations and satisfy the rise time specifications.

Index Terms—Modeling, control, and learning for soft robots, soft sensors and actuators, hydraulic/pneumatic actuators.

I. INTRODUCTION

SOFT robots are made of highly deformable and compliant materials. They show high dexterity and safety, are physically resilient and can adapt to delicate objects and environments due to their conformal deformation [1], [2]. Many soft robots are fabricated from soft fluidic actuators, where actuation is performed using pneumatics or hydraulics [3], [4]. The strong nonlinearities in soft actuators and their complex geometries are the key challenges in developing accurate mathematical models [5], [6].

The nonlinearities arising from the hyperelasticity of soft materials are compounded by the nonlinearities from the pneumatic actuation, which includes the compressibility of air, the nonlinear relationship between pressure and flow of the valves and a non-trivial time delay [7], [8]. Regardless of the soft actuator, the pneumatic system critically affects the pressure dynamics of soft actuators [9], [10]. Therefore, pressure control plays a major role in the overall performance of soft robots [11], [12].

The main components of a pneumatic system are the source for generating pressurized air, the pneumatic lines for connection, and the valves for controlling flow direction [9], [13]. Pressure control in the soft actuator is usually achieved with 3/2 (3-way, 2-position) or 2/2 (2-way, 2-position) solenoid valves [11], [14], [15], as shown in Fig. 1. The addition of an air receiver improves response speed and efficiency while minimizing the required pump flow rate [9], [10]. The most popular pneumatic control architecture for soft robotics is the fluidic control board, which consists mainly of a diaphragm pump and a set of 3/2 solenoid valves. Pulse-Width Modulation (PWM) is used to control the pressure of fluid passing through the valves, while pressure sensors are used for feedback control.

Most practical fluid-powered soft robots use experimentally-tuned strategies to control the motion of soft actuators. This approach has been explored in soft snake-like [16], worm-like [17], soft-bodied fish [18] and manta ray [19] robots. PID controllers have been considered in [15], [20]–[22]. In [20], the PID controller was shown to be more suitable than a sliding mode controller for trajectory tracking in an experimental setup, at the expense of higher overshoot and lower robustness to external forces. Conversely, the sliding mode controller with a PID sliding surface in [23] reduces vibrations on deactuation in comparison to a model-free PID controller. In [24], automatic tuning of ordinary, piecewise and fuzzy PID controllers using a heuristic-based coordinate descent algorithm is proposed. In [16], on-off control is used to intermittently turn the pump on and off and keep the pressure relatively constant during robot locomotion. In [17], [25], this control is used to actuate the valves in order to generate peristaltic locomotion. A number of advanced control techniques have been proposed for soft robotic actuators, such as sliding modes [7], [20], [26], model reference adaptive [11] and robust backstepping [8], [15]. However, these are only effective if the response time is not limited by the dynamics of the pneumatic system. To ensure that the open-loop response time is sufficient for a given application, a significant need exists for a methodology that chooses a set of minimum pneumatic specifications, such as the pump, receiver, and valve characteristics. A step towards resolving this issue is the work of [9] in which the authors introduce a mathematical model of the pneumatic system for the selection of source, valve and pneumatic lines.

The contributions of this article include a practical pro-
Initially, derivative and integral gains are set to zero. Inspired by the Ziegler-Nichols oscillation method, the proportional gain is increased until the control system reaches an oscillatory behavior. Next, the integral gain is increased to reduce tracking error. The proportional and integral gains are then tuned to improve tracking performance. In the pressure control of soft fluidic actuators, high frequency control errors are present due to PWM switching, measurement noise and set-point changes. Consequently, the derivative mode yields large control signals and is not included in the controller design.

Actuator saturation plays a major role in pneumatic control as the duty cycle is limited between zero and one and large set-point changes are usually of interest. Without anti-windup, the state of the integrator can reach an unacceptable high value leading to poor transient response [27]. Here, anti-windup is implemented using conditional integration (integrator clamping) [28].

B. On-Off Controller with Hysteresis

For on-off control (bang-bang control), the valve is on \((u = 1)\) to increase the pressure at maximum rate until the reference pressure is exceeded, at which point the valve is turned off \((u = 0)\) until the pressure falls below the threshold. In order to prevent frequent operation of the on–off mechanism, hysteresis introduces a dead-band around the set-point where there is no control action. For the 3-way valve system, two states are considered:

\[
\text{State ON: } P(t) < P_{ref}(t) - h \Rightarrow e(t) > h \tag{2}
\]

\[
\text{State OFF: } P(t) > P_{ref}(t) + h \Rightarrow e(t) < -h \tag{3}
\]

where \(h\) is half the size of the hysteresis band.

C. Moving Average Filter

The 3/2 valve system implies constantly inflating and deflating each actuator, which causes the pressure in the actuator to continuously oscillate around its target. Therefore, a moving average filter for the last 10 pressure measurements is included in the LabVIEW subroutines to smooth the effects of the pulse-width modulation and minimize switching events due to sensor noise.

III. PARAMETER ANALYSIS FOR PNEUMATIC SYSTEMS

Simulations have been developed with the package Simscape Fluids within MATLAB/Simulink. An example of a pneumatic soft actuator system is provided in the Appendix. The actuators are modeled as constant volume chambers, which is reasonable for actuators with low levels of ballooning, including fiber-reinforced actuators, fast pneumatic network actuators, 3D/4D-printed bending and helical actuators, and actuators fabricated with harder silicone rubbers [5], [8]. The characteristics of the air pump, receiver and valves are analyzed and discussed below.
(b) Constant flow sources.

Fig. 2: Open-loop pressure step responses of soft actuators with volumes V_A of 10mL (left column) and 100mL (right column). The top row plots pressure responses with constant flow sources between 1LPM (liters per minute) and 10LPM. The bottom row plots pressure responses with receiver pressures between 50kPa and 200kPa.

(c) Constant receiver pressures.

(d) Constant receiver pressures.

Fig. 3: Commercial air pump characteristics: T2-05 (0.8LPM), CTS (2.5LPM), RFP32H05R (4.8LPM), TTC (6LPM), T2-04 (7.5LPM), KYK50BPM (10LPM) and BTX Connect (11LPM).

A. Air Pump

The open-loop pressure dynamics for constant flow sources directly charging the actuator are shown in Figs. 2a and 2b for two actuator volumes spanning typical ranges in soft robotics. While these results can be used in initial designs or flow-controlled pneumatic systems, commercial air pumps show reduced flow with increased pressures. The characteristics of a variety of commercial air pumps have been collected from datasheets or determined using flow (AWM5000) and pressure (SEN0257, DFRobot) sensors, as depicted in Fig. 3. In addition to the decreasing flow with pressure, air pumps are usually accompanied by pressure regulators or relief valves to avoid pressure build-up in the lines, which increases cost and reduces energy efficiency.

B. Receiver (Reservoir or Gas Tank)

To mitigate the aforementioned issues with a pump, a receiver is added to the system. The receiver improves response time, efficiency, and minimizes the required pump flow rate [10], [29]. As shown in Figs. 2c and 2d, the presence of the receiver provides fast actuation with rise times below 20ms.

C. Valves

For pneumatic systems with a receiver, the valve largely dictates the actuator pressure response. According to ISO standard 6358 [9], [30], the flow rate through a valve is given by

$$Q = uC\Psi P_{\text{high}}$$

$$\Psi = \begin{cases} \sqrt{1 - \frac{P_{\text{low}}}{P_{\text{high}}}} & \text{if } \frac{P_{\text{low}}}{P_{\text{high}}} \geq b \\ \frac{P_{\text{low}}}{P_{\text{high}}} & \text{if } \frac{P_{\text{low}}}{P_{\text{high}}} < b \end{cases}$$

where u is the duty cycle, P_{high} and P_{low} are the absolute upstream and downstream pressures, C is the sonic conductance and b is the critical pressure ratio. During charging, $P_{\text{high}} = P_R$ and $P_{\text{low}} = P_A$, where P_R is the receiver pressure and P_A is the actuator pressure. During discharging, $P_{\text{low}} = P_R$ and $P_{\text{high}} = P_A$. The reference pressure response is simulated with a 60mL actuator, a 2L receiver at 100kPa, and a valve with sonic conductance of 0.04L/(s-bar) and critical pressure ratio of 0.1.
$P_{\text{high}} = P_A$ and $P_{\text{low}} = P_{\text{atm}}$, where P_{atm} is the atmospheric pressure.

D. General Guidelines

In this section, an on-off controller with $h = 0.1\text{kPa}$ is used to evaluate the system parameters. The on-off controller can transfer the system from an initial state to a target state in minimum time (time-optimal control law) since the control variable is either at its upper or lower bound [31].

As shown in Fig. 4b, the sonic conductance has a large influence in the rise time of the response. Larger values of C lead to faster response, while the critical pressure ratio has a smaller impact on the transient characteristics (Fig. 4b). As shown in Fig. 4d, the receiver volume has little impact on the response as long as it is above 10 times the volume of the actuator. As expected from equations (4) and (5), higher receiver pressure leads to higher flow into the soft actuator and, therefore, a faster response (Fig. 4e). In contrast, a slower response is obtained by increasing the actuator pressure or volume (Figs. 4e-f).

IV. PARAMETER SELECTION FOR PNEUMATIC SYSTEMS

The volume of the receiver and the critical pressure ratio of the valve do not significantly affect the pressure response of the system. These parameters are therefore excluded from the selection procedure below. The following algorithm summarizes the design for the main components of pneumatic systems.

Algorithm: Parameter Selection

Step 1: Define actuator characteristics and requirements:
- Maximum pressure P_A and volume V_A of the actuator.
- Desired rise time T_{rise} of the actuator response $T_{\text{rise}} \in \{0.25, 0.5, 1, 2\}$s.
- Maximum number of actuation cycles per minute N.
Step 2: Select receiver parameters:
- $V_R > 10 \times V_A$ (see note 1 below).
- $P_R > 1.2 \times P_A$ (note 2) and $P_R \in \{100, 150, 200\}$kPa.
Step 3: Select valve sonic conductance:
- Use Fig. 5 to determine the normalized conductance C for desired P_A and T_{rise}.
- For the corresponding C, select $C \geq \bar{C} \times V_A$.
Step 4: Select valve configuration:
- 2-way for higher accuracy and energy efficiency.
- 3-way for a low-cost and simple implementation.
Step 5: Select air pump parameters (Fig. 3):
- 2-way: $Q_{\text{pump}}(P_k) \geq Q_{\text{req}}$ from (8).
- 3-way: $Q_{\text{pump}}(P_k) \geq Q_{\text{req,3way}}$ from (9).

Note 1: 1L, 1.5L or 2L recommended due to large availability.
Note 2: This condition ensures the receiver pressure does not drop below the actuator pressure and the slew rate of the actuator response does not significantly differ from its maximum value.

A. Selection of Valve Configuration

For the system with dual 2-way valves, the first valve is used for charging the actuator while the second valve is used for discharging. Compared to systems with a single 3-way valve, these systems allow for an additional state where both valves are off and there is no flow from the receiver or to atmosphere. The comparison between a single 3/2 (3-way, 2-position) valve system and dual 2/2 (2-way, 2-position) valve system in Fig. 6 shows that the dual 2/2 system achieves identical transient performance, i.e. identical rise and fall time. This also applies to 4/2, 5/2, 4/3 and 5/3 valves with the same sonic conductance and critical pressure ratio values.

Table I provides a comparison of pneumatic systems with these two valve configurations. Although offering lower cost and easier implementation, 3-way valve systems constantly inflate and deflate the soft actuator during pressure regulation, consequently 2-way valve systems allow for more energy-efficient pneumatic controllers and improved lifetime of the valves.

<table>
<thead>
<tr>
<th>Setup</th>
<th>Cost (AUD)</th>
<th>Lifetime</th>
<th>Accuracy</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/2 on-off valve</td>
<td>~$40-70</td>
<td>Low</td>
<td>Medium</td>
<td>Simple</td>
</tr>
<tr>
<td>2/2 on-off valves</td>
<td>~$80-150</td>
<td>Medium</td>
<td>High</td>
<td>Complex</td>
</tr>
<tr>
<td>2/2 prop. valves</td>
<td>~$300-500</td>
<td>High</td>
<td>High</td>
<td>Complex</td>
</tr>
</tbody>
</table>

B. Selection of Air Pump

From mass conservation, the net flow into the actuator Q_A is [10], [32]

$$Q_A = \frac{V_A}{\gamma} \frac{dP_A}{d\bar{V}_A}$$

where γ is the polytropic index, here $\gamma = 1.4$ (isentropic process) as this value shows excellent agreement to Fig. 2a. Since $Q_A = \frac{dV_{\text{air}}}{dt}$, where V_{air} is the volume of air consumed during one actuation cycle from atmospheric pressure P_{atm} to the desired pressure P_A, equation (6) yields

$$V_{\text{air}} = \frac{V_A}{\gamma} \ln \left(\frac{P_A}{P_{\text{atm}}} \right)$$

For N actuation cycles per minute, the required flow Q_{req} [LPM] from the air pump to keep the receiver at constant pressure is

$$Q_{\text{req}} = N \times V_A \ln \left(\frac{P_A}{P_{\text{atm}}} \right)$$

For 3-way valves, an additional volume of air is consumed during regulation due to frequent switching and release of air to atmosphere. The duty cycle for pressure regulation can be calculated using equations (4)-(6) by setting dP_A/dt equal to zero. The resulting additional flow normalized to sonic conductance $Q_{\text{add}} = Q_{\text{add}}/C$ is shown in Fig. 7. Therefore, the total required flow for 3-way valves $Q_{\text{req,3way}}$ is

$$Q_{\text{req,3way}} = Q_{\text{req}} + Q_{\text{add}}$$

where $Q_{\text{add}} = 60 \times Q_{\text{add}}$ in LPM.
Fig. 5: Normalized sonic conductance \(\tilde{C} = C/V_A \) for system with receiver at three different pressures. The actuator pressure is varied between 20kPa and 90kPa in steps of 10kPa and conductance values are interpolated for four desired rise times.

Fig. 6: Comparison of pressure responses for systems with a single 3/2 valve and dual 2/2 valves. An on-off controller with \(h = 2 \) is used. The sonic conductance of the valves is 0.04L/(s·bar) and the critical pressure ratio is 0.1.

Fig. 7: Normalized additional flow \(\tilde{Q}_{add} = Q_{add}/C \) required for pressure regulation with 3-way valve systems.

V. EXPERIMENTAL IMPLEMENTATION

In this section, an example of the parameter selection procedure is provided. The PI and on-off control strategies in Sec. II are implemented on three types of soft pneumatic actuators (Fig. 8) using myRIO and LabVIEW, and compared to simulation results. The LabVIEW subroutines are available at [33] for both 3/2 and 2/2 valve systems.

A. Fabrication of Soft Pneumatic Actuators

The fabrication process for the omnidirectional actuator is described in Fig. 9 [25]. Molds are designed in Autodesk Inventor and printed using an Original Prusa i3 MK3S (Prusa Research). For the PneuNet actuators, the mixture is poured into the bottom mold after step II and the top mold is inserted. Then, the soft actuator is removed from the molds and a strain limiting layer of fiber is added.
B. Parameter Selection: Application Example

Step 1: \(P_A = 60\text{kPa} \) (161.325\text{kPa absolute}), \(V_A = 60\text{mL} \), \(T_{\text{rise}} = 0.5\text{s} \) and \(N = 30 \) cycles/min.

Step 2: \(V_R = 1\text{L} \) and \(P_R = 100\text{kPa} \).

Step 3: \(\dot{C} = 0.55 \) (red marker in Fig. 5) \(\rightarrow C \geq 0.033\text{L/(s-bar)} \).

Step 4: 3/2 valve.

From the range of commercial valves, V114 (SMC) is selected with \(C = 0.037\text{L/(s-bar)} \) and \(b = 0.11 \).

Step 5: From (9) and Fig. 7 (red marker), \(Q_{\text{pump}}(P_R) \geq 0.6 + 1.4 = 2\text{LPM} \rightarrow \text{KYK50BPM or BTX Connect}. \)

The setup investigated here employs the diaphragm pump KYK50BPM, two pressure sensors (SEN0257, DFRobot) and tubing between each of these elements. The PWM output for the motor is connected to a motor driver (VNH5019A) and the PWM outputs for the valves are each connected to a BJT transistor (TIP31A) through a 330\text{\Omega} resistor. A flyback diode (1n5817) is added to dissipate voltage spikes during transistor switching.

C. PI Controller with Anti-Windup

The effect of anti-windup in the PI controllers for the soft pneumatic actuators is presented in Fig. 10. The inclusion of anti-windup has a more significant impact for actuators with larger volumes. For the ray-inspired actuator, the response is slow to recover after a step change due to actuator saturation and integrator windup. However, this is significantly improved when conditional integration is added, which results in lower overshoot and settling time.

D. Comparison of Experimentally-Tuned Controllers

The performance of experimentally-tuned PI controllers with anti-windup and on-off controllers with hysteresis is evaluated for square waves in Figs. 11a-d, which demonstrates the maximum rise time of 0.5s. These control strategies do not require a periodic signal and can easily account for unstructured reference signals, as shown in Figs. 11e-f. The results demonstrate the ability of both controllers to track dynamic pressure set-points and the versatility of the control approaches. Fluctuations in the pressure response are expected with on-off valves due to oscillations in the internal pressure measurement and finite switching frequency. These oscillations are more significant for actuators with lower volume, as shown in Fig. 10c.

In comparison to the PI controller, the on-off controller has minimum rise time, however it shows excessive oscillation around the set-point as the pressure oscillates within the hysteresis band. Increasing the hysteresis band degrades the tracking error but advantageously reduces the number of switching events. In many applications, a lower number of switching events and longer valve lifetime may be preferable over minimum tracking error.

Simulations and experimental results show that the PI controller provides smaller tracking error. The on-off controller has a faster rise time but larger pressure oscillation and larger constant tracking error. The requirement for an anti-windup strategy in the PI controller was observed in both simulations and experimental results. The use of conditional integration was observed to reduce overshoot and settling time for the class of systems under consideration, which allows for tracking of rapidly changing references.

Finally, the small discrepancies between simulation and experimental results are a result of the compliance of the soft actuators, which is not taken into account due to the constant volume assumption in the simulations.

VI. Conclusions

This article proposes a systematic approach for selecting pneumatic components to achieve desired closed-loop pressure responses of soft actuators. The results show that by properly sizing the components, appropriate parameter
values can be selected to satisfy requirements on the performance of soft actuators and simplify control effort. For the pneumatic systems under consideration, the simulations identify two main physical limitations. First, the sonic conductance of the valve needs to be sufficiently large. Second, the receiver pressure needs to be sufficiently above the range of required actuator pressures. A high pressure difference between the receiver and actuator is observed to reduce the rise time but increase the overshoot and settling time.

APPENDIX: SIMSCAPE FLUIDS

The pneumatic components are shown in magenta and include the flow rate source, receiver, pipe, 3/2 solenoid valve and the soft actuator. The actuator is modeled as a constant volume chamber. PI controllers are included for pressure regulation at the receiver and actuator. For the on-off controller with hysteresis, the PI block and PWM generator are replaced with a relay. For the dual 2/2 valve system, two relays or PI controllers with complementary PWM waves can be employed. The effects of processing time, discretization delay and measurement delay are incorporated by the transport delay block.

REFERENCES

Fig. 12: Model of pneumatic control system in Simulink. The diaphragm pump is modeled as a volumetric flow rate source, the pneumatic line as a pipe, and the air receiver and actuator as constant volume chambers. Pressure sensors are added to the actuator and receiver. Transport delay and random sensor noise are added to the pressure measurements.

