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Abstract

This paper is aimed at identifying a dynamical model
of an acoustic enclosure, a duct with rectangular cross
section, closed ends, and side mounted speaker enclo-
sures. Acoustic enclosures are known to be resonant
systems of high order. In order to design a high perfor-
mance feedback controller for a duct or an acoustic en-
closure, one needs to have an accurate model of the sys-
tem. Subspace based system identification techniques
have proven to be an efficient means for identifying dy-
namics of high order highly resonant systems such as
flexible structures. In this paper a frequency domain
subspace based method together with a second itera-
tive optimization step minimizing a frequency domain
least-squares criterion is successfully employed.

1 Introduction

During the previous decade there has been a substan-
tial and consistent focus on the problem of active noise
cancellation (ANC) in acoustic enclosures. Early work
concentrated mainly on adaptive feedforward configu-
rations such as those detailed in [7]. Such techniques
involve the measurement of a disturbance and attempt
to arrest the propagation downstream. Although im-
pressive results have been achieved for ducts with end
mounted disturbances {14, 15] new approaches have
been required to confront the greater problems of mul-
tiple disturbances, three dimensional sound fields, and
spatial cancellation. More recent work involves the de-
sign of feedback control systems to cancel or absorb
noise in acoustic enclosures [1].

Feedback control strategies require a model of the sys-
tem to be controlled. Analytic modeling often results
in a poor model if the system is even mildly realis-
tic (refer [4]). Generally system identification methods
are employed for this purpose.Such methods are conve-
nient as they model the overall system i.e. the acoustic
dynamics of the duct as well exterior systems such as
actuator dynamics, amplifiers, and filters. These over-
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all compound models are required for control system
design.

Methods which identify state-space models by means
of geometrical properties of the input and output se-
quences are commonly known as subspace methods and
have received much attention in the literature (see [19]
for a survey of time domain techniques). One of the
advantages with subspace methods is that an estimate
is calculated without any non-linear parametric opti-
mization. In classical prediction error minimization [9],
such a step is necessary for most model structures. A
second advantage is that the identification of multivari-
able systems is just as simple as for scalar systems.

In this paper we consider the case when data is given in
the frequency domain, i.e. when samples of the Fourier
transform of the input and output signals are taken
as the primary measurements. In a number of ap-
plications, particularly when modeling flexible struc-
tures, it is common to fit models in the frequency do-
main [16, 13]. A few subspace based algorithms formu-
lated in the frequency domain has appeared recently
[8, 11, 17, 10]

From a statistical point of view it is well known that,
under some assumptions, the best models are obtained
by the method of maximum-likelihood. In this paper
we will, as a second step, after obtaining an initial
model from the subspace method, invoke a parametric
optimization minimizing the 2-norm of the frequency
domain error. Under suitable assumptions this can be
interpreted as a maximum-likelihood estimation step
[13]. It is important to point out that the success of
the second parametric optimization is heavily based on
the availability of a good starting point for the opti-
mization.

Preliminaries
Consider a stable time-invariant discrete time linear
system of finite order n in state-space form

z(k+1) = Az(k)+ Bu(k)
y(k) = Cx(k) + Du(k) + v(k) (1)

where u(k) € R™ is the input vector, y(k) € RP the
output vector and z(k) € R™ is the state vector. By
considering real valued signals we implicitly assume
that the matrix quadruple (A, B, C, D) is also real val-
ued. The noise term v(k) € RP is assumed to be in-
dependent of the input sequence u(t). Here the time



index k denotes normalized time. Hence y(k) denotes
the sample of the output signal y(t) at time instant
t = kT where T denotes the sample time. We also
assume that the state-space realization (1) is minimal
which implies both observability and controllability [6].
A system with this type of noise model is commonly
known as output-error models [9]. Note that all such
pairs (1) describing the same input/output behavior of
the system are equivalent under a non-singular simi-
larity transformation T € R"*™ [6], i.e. the matrices
(T~YAT,T7'B,CT, D) will be a state-space realiza-
tion with equivalent i/o properties. The discrete time
Fourier transform F of a sequence f(k) is defined as

Ffh)=Fw)= Y. f(kje ik @)
k=—00

where j = +/—1. Applying the Fourier transform to (1)
gives
e X (w) AX(w) + BU(w)
Y(w) = CX(w)+DU(w)+V(w) 3)

fl

where Y (w), U(w), V(w) and X (w) are the transformed
output, input, noise and state respectively. By elimi-
nating the state from (3) we obtain

Y(w) = G (w) + V(w) (4)

where G(z) = D + C(zI — A)~'B is known as the
transfer function of the linear system.

The Identification Problem

Given samples of the discrete time Fourier transform
of the input signal U(w) and output signal Y (w) at N
arbitrary frequency points wy; find a state-space model
of the form (1) which well approximates the data in a
least-squares fashion, i.e.

N
G(z) = arg min Y @) - G Uwr)|®  (5)
k=1

2 Identification method

This section is devoted to describing the identification
technique used. As a first step a state-space model
is identified using a frequency domain subspace based
algorithm. The identified state-space realization is then
transformed to a tridiagonal realization suitable for a
tridiagonal parametrization. Finally a minimization is
employed which minimize the sum of the 2-norm of
the identification error (see (5)). Here the tridiagonal
parametrization and an iterative Gauss-Newton non-
linear least-squares algorithm is utilized to find a (local)
optimum of the least-squares criterion function.

Frequency domain subspace method
In this section we will derive the basic relations which
the subspace based identification algorithm rely upon

and present a simple but yet powerful identification
algorithm. Let us introduce the vector

Ww)y=[1 ev e eiwla=1) ]T (6)

the extended observability matrix with g block rows

c
CA
Oq = : (7)
cAt
and the lower triangular Toeplitz matrix
D 0 ... 0
CB D ... 0
Ly = : : SR (&)
CAT™?2B CAY3B ... D
By recursive use of (3) we obtain
W(w) ® Y(w) =0,X(w) + T';W(w) @ U(w) )
+W(w) ®V(w)

where ® denotes the standard Kronecker product [6].
The extended observability matrix O, has a rank equal

to the system order n if ¢ > n since the system
(4, B, C, D) is minimal.

If N samples of the transforms are known we can collect
all data into one complex matrix equation. Define the
diagonalization operator for a sequence of vectors z; of
length p as

21 0 0
diag[z,22,..., 28] 2 | O *2 (10)
0 0 =2n

which is a tall (or square) matrix of size Np x N. By
introducing the additional matrices

Wap=[ W) W) - Wen) el
Yo = TlﬁwN.pdiag [V (@1),... Y (wn)] € CPXN,

L
VN

Ve = \/LNWN,pdiag V(wh),... ,V(wn)] € CP*N

x¢ = %{ X (),

U° = —=Wn ndiag[U(w),... ,U(wn)] € CT™*V,

] X(LUN), ] € CnXNa

and using (9) we arrive at the matrix equation

Y¢ = 0 X +T,U° + V°. (11)



The superscript ¢ is used to stress that the matrix is
complex valued. Clearly since the system matrices are
assumed real valued O, and Iy are also real. Hence by

forming a real matrix from the real and complex parts
of Y¢ as

Y =[ Re{Y°} Im{Yc} ]

and similarly for U,X,V we obtain the real valued
matrix equation

Y=0X+T,U+V. (12)

Note that this equation now has 2N columns. As the
number of frequency samples increases the number of
columns in the matrix equation also increases. The
normalization with LN ensures that the norm of the
matrix stays bounded as the number of frequencies
(columns) tends to infinity. The number of (block)-
rows ¢ is up to the user to choose but must be larger
than the upper bound of the model orders which will
be considered.

The identification scheme we employ to find an state-
space model (A,f?,C‘, f)) is based on a two step pro-
cedure. First the relation (11) is used to consistently
determine a matrix @q with a range space equal to
the extended observability matrix Op. From O, it is
straightforward to derive A and C as is well known
from the time domain subspace methods [19]. In the

second step B and D are determined by minimizing the
2-norm of the error

B,D = i
, argmin Vn(B,D) (13)

V(B.0) = 3 [¥wr) - ¥, B DY) 1)
k=1

where
Y (w, B, D) = [D — C(edn T ~ A)—IB] U(we)

which has an analytical solution since the output ¥’ is
a linear function of both B and D assuming A and C

are fixed. Hence once A and C are derived B and D is
determined by linear regression.

The Basic Projection Method

The first step of the subspace method aims at provid-
ing an estimate of the range space of the observability
matrix. First consider the noise free case V4 y = 0 and
we restate the basic projection method in the frequency
domain. In (12) the term I';U can be removed by a
projection. Denote by Il the orthogonal projection
onto the null-space of U,

n+ =7-vT(wuhH-tu (15)

here U7T denotes the transpose of the matrix U. The
inverse in (15) will exist if the system is sufficiently
excited by the input. Since

Ut =90
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the effect of the input will be removed and we obtain
Y+ = O, XII+. (16)
Provided
rank (XII*) = n 17)
YII+ and O, will span the same column space. The
mild conditions required for (17) to hold can be found
in [11].
A matrix which concisely span the column space of

Y, ~II* can be recovered in a singular value decom-
position [5]

T
Yot ={ U, Uo]{%‘ EOH“CT] (18)

where U, € RIP*™ contains the n principal singular
vectors and the diagonal matrix ¥, the corresponding
singular values. In the noise free case £, = 0 and there
will exist a nonsingular matrix T € R®*" such that

0, =U,T.

This shows that Uy is an extended observability matrix

O, of the original transfer function for some realization.
By the shift structure of the observability matrix (7)
we can proceed to calculate A and C as

A= arg min |1 U, A — JaU|\% = (WU U, (19)

¢ = J5U, (20)

where J; are the selection matrices defined by

Ji =( I('J—l)D O(g-1)pxp ) s (21)
J2 =( Og-1)pxp Ig-1)p ) (22)
J3=(1Ip Opx(g-1)p ) (23)

and I; denotes the ¢ x i identity matrix, 0;x; denotes
the ¢ x j zero matrix, || - ||p is the Frobenius norm
and Xt = (XTX)~'X7 denotes the Moore-Penrose
pseudo-inverse of the full rank matrix X. With the
knowledge of A and C, B and D are easily determined
from (13).

Effective Implementation
A most effective way of forming the matrix YII* is by
use of the QR factorization of the matrix, (see [18])

U)_[(Rnp 0 QIT
(9)-(& L)(F) o
Straightforward calculations reveal that YII+ =

R22Q3 and the column space of Ry is equal to the

column space of YII* and it suffices to use Ras in the
SVD (18).



Consistency Issues

As we have seen the basic projection algorithm will es-
timate a state-space model which is similar to the orig-
inal realization in the noise free case. If we now let the
noise term V(w) be a zero mean complex random vari-
able the issue of consistency becomes important. Does
the estimate converge to the true system as N, the
number of data, tends to infinity? Consistency of the
basic projection algorithm and the related algorithm [8]
has been investigated in [11, 17]. The result is that un-
less the covariance structure of the data is known, con-
sistency cannot be expected. However, for the applica-
tion studied in this paper the basic projection method
produces sufficiently good estimates although the noise
structure is unknown. A second approach based on the
classical instrumental variable technique (IV) [9] does
not require knowledge of the variance properties (or
equivalently the color of the noise). Subspace based
time IV-techniques can be found in [18]. A frequency
domain subspace-IV-approach can be found in [10].

Non-linear optimization
The initial estimate delivered by the subspace method
is a good starting point for a non-linear iterative opti-
mization of the desired criterion (5). In order to suc-
cessfully do so, particularly for high order systems, a
numerically sound parametrization of the transfer func-
tion G(z) is required. A parametrization based on the
state-space form (1) using a tridiagonal A matrix has
recently been suggested [12]. Particularly the tridiag-
onal parametrization has shown promising numerical
properties for high order systems. Let

G(z,0) = D(6) + C(8)(zI — A(8))"' B(8) (25)
be a transfer function parametrized through the state-
space matrices by the real valued vector 8 using the
tridiagonal model structure. A Gauss-Newton algo-
rithm (3] is employed for finding a solution to the para-
metric optimization problem

N
6 = arg mgin kz_l 1Y (wi) - G(ej“”‘,O)U(wk)"2 (26)

The optimization algorithm is started from the param-
eter vector g representing the transfer function deliv-
ered by the subspace method. For high order systems
it is vital to have a high quality starting point in or-
der to converge to a good optimum. Since the Gauss-
Newton algorithm only converges locally to a minimum
a starting point close to the global optimum is desir-
able. If we assume the frequency domain noise is com-
plex Gaussian and white the solution to (26) will be
the maximum-likelihood estimate [13].

3 The Experiment

A plan view of the acoustic duct apparatus is shown in
Figure 1. For disturbance rejection a feedback loop is
to be closed around the control speaker to microphone
path. This path represents a system where the speaker
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signal and microphone voltage are the input and out-
put respectively. The system dynamics consists of a
series combination of the following transfer functions:
speaker signal low pass filter, power amplifier, applied
speaker voltage to baffle acceleration, baffle accelera-
tion to sound pressure, and the gain of the microphone
from sound pressure to voltage.

Speaker 2 is used in control system experimentation
and is redundant during identification. Although it is
unused, it must remain attached. This is due to the
coupling that exists between the passive dynamics of
the speaker and the enclosed sound field. (See [2] for
a discussion of the coupling between passive speaker
dynamics and enclosed sound fields.)

L
Lc
14
= %Mic
0 i i
[} i | Spkl Spk2
Ws
Figure 1: Plan view of the acoustic duct apparatus.

Dimension Value
L 4.840 m
Ls 0.320 m
Lc 2.940 m
Ld 0.940 m
\'Y 0.246 m
Ws 0.246 m
Hwight 0.295 m

Table 1: Duct Internal Dimensions

The acoustic actuators are constructed from 10 inch
diameter speakers (Jaycar CS-2220) and a sealed en-
closure of 23 liters. The frequency response between
applied voltage and baffle acceleration was measured
to determine a low frequency bandwidth of 55 Hz. The
measurement was taken using a Polytec scanning laser
vibrometer (PSV-300) and is shown in Figure 2.

3927m/s%)

S

100 180 200 , 250 300 350 400

mag dB (0dB

50

Figure 2: Magnitude response of the acoustic actuators
from applied voltage to baffle acceleration



The acoustic sensor is a unidirectional dynamic mi-
crophone (Schure SM58) with a bandwidth of 50 to
15,000 Hz and a pressure sensitivity of -56 dB (0 dB =
1V/ubar).

The excitation signal generation and data recording is
performed using the dSPACE rapid prototyping sys-
tem. The excitation signal is a uniformly distributed
random process sampled at 2 kHz and digitally filtered
with a 6th order elliptic bandpass filter between 50 and
400 Hz. The DAC output is filtered with a 1 kHz analog
low pass filter to remove the sampling frequency com-
ponent and harmonics. Input/output data is filtered
using lowpass 1 kHz 4th order anti-aliasing filters and
is recorded at 2 kHz with 16 bit resolution for 60 sec-
onds.

4 Identification results

The experimental input-output time series was divided
into two equal datasets, one estimation set and one set
which we set aside for validation purposes. The esti-
mation data is transformed to the frequency domain
by use of the fast Fourier transform (FFT) without
any windowing functions. As the frequency content
of the excitation signal is restricted to the 50-400 Hz
frequency band all frequency data outside this inter-
val is discarded. This reduces the size of the data sets
to 5456 samples. As the input to the system is based
on a filtered random signal the spectrum of the input
fluctuates over the frequencies. In order to only use
highly excited frequencies, only frequency points with
an input amplitude above 1.7 are retained in the iden-
tification set. This leads to an identification set with
1545 points. The subspace estimation algorithm is then
employed to estimate a model of order 29 using ¢ = 60
as the number of rows in the matrix equation (12).
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Figure 3: Transfer functions of parametric model estimate
of order 29 from subspace algorithm and ETFE
from validation data. Also the magnitude of
the error is shown.

LS-optimzation estimate of order 29 and validation ETFE
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Figure 4: Final estimated model after parametric opti-
mization of LS criterion. Amplitude plot and
error plot showing estimated model of order 29
and ETFE from validation data.

To validate the model, or rather to check if there is any
evidence in the data which implies that the model is in-
valid, we use the independent validation data set to de-
rive the Empirical Transfer Function Estimate (ETFE)
[9] of the system. In particular the ETFE is calculated
at N, = 214 = 16384 frequency points equally spaced
between 0 and 1kHz. The ETFE is the fraction between
the cross spectrum between the input and output and
the auto spectrum of the input.

(27)

In the calculation of the spectral estimates éyu(w) and

éuu (w) a Hamming window of size 512 is employed to
smooth the estimates.

The transfer functions of the subspace estimate and the
ETFE are plotted together in Figure 3. The RMS error
between the parametric model G and the validation
ETFE H is 0.28. The RMS error is defined as

2
(28)

1 <A Y
RMS = -N: ; HH(wk) — G(ewr)

The nonlinear optimization step further improved the
RMS error to a value of 0.17 again calculated against
the validation data ETFE. The amplitude of the finally
estimated transfer function is depicted in Figure 4 to-
gether with the validation data ETFE. Also the magni-
tude of the complex error between the estimated model
and the validation data is shown in the figure.

As a second validation step a time domain simulation
comparing the output of the model to the time domain
validation output. The validation input is used to sim-
ulate the output of the 29th order model. An excerpt



of the simulation is shown in Figure 5. The output of
the model is almost identical to the measured output
of the validation data.

Based on the cross validation both in the frequency
domain as well as the time domain it can be concluded
that the estimated model is quite accurate. Hence the
model should be a good candidate for use in a model
based control design although bearing in mind the level
of estimation error or uncertainty as indicated by the
error curve in Figure 4.

Time domain simulation
T T

B
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Figure 5: Time domain comparison between the simu-
lated output of the estimated model and the
measured output.

Conclusions

In this paper we successfully identified a dynamical
model for an acoustic enclosure. Due to the high or-
der of the model a particular identification procedure
had to be employed. Firstly an initial model of the
system was estimated using a frequency domain sub-
space based identification algorithm. In a second step
the estimate was refined by minimizing the 2-norm of
the frequency error between the model and data. This
was achieved using a tridiagonal parametrization of a
state-space model utilizing a Gauss-Newton type opti-
mization algorithm.
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