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Abstract: This paper studies the feedback structure associated with piezoelectric
shunt damping systems and introduces a new impedance structure for multi-mode
piezoelectric shunt damping. The impedance is shown to be realizable using passive
circuit components and digital implementation of the associated admittance transfer
function is discussed.
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1. INTRODUCTION

Piezoelectric transducers are under investigation
as actuators and sensors for vibration control in
exible structures. These materials strain when
exposed to a voltage and conversely produce a
voltage when strained (Fuller et al., 1996).

For vibration control purposes, piezoelectric trans-
ducers are bonded to the body of the base struc-
ture using strong adhesive material. These piezo-
electric transducers can be used as sensors, actu-
ators or both. One approach to vibration control,
referred to as \the piezoelectric shunt-damping" is
based on shunting the piezoelectric transducer by
a passive electric circuit that acts as a medium
for dissipating mechanical energy of the base
structure. In their original work (Hagood and
von Flotow, 1991; Hagood et al., 1990) Hagood
and von Flotow suggested that a series R-L cir-
cuit attached across the conducting surfaces of a
piezoelectric transducer can be tuned to dissipate
mechanical energy of the base structure. They
demonstrated the e�ectiveness of this technique
by tuning the resulting R-L-C circuit to a speci�c
resonant frequency of the base structure. Further-
more, they proposed a method to determine an
e�ective value for the resistive element.

1 This research was supported by the Australian Research

Council.

In reference (Wu, 1998a) it was demonstrated
that the concept can be extended to allow for
multiple-mode shunt damping by introducing cur-
rent blocking circuits inside each R-L branch
(Wu, 1998a; Wu, 1998b). The problem with this
technique, however, is that the size of the shunt-
ing circuit increases rapidly as the number of
modes that are to be shunt dampened is increased.
An alternative multi-mode shunt damping circuit
was suggested by Hollkamp (Hollkamp, 1994). Al-
though, the author conjectures the e�ectiveness of
this circuit, no straightforward method for deter-
mining the circuit components is proposed.

A diÆculty that often arises in implementing
these shunt impedances is the fact that one may
need to have access to rather large inductors if
the low frequency modes are to be shunt damp-
ened. The synthetic impedance circuit suggested
in (Fleming et al., 2000) is an e�ective means of
digital implementation of an impedance circuit for
piezoelectric shunt damping. This circuit allows us
to implement any admittance transfer function, as
long as it is stable, and at least proper.

In this paper we study the feedback structure
of piezoelectric shunt damping systems. Further-
more, we propose a new class of impedances that
can be used for this purpose.
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Fig. 2.1. A piezoelectric laminate shunted to an
admittance Y (s)

2. FEEDBACK PROBLEM ASSOCIATED
WITH A SHUNTED PIEZOELECTRIC

LAMINATE STRUCTURE

Let us consider the system depicted in Figure 2.1.
Here a piezoelectric transducer is attached to
the surface of a exible structure using strong
adhesive material. The piezoelectric transducer is
shunted to an electrical admittance, Y . The vector
P signi�es the direction of polarization vector
of the piezoelectric material. As the structure
deforms, possibly due to a disturbance w, an
electric charge distribution appears inside the
piezoelectric crystal. This manifests itself in the
form of a voltage di�erence across the conducting
surfaces of the piezoelectric transducer, v which in
turn causes the ow of electric current, i through
the admittance. This may cause loss of energy.
Hence, the electric admittance may be thought of
as a means of extracting mechanical energy from
the base structure via the piezoelectric transducer.

To make the discussion clearer, let us look at the
system in more detail. Figure 2.2 depicts the elec-
trical equivalent of the piezoelectric transducer. If
the admittance is removed from the circuit, i.e., if
the piezoelectric transducer is left open circuited,
then the voltage measured across the conducting
terminals of the piezoelectric transducer is equiv-
alent to vp. This voltage is entirely due to the
disturbances acting on the structure and/or non-
zero initial conditions. It should be clear that as
long as the base structure is not at rest, vp may
be non-zero. To this end, let us assume that vp is
related to w via a transfer function Gvw. That is,

vp(s) = Gvw(s)w(s); Y (s) = 0: (2.1)

The condition Y (s) = 0 in (2.1) emphasizes that
this equation is valid only if the two terminals
of the piezoelectric transducer are left open cir-
cuited.

Now, let us assume that there are no disturbances
acting on the structure. Rather, allow us to as-
sume that a voltage source is attached across the
conducting terminals of the piezoelectric trans-
ducer. In this case, the voltage vp is entirely due
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Fig. 2.2. Electrical equivalent of the system in
Figure 2.1

to v and is related to v via a transfer function Gvv .
That is,

vp(s) = Gvv(s)v(s); w(s) = 0: (2.2)

The transfer function Gvv may be written in the
general form (Halim and Moheimani, 2001b)

Gvv(s) = �

1X

i=1

i

s2 + 2�i!is+ !2i
(2.3)

where i > 0 for i = 1; 2; : : : :

Note that if the piezoelectric transducer is at-
tached to the structure such that vector P is
pointing to the opposite direction, the negative
sign in (2.3) should be removed. If the base struc-
ture is disturbed by w and a voltage v is si-
multaneously applied across the terminals of the
piezoelectric transducer then due to the linearity
of the system we may write

vp(s) = Gvw(s)w(s) +Gvv(s)v(s): (2.4)

From equation (2.4) it can be deduced that while
the disturbance w is disturbing the base structure,
the voltage v(s) applied across the piezoelectric
terminals may be used to reduce the e�ect of
this unwanted disturbance. In a typical feedback
control problem, a sensor is used to measure a
property of the structure for feedback. This may
be the acceleration at some point, as measured by
an accelerometer, or even the voltage measured
at the open terminals of another piezoelectric
transducer attached to the structure at a di�erent
point.

Shunting the piezoelectric transducer with the
admittance Y , as in Figure 2.2 removes the need
for an additional sensor. This, however, is achieved
at the expense of having to deal with a more
complicated feedback control problem.

To visualize the underlying feedback control struc-
ture, we need to identify a number of variables
such as the control signal, the measurement, the
disturbance and the physical variable that is to be
regulated.
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Fig. 2.3. The feedback structure associated with
the shunt damping problem in Figure 2.2

The underlying feedback structure can be identi-
�ed by noticing that the current may be written
as:

i(s) = (vp(s)� v(s))Cps: (2.5)

Furthermore,

i(s) = Y (s)v(s): (2.6)

Equations (2.4)-(2.6) suggest the feedback struc-
ture depicted in Figure 2.3. The Figure suggests
a rather complicated feedback structure as the
controller, Y (s) is itself inside an inner feedback
loop.

3. A NEW IMPEDANCE STRUCTURE FOR
PIEZOELECTRIC SHUNT DAMPING

In the previous section we demonstrated that the
piezoelectric shunt damping problem is equiva-
lent to a feedback control problem with a very
speci�c feedback structure. This understanding of
the underlying feedback structure allows us to
interpret the existing results in the literature in
a meaningful way. Furthermore, it enables us to
make new contributions to the �eld in the form of
generating new classes of high-performance shunt
damping impedance structures.

Notice that in Figure 2.2 the closed loop transfer
function from the disturbance input w to vp can
be written as

vp(s)

w(s)
=

Gvw(s)

1 +K(s) ~Gvv(s)
(3.1)

where ~Gvv(s) = �Gvv(s) and

K(s) =
1

1 + Y (s)
Cps

: (3.2)

Given the common-pole property of the transfer
functions associated with the base structure, re-
gardless of the nature of the disturbance, Gvw

must have poles that are identical to those of
~Gvv(s). Therefore, the role of the shunting admit-
tance Y (s) is to move the closed loop poles of the
system deeper into the left half plane, i.e. to add
more damping to each mode.

An e�ective admittance structure for this purpose
is:

Y (s) =

PN

i=1
�i!

2

i

s2+2di!is+!2i

1�
PN

i=1
�i!

2

i

s2+2di!is+!2i

� Cps (3.3)

where �i > 0; di > 0; i = 1; 2; : : : ; N

and

NX

i=1

�i = 1: (3.4)

An immediate choice for �'s is �i =
1
N

for i =
1; 2; : : : ; N . This will ensure that condition (3.4) is
satis�ed. It is straightforward to verify that for the
admittance structure de�ned in (3.3), the e�ective
controller expression in (3.2) will be

K(s) = 1�
NX

i=1

�i!
2
i

s2 + 2di!is+ !2i
: (3.5)

This, in turn can be shown to be equivalent to

K(s) =

NX

i=1

�is(s+ 2di!i)

s2 + 2di!is+ !2i
: (3.6)

It should be possible to imagine why this speci�c
structure may be quite e�ective in reducing un-
wanted vibrations of the base structure. Flexible
structures are inherently highly resonant systems
whose dynamics consist of a large number of very
lightly damped modes. The admittance suggested
in (3.3), once shunted to the piezoelectric trans-
ducer with the piezoelectric capacitance of Cp will
result in an equivalent feedback control problem
where the controller K(s) is de�ned as in (3.6). It
can be observed that this controller has a highly
resonant structure dictated by the damping fac-
tors d1; : : : ; dN . The controller applies a high gain
at each speci�c resonant frequency. This is done
by applying a very narrow bandpass �lter around
each resonant frequency of the base structure.

To see the connections with the earlier work, we
point out that if N = 1, then the controller may
be tuned only to one speci�c resonant frequency,
say !`. In this case, it can be shown that Y (s) =
!2`Cp

s+2d`!`
:
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Fig. 4.1. Equivalent system for study of closed
loop stability.

Hence, Y (s) e�ectively represents the series con-
nection of a resistor R = 2d`

!`Cp
with an induc-

tor L = 1
!2
`
Cp

shunted across the piezoelectric

transducer terminals. This is the original single-
mode shunt damping circuit proposed by Hagood
and von Flotow (Hagood and von Flotow, 1991).
Based on this observation, one may argue that
Y (s) in (3.3) e�ectively generates phase and gain
relationship around each resonant frequency that
is similar to those generated by a R-L circuit
tuned to that speci�c resonant frequency. In Sec-
tion 5 we will demonstrate the connections with
the Hollkamp circuit (Hollkamp, 1994).

4. CLOSED LOOP STABILITY

In this section we study stability properties of the
proposed shunting impedance.

By inspection, it can be veri�ed that the closed
loop stability of the system in Figure 2.3 is equiv-
alent to the stability of the feedback loop in Fig-
ure 4.1 with

Ĝ(s) =�sGvv(s)

=

MX

i=1

is

s2 + 2�i!is+ !2i
(4.1)

and K(s) =
PN

i=1
�is+2di!i

s2+2di!is+!2i
:

The proof of closed loop stability is rather
straightforward and is based on the observation
that K̂(s) is a strictly positive real transfer func-
tion, i.e., K̂ is stable and K̂(j!) + K̂(�j!) > 0
for all ! 2 R and Ĝ(s) is a positive real transfer
function, i.e., Ĝ is stable and Ĝ(j!) + Ĝ(�j!) �
0 for all ! 2 R. The feedback connection of
two SISO systems where one is a SPR and the
other is a PR transfer function is stable with a
guaranteed gain margin of in�nity (see Chapter
10 of (Khalil, 1996)). Therefore, the admittance
suggested in (3.3) results in a closed loop system
that is stable with favorable stability margins.

It should be pointed out that (4.1) with M arbi-
trarily large, i.e., M � N is a reasonable �nite-

dimensional approximation of (2.3) (see (Hughes,
1987)).

5. PROPERTIES OF THE PROPOSED
ADMITTANCE AND IMPLEMENTATION

ISSUES

Our ultimate goal is to implement the admittance
Y (s) digitally using the synthetic admittance cir-
cuit proposed in (Fleming et al., 2000). For this to
be achievable in an eÆcient way, Y (s) must satisfy
a number of conditions. It should be a stable
transfer function and it should be at least proper,
and preferably strictly proper with a bandwidth
that is not excessively larger than that of the
highest in-bandwidth mode of the base structure
that is to be controlled. In this section we study
the structure of the proposed admittance and will
show that it satis�es all the above conditions.

We �rst study stability of Y (s). This can be
veri�ed by observing that the Nyquist plot of

�

NX

i=1

�i!
2
i

s2 + 2di!is+ !2i
(5.1)

will never cross the critical point, �1 + j0. This
along with the feedback structure of Y (s) in (3.3)
establishes the stability of the admittance Y (s).

Next, we note that the admittance Y (s) can be
written as

Y (s) =

PN

i=1
Cp�i!

2

i s

s2+2di!is+!2iPN

i=1
s(s+2di!i)

s2+2di!is+!2i

=
H(s)

J(s)
:

Now it can be veri�ed that the numerator transfer
function, H(s) is a positive real transfer function,
which means ��

2 � 6 H(s) � �
2 : Furthermore,

it can be veri�ed that 0 < 6 J(s) < �: Hence,
we may conclude that ��

2 < 6 Y (s) < �
2 ; which

means that Y (s) is a strictly positive real transfer
function, i.e., Nyquist plot of Y (s) is con�ned to
the right half of the complex plane. An implication
of this observation is that Y (s) is indeed realizable
using purely passive circuit components, i.e., resis-
tors, inductors and capacitors. Such a circuit may
be realized by observing that Y (s) can be written
as

Y (s) =
Cp
PN

i=1 �i!
2
i

QN

`=1;` 6=i(s
2 + 2d`!`s+ !2` )PN

i=1(s+ 2di!i)
QN

`=1;` 6=i(s
2 + 2d`!`s+ !2` )

(5.2)

and by employing a standard passive circuit syn-
thesis technique. In particular, from partial frac-
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Fig. 5.1. A possible realization of (5.2).

tion expansion of (5.2) we can �nd the real-
ization in Figure 5.1. This is identical to the
shunt damping circuit proposed by Hollkamp
(Hollkamp, 1994).

6. ROBUSTNESS ISSUES

An interesting property of the admittance pro-
posed in (3.3) is its good robustness properties.
To make this clearer we point out that under (3.3)
the closed loop system is stable with a gain margin
of in�nity. Therefore, the spill-over e�ect due to
the existence of out-of-bandwidth modes will not
destabilize the closed loop system. As a matter of
fact, the spill-over e�ect will be minimal since the
admittance, and hence the resulting equivalent
controller K(s) in (3.2) has a highly resonant
nature.

The structure of the admittance Y (s) is such
that if the resonant frequencies !1; : : : ; !N are
slightly di�erent from the actual resonant frequen-
cies of the base structure, closed loop stability is
guaranteed. This is a favorable property as these
resonant frequencies are known to change with
temperature, changing load, etc.

A particularly important robustness feature of the
proposed admittance structure is that it main-
tains closed loop stability even if the value of
the piezoelectric capacitance in (3.3) is estimated
incorrectly. A proof of this claim follows.

Let us assume that the actual value of the piezo-
electric capacitance is Cp, while our estimate of it
is �Cp = �Cp. Therefore, the admittance in (3.3)
should be modi�ed to

Y (s) =

PN

i=1
�i!

2

i

s2+2di!is+!2i

1�
PN

i=1
�i!

2

i

s2+2di!is+!2i

� �Cps:

Arguing along similar lines to the Section 4, we
may say that the stability of the resulting closed
loop system is equivalent to the stability of the
system in Figure 4.1 with Ĝ(s) = �sGvv(s); and

K̂(s) =
1

s

1+ �
s
~Y (s)

; with ~Y (s) = 1
Cp
Y (s):

We have already established that Y (s) is a strictly
positive real transfer function. Therefore strict
positive realness of ~Y (s) follows immediately.
Now, it can be proved that K̂(s) is stable and
that K̂(j!) + K̂(�j!) > 0 for all ! 2 R. There-
fore, K̂(s) is itself a strictly positive real system.
Given that Ĝ(s) is a positive real system, we may
conclude that the closed loop system is table for
any � > 0.

To this end we point out that although the closed
loop system will not be destabilized, the perfor-
mance of the system may severely deteriorate as
� deviates from one.

7. OPTIMAL TUNING OF THE
ADMITTANCE

Structure of the admittance in (3.3) guarantees
closed loop stability of the system. In order to
achieve good performance, appropriate values for
the damping parameters d1; d2; : : : ; dN need to
be determined. This may be done by seeking a
solution to the following optimization problem.

d�1; d
�
2; : : : ; d

�
N = argmin kTvpwk2: (7.1)

This is a non-convex optimization problem that
could have many local minimas. Typically, one
would attempt to solve the problem using a gra-
dient descent technique (Luenberger, 1969). In
doing so, one would need to choose a starting
point from which the optimization process may
start. Given that for all positive d1; d2; : : : ; dN the
closed loop system is stable, any positive value
may be considered acceptable. However, consider-
ing the structure of the system, it may be possible
to �nd a set of damping ratios reasonably close to
a minima.

The transfer function Gvv(s) in (2.3) is a high
order system of very lightly damped resonant
modes. Depending on the geometry of the struc-
ture, these modes may be reasonably far away
from one another. Given the highly localized na-
ture of Y (s), it may be a reasonable assumption
to consider the e�ect of each individual bandpass
section of the admittance on the speci�c mode of
the base structure. Doing so, one may then search
for a value of the damping ratio that would place
the closed loop poles of the system as deep into the
left half of the complex plane as possible. A repeat
of this procedure for every single mode that is to
be controlled may result in a good initial condition
for the optimization problem (7.1).
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Fig. 8.1. Open loop vs. closed loop response (beam).
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Fig. 8.2. Open loop vs. closed loop response (plate).

8. EXPERIMENTAL RESULTS

In this section we apply the above procedure to
two exible structures. These are the piezoelec-
tric laminate beam described in (Behrens and
Moheimani, 2000) and the piezoelectric laminate
plate described in (Halim and Moheimani, 2001a).
The �rst four modes of the beam and the �rst six
modes of the plate are to be controlled by a shunt
impedance Y with the structure given in (3.3).

A model of the composite system, G � vv(s)
was obtained using the frequency domain system
identi�cation (McKelvey et al., 1996). The data
was taken using a Hewlett Packard model 89410
Vector Analyzer. The procedure explained in the
previous section was used to determine the opti-
mal set of damping ratios for Y (s) for the plate
and the beam. The impedances were digitally im-
plemented using the synthetic admittance circuit
described in (Fleming et al., 2000). A comparison
of the closed open loop and closed loop results are
shown in Figures 8.1 and 8.2. These plots are asso-
ciated with the displacement transfer functions at
speci�c points over the surfaces of the structures.
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