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Abstract: This paper is concerned with the problem of dynamics and stability
of piezoelectric laminate structures, in which several piezoelectric elements are
shunted by a multi-input impedance. The problem is shown to be equivalent
to a multivariable feedback control problem. A parameterization of stabilizing
admittance transfer function matrices is given, and a specific class of controllers
capable of reducing structural vibrations and guaranteeing closed loop stability is
introduced. Experimental results are presented, demonstrating the effectiveness of

the proposed methodology.
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1. INTRODUCTION

Piezoelectric transducers have been used exten-
sively as actuators, and also as sensors in active
control of structural vibrations. In such appli-
cations the piezoelectric transducer performs a
single function, either as a sensor, or as actuator.
However, due to the nature of the piezoelectric
effect, it is possible to combine both functions in
a single device.

Recently, there has been increasing interest in
passive control of vibrations by shunting piezo-
electric transducers with electrical impedances.
This process effectively integrates sensing and
actuation capabilities within a single piezoelec-
tric transducer. An analysis of this procedure is
given in (Hagood and von Flotow, 1991), where
the authors suggest that a piezoelectric trans-
ducer can be shunted by a series combination
of a resistor and an inductor. The piezoelectric
transducer is modeled as a voltage source in se-
ries with a capacitor. The resulting RLC circuit
is tuned to one of the resonance frequencies of
the structure to suppress structural vibrations
due to that specific mode.

1 This research was supported by the Centre for Inte-
grated Dynamics and Control (CIDAC) and the Aus-
tralian Research Council (ARC).

The method suggested in (Hagood and von Flo-
tow, 1991), although effective, can only be ap-
plied to one vibration mode. However, following
their work a number of authors attempted to
extend this technique to allow for passive damp-
ing of several modes. In (Wu, 1998), the author
proposed the use of current blocking circuits to
separate RL branches tuned to each resonance
frequency. The method works well for small num-
ber of modes. However, as the number of modes
increases so does the complexity of the electric
shunt, resulting in implementation difficulties.

Reference (Hollkamp, 1994) suggested parallel
combination of a series RL circuit with several
series RLC branches. The author demonstrated
the effectiveness of this specific structure in re-
ducing vibrations due to two modes of a struc-
ture experimentally. However, the synthesis pro-
cedure is not straightforward, making it difficult
to extend the application to more modes.

The use of parallel combination of series RLC
branches was studied in (Behrens and Mo-
heimani, 2001). The idea is to introduce “cur-
rent flowing” RC circuits in each RL branch.
Complexity of the electrical shunt proposed in
(Behrens and Moheimani, 2001) is considerably
less than that proposed in (Wu, 1998). However,
the freedom in choice of the capacitive, or alter-



natively the inductive elements may complicate
the design process.

This paper is concerned with the problem of
multi-mode shunt damping of structural vibra-
tions using several piezoelectric transducers. To
the authors’ knowledge this problem has not
been addressed in the literature so far. It is
shown that the problem can be cast as a multi-
variable feedback control problem, in which the
impedance, or alternatively the admittance of
the electrical shunt, is the feedback controller.
Dynamics of a flexible structure consists of a
large number of highly resonant modes, where
often only a limited number of low frequency
modes are to be controlled. Conditions under
which the closed loop system remains stable, in
the presence of uncontrolled out-of-bandwidth
modes, are derived and a number of specific
structures for the electrical shunt are proposed.

2. DYNAMICS OF A SHUNTED
PIEZOELECTRIC LAMINATE STRUCTURE

Consider a flexible structure with m piezoelectric
patches bonded to its either side in a collocated
pattern. Furthermore, assume that the piezoelec-
tric transducers on one side are used to disturb
the structure, while those on the other side of
the structure are shunted to an impedance. The
impedance is to be designed in a way that the
unwanted structural vibrations are minimized. It
should be noted that the disturbances acting on
the structure can take different forms. Neverthe-
less, the methodology developed in this paper
is general enough to apply to such cases. This
point will be further clarified soon. In Figure 2.1
(a) a schematic of this system is depicted while
the equivalent electrical circuit of the shunted
piezoelectric transducers are drawn in Figure 2.1
(b). In this section we derive dynamics of the
shunted system.

Let
Va(s) = [0:(5) 023 (5) -+ vz, ()]
Vp(8) =[vp, (5) vp,(5) VU, (8) ]T
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V.(5) = V() = SALG)  (22)

where A = diag (CL, eI
P1 P2

L)

> CPm *

To capture the total effect of the disturbance
voltages as well as the effect of the electric shunt
on the structure, one may write (Hagood and
von Flotow, 1991)

Vo(s) = Guu(8)Vin(s) — Guo(s)V(s).  (2.3)
Here, G,,(s) is the multivariable collocated
transfer function matrix between the piezo-
electric shunting voltages, assuming the shunt
impedances Z(s) are open circuit;

M
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where resonant frequencies are ordered such that
w1 <wsy <...< wy and M can be an arbitrarily
large number. Furthermore, due to the fact that
Gy (8) is a collocated transfer function matrix,
we must have (Halim and Moheimani, 2001)

U, =0, >0 forall k. (2.5)

It should be pointed out that if equation (2.4)
is obtained by employing a procedure such as
modal analysis (Meirovitch, 1986), one would
expect to have M — oo. However, choosing
a very large number for M is quite acceptable,
as pointed out in (Hughes, 1987). This would
allow one to use finite-dimensional techniques in
analyzing dynamics of the system.

Next, equations (2.1), (2.2) and (2.3) are com-
bined to obtain,

Vy(s) = | I+ Gou ()2 () (Z<s) n 1A) i

S
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From equation (2.6) it can be inferred that the
transfer function matrix relating Vi, (s) to Vp(s)
is the feedback connection of G, (s) with

K(s) = Z(s) (Z(s) + %A)_l L@
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Fig. 2.1. (a) A piezoelectric laminate structure
with m shunted piezoelectric patches (b)
Electrical equivalent of part (a).



Fig. 2.2. The feedback structure associated with
the shunt damping problem.

0

Fig. 2.3. The feedback structure associated with
the modified shunt damping problem.

This is an interesting observation as it enables
one to employ systems theoretic tools in analyz-
ing dynamics and stability of shunt-damped sys-
tems. The feedback control problem associated
with (2.6) is depicted in Figure 2.2. Note that
the inner feedback loop represents the effective
controller K(s) in (2.7). Observe that the pur-
pose of the system is to regulate v, in presence
of a disturbance Vj,.

The above system is mainly used in laboratory
experiments. Indeed experimental results of this
paper are obtained from a simply supported
beam with two pairs of collocated piezoelectric
transducers (see Section 5 below). In a more
realistic setting, the disturbances acting on the
structure have a different nature; e.g., point
forces, moments, a distributed force, etc. In this
situation equation (2.3) should be modified to

Vo(s) = Guo(5)Vin(s) — Guu(s)W(s)  (28)

where G, (s) is the unshunted transfer function
from the disturbance vector, W(s) to Vp(s). An
implication of equation (2.8) is that the shunted
structural dynamics will have to be revised as:

Vi(s) = | T+ Guo(s)Z(s) (Z(s) + %A) -

X Gy (5)W (5). (2.9)

Observe that although the nature of the dis-
turbance has changed, stability of the shunted
system is still dictated by the feedback connec-
tion of Gyy(s) and K(s) in (2.7). Furthermore,
it is noted that under these circumstances the
regulator problem depicted in Figure 2.2 should
be modified to that shown in Figure 2.3.

Fig. 3.1. The feedback structure associated with
the shunt damping problem with admit-
tance as the control variable.

3. STABILITY OF THE SHUNTED SYSTEM

A set of conditions under which stability of the
closed loop system depicted in Figure 2.3 is
guaranteed, are derived in this section. Instead of
considering the shunting impedance, Z(s) as the
controller, the closed loop stability of the system
is studied in terms of the shunted admittance,
Y(s) = Z(s)7! noting that the closed loop
transfer function in (2.9) can be re-written as:

1

Va(s) =

I+Guo(s) (I + %AY(g)) ) ]
XGoyy(8) W(s). (3.1)

The regulator problem associated with this sys-
tem is depicted in Figure 3.1. A parameteriza-
tion of stabilizing controllers for the system in
(3.1) is introduced next. Considering the struc-
ture of the feedback system, the Youla param-
eterization of all stabilizing controllers for the
inner feedback loop can be written as Y(s) =

(I - Q(s)A/8)7 Q(s).

Although the inner loop contains an integrator,
the parameterization for a stable plant can be
used as long as Q(s) satisfies a number of condi-
tions. Namely, Q(s) must be stable, proper and
have a transmission zero at the origin. Further-
more, I —Q(s)A/s must have a transmission zero
at s = 0. These conditions can be enforced by
choosing Q(s) = H(s)A~'s where H(s) is stable,
strictly proper and I — H(s) has a zero at the
origin, i.e., I — H(s) = sJ(s). This choice for
Q(s) results in a closed loop system with the
transfer function matrix

[T+ s Gyo(s)J(5)] Guuw(s). (3.2)

It is now possible to find closed loop stability
conditions in terms of J(s) as the stability of
(3.2) is equivalent to that of the system depicted
in Figure 3.2.

Next, a proof is given that the closed loop system
will be stable as long as J(s) is a strictly positive
real transfer function matrix. The following two
definitions and the subsequent theorem due to
(Joshi and Gupta, 1996) are needed in the proof.

Definition 3.1 An m X m rational matrix G(s)
is said to be positive real (PR) if
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Fig. 3.2. Feedback connection of sG,,(s) with
J(s).

(i) All elements of G(s) are analytic in Re(s) >
0;
(ii) G(s) + G*(s) > 0 in Re(s) > 0 or equiva-
lently
(a) Poles on the imaginary axis are simple
and have nonnegative residues, and
(b) G(jw)+G*(jw) >0 for w € (—00,00).

Definition 3.2 An mXxm stable rational matrix
G(s) is said to be strictly positive real in the
weak sense (WSPR) if

G(jw) + G*(jw) >0 for w € (—00,00).

The following theorem is Corollary 1.1 of (Joshi
and Gupta, 1996).

Theorem 3.1. The negative feedback connection
of a PR system with a WSPR controller is stable.

It should be pointed out that there are a number
of definitions in the literature for strictly positive
real systems. For a review of these, the reader is
referred to (Wen, 1998; Joshi and Gupta, 1996).
For almost all such definitions, one would expect
a similar result to that of Theorem 3.1; i.e., the
negative feedback connection of a PR system
with a SPR controller is stable. It turns out that
for the problem at hand, definition 3.2 is the
most relevant.

First, it is proved that

Gy (5) =S va(s) (33)

is a positive real transfer function matrix. It
can be noticed from (3.3) and (2.4) that all
of the poles of G,,(s) are in the left half
of the complex plane, hence the system is
stable. Furthermore, the system has no poles
on the jw axis. To prove positive realness of
Gy (8), one needs to establish that Gy, (jw) +
G2, (jw) > 0for all w € (—00,0),i.e. Gyy(jw)+

~ . w UJZ
Gy (j0) = Yply ety 2 0 for all

w € (—o0,00) where the last inequality follows
from (2.5).

An implication of the above analysis is that to
guarantee the closed loop stability of the system
it would suffice to choose an admittance Y (s) =
J(8)7t (I — s J(s)) A=t with J(s) a WSPR and
strictly proper transfer function matrix.

4. DECENTRALIZED CONTROL DESIGN

The observation made in the previous sec-
tion enables one to design impedance struc-
tures that guarantee closed loop stability of the
shunted system. This section introduces two spe-
cific decentralized structures that enforce the
above conditions. Furthermore, these decentral-
ized impedances result in effective wideband re-
duction of vibrations of the base structure.

These admittances are constructed starting from:

N
J(s) = diag (f(l(s), . ,f(m(s)) (4.1)
i=1

aii (s+2di;wi) _
W for | = 1,2,...,m

with Kl (8) =
and

s

N
J(s) = Zdiag (Kl(s), . ,f{m(s)) (4.2)

where Ki(s) = =25 | = 1,2,...,m.

$2+2djwis+w??
Also, in both cases,

a; >0, i=12...,N ¢=1,2,...,m.
(4.3)
and
N
Zaqizl, q=1,2,... ,m. (4.4)
i=1

It can be verified that both J(s) and J(s) are
strictly proper WSPR systems. Hence, the re-
sulting admittances will guarantee closed loop
stability of the system.

Corresponding to J(s) and J(s), the expressions
for Y (s) and Y (s) can be determined as:

V(s) = diag (&1(5), .. ,ésm(s)) Als  (4.5)

and
¥ (s) = diag (&1(3), . ,&m(s)) Als. (4.6)
where
N Qpiwj
N Zi:l 32+2d;iwis+w?
1(8) = ;

N a“w?
1- Zi=1 52+2d“wis+wi

ZN a“(Zde;s+w?)
¢ (5) _ i=1 52+2d”wi5+w1.2
! - 1 N au(2dwistw?)’
- Zi:l $2+2dj;w; s+w?

foralll=1,2,...,m.

One of the interesting properties of the above
admittance transfer functions is that in a specific
bandwidth, one may choose to control only those
modes that are of importance. This is reflected in
the constraint on parameters ag; in (4.3). This is
in contrast to control design methodologies such
as LQG and H., where the controller tends to
have equal dimension to that of the system that
is being controlled.



A further property of the controllers Y (s) and

Y(s) is that in presence of out of bandwidth
modes of the base structure they do not cause
instabilities. The spill-over effect (Balas, 1978¢;
Balas, 1978b) is a serious cause of concern in
control design for flexible structures. Often a
feedback controller is designed using a model
of the structure that contains a limited number
of modes. Once the controller is implemented
on the full order system, the presence of un-
controlled high frequency modes may destabilize
the closed loop system, or severely deteriorate
the performance. Considering the discussion in
Section 3, it should be clear that such a problem
can not happen here.

Now, it is straightforward, but tedious, to verify
that both Y (s) and Y(s) are strictly positive
real transfer functions. Therefore, they can be
realized by passive circuit components; i.e., resis-
tors, inductors, and capacitors. Given that both
Y (s) and Y'(s) have decentralized structures, ef-
fectively each piezoelectric transducer is shunted
by an independent admittance. However, it is not
clear how such a network may be obtained as
standard synthesis techniques result in realiza-
tions that require Gyrators and operational am-
plifiers. To this end, it should be pointed out that
even if passive realizations for (4.5) and (4.6)
are found, in practice, such an implementation
is likely to be impractical. Given that often low
frequency modes of a structure are targeted for
shunt damping, the required inductors may be
excessively large, in the order of several hundred
to several thousand Henries. A practical way of
implementing Y (s) and Y'(s) is to use the syn-
thetic admittance circuit described in (Fleming
et al., 2000).

5. EXPERIMENTAL RESULTS

To validate the proposed concepts, experiments
were carried out at the Laboratory for Dynamics
and Control of Smart Structures 2, on a piezo-
electric laminated beam. Figure 5.1 shows the
simply supported beam apparatus. The struc-
ture consists of a uniform aluminum beam of
a rectangular cross section, refer to Table 5.1
for beam parameters, and has experimentally
pinned boundary conditions at both ends. A
pair of piezoelectric ceramic patches are attached
symmetrically to either side of the beam, at
1 = 0.05m and x5 = 0.24m, as shown in Fig-
ure 5.1. Two piezoelectric elements will be used
as an actuators to generate a disturbance and
the opposing elements as shunting layers. The
piezoceramic elements used on the experimental
composite structure are PIC151 patches. The
physical parameters for these piezoelectric patch
are given in Table 5.2.

During the experiment, the simply supported
beam was excited using two piezoelectric actua-
tors with a swept sine waveform from a Hewlett

2 http://rumi.newcastle.edu.au/lab/
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Fig. 5.1. Experimental set up of the beam appa-
ratus.
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Table 5.1. Simply supported beam pa-

rameters.
Length 0.6m
Width 0.025m
Thickness 0.003m
Youngs Modulus 65 x 10°N/m?
Density 2650kg/m?

Table 5.2. Parameters of the PIC151
piezoelectric patches.

Charge Constant ds1  —210 x 107 2m/V
Voltage Constant g31  —11.5x 10~3Vm/N
Coupling Coefficient k31  0.340

Capacitance Cp  0.105uF

Thickness 0.25 x 10~3m
‘Width 0.025m

Youngs Modulus 63 x 109 N/m?2

Packard 35670A signal analyzer. The swept sine
signal was then amplified using a high voltage
power amplifier capable of driving highly ca-
pacitive loads. To find the multivariable collo-
cated transfer functions matrix G, (s), the input
channel of the signal analyzer was used to mea-
sure the voltage across the shunting piezoelectric
layer. Using a Polytec laser scanning vibrometer
(PSV-300) the unshunted multivariable transfer
function matrix from the actuator voltage Vi, (s)
to the displacement at a point on the beam struc-
ture, located at 1 = 0.170m, G,,(s), as shown
in Figure 5.1 was measured. The response for
Gy (8) and Gy (s) were captured by the signal
analyzer. Experimental results are displayed in
Figures 5.2 and 5.3, for the first three modes.
The reader may note that the composite system
has two inputs, corresponding to actuators 1 and
2, and three outputs i.e. shunting layers 1, 2 and
displacement, giving a MIMO system.

In order to design an effective shunt controller
a model of the multivariable system had to be
obtained. Subspace based system identification
techniques have proven to be an efficient means
of identifying dynamics of high order, highly
resonant systems (Mckelvey et al., 2002). From
Figures 5.2 and 5.3, it can be observed that the
identified models for G,,(s) and G,(s) describe
very well the behaviour of the system.

Two different shunt circuits were applied to the
beam structure, using equation (4.5), they are:

Yi(s) which controls the 2nd and 3rd modes,
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Fig. 5.3. G,y (s) experimental data (- - -), identi-
fied model (—) and simulated results (—-—).

and Y>(s) which controls the 1st and 3rd modes.
Using the predetermined parameters shown in
Table 5.3 , the synthetic admittance circuit de-
scribed in (Fleming et al., 2000) was used to im-

plement Y7 (s) and Y>(s). Both admittances were
shunted to the beam structure and the damped
response G, (s) was measured with the Polytec
laser scanning vibrometer. Figure 5.3 shows the
simulated and experimental damped responses.
Experimental results show that the structural
modes for the simply supported beam have been
considerably damped; 5dB for the 1st mode, 9dB
for the 2nd and 14dB for the 3rd mode.

Table 5.3. Experimental and simulated
shunt parameters.

Admittance w; Hz d;

Yi(s) 2 7085 2  0.013
3 1643 3  0.0174

Ya(s) 1 2054 1 0.014
3 1571 3 0.0173

6. CONCLUSIONS

It was demonstrated that the problem of piezo-
electric shunt damping with several piezoelec-
tric transducers and a multi-input impedance is

equivalent to a feedback control problem for a
square plant. The controller itself was shown to
be inside an inner feedback loop. A parameteri-
zation of stabilizing controllers/electrical shunts
was introduced. Two decentralized shunts with
favorable damping properties were proposed and
their effectiveness in reducing structural vibra-
tions was experimentally verified.
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