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Spatial System Identification of a Simply Supported Beam
and a Trapezoidal Cantilever Plate.

A. Fleming?

Abstract

Dynamic models of structural and acoustic systems
are usually obtained by means of modal analysis or fi-
nite element modelling. To their detriment, both tech-
niques rely on a comprehensive knowledge of the sys-
tem’s physical properties. Experimental data and a
non-linear optimization is often required to refine the
model. For the purpose of control, system identification
is often employed to estimate the dynamics from distur-
"bance and command inputs to a set of outputs. Such
discretization of a spatially distributed system places
further unknown weightings on the contrel objective,
“in many cases, contradicting the original goal of opti-
mal control. This paper introduces a frequency domain
system identification technique aimed at obtaining spa-
tially continuous models for a class of distribuied pa-
rameter systems. The technique is demonstrated by
identifying a simply supported beam and trapezoidal
cantilever plate, both with bonded piezoelectric trans-
ducers. The plate’s dimensions are based on the scaled
front elevation of a McDonnell Douglas FA-18 vertical
stabilizer!, '

1 Introduction

In the analysis and contyol of distributed parameter
systems it is of great benefit to possess a spatial model.
That is, a model that describes system dynamics over
an entire spatial domain. This paper is concerned
with the modelling and identification for a class of dis-
tributed parameter systems. Such systems include but
are not limited to: flexible beams and plates, com-
pound linear structures, slewing structures, and acous-
tic enclosures.

The motivation for finding such a model lies in both
the fields of analysis and synthesis. During analysis
the user may simply wish to observe the mode shapes
of the structure, or in a more complete utilization of
the model, mathematically estimate the spatial feed-
back control performance of a system utilizing discrete
sensors, actuators, and control objectives. For exam-
ple, consider |1} where a standard H, controller [2, 3]
is designed to minimize vibration at a single point on
a piezoelectric laminate simply supported beam. A
spatial model is required to analyze the overall perfor-
mance of such a controller. The fact that the point-wise
controller is shown to provide good local performance
but poor spatial performance leads us to the primary
application of spatial models - spatial coniroller synthe-
sts. A number of standard control synthesis variants
have emerged that address the control design of spa-
tially distributed systems with discrete sensors and ac-
tuators. Recent examples include: spatial feed-forward
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control [4], spatial resonant control {5], spatial Hs con-
trol 6], and spatial Hy, conirol [1].

The modal analysis procedure has been used exten-
sively throughout the literature for obtaining spatial
models of structural [7, 8] and acoustic systems [9]. Its
major disadvantage being the requirement for detailed
physical information about the sensors, actuators, and
underlying system. Practical application typically in-
volves the use of experimental data and a non-linear
optimization to identify unknown parameters such as
modal amplitudes, resonant frequencies, and damping
ratios. Even in this case the descriptive partial differ-
ential equations must still be solved (as functions of
the unknown parameters) to obtain the mode shapes.
This may be difficult or impossible for realistic struc-
tural or acoustic systems with complicated boundary
conditions. :

Another popular technique for obtaining spatial mod-
els is that of finite element (FE) analysis [10]. This
is an approximate method that results in high order
spatially discrete models. If the dynamics of sensors
and actuators are known, the integrated model can be
cast in a state space form to facilitate control design
and analysis [11]. The approximate nature of finite
element modelling eliminates the need for solving de-
scriptive partial differential equations. Detailed infor-
mation relating to the structure’s material properties
and boundary conditions is still required. As with the
modal analysis procedure, FE models are usually tuned
with experimental data {12].

A considerable literature has also developed on the
topic of Ezperimentel Modal Analysis, (see [13] for a
compilation of such methods). These methods can be
predominantly described as frequency domain transfer
function methods. The system is assumed to consist
solely of parallel second order resonant sections. Sen-
sor, actuator, and additional non-modal dynamies are
neglected. One of the most popular methods, widely
used in commercial frequency domain modal analysis
packages, is the rational fraction polynomial method
[13]. As a transfer function method, the model is pootly
conditioned, incorrectly describes the systems zero dy-
namics [14], and neglects non-modal dynamics. In ad-
dition, all of the mentioned experimental modal anal-
ysis techniques neglect the fundamental limitations in
spatial sampling, i.e. Reconstructed mode shapes can
be distorted due to violation of the Nyquist criterion
in one or two dimensions.

This paper introduces an efficient and correct method
for identifying the above class of systems directly from
measured frequency response data.



1.1 Modelling

The Lagrangian/modal expansion, or Ritz-
Kantorovitch method [7] is commonly used to
express the spatial deflection of a distributed param-
eter system as an infinite summation of modes. As
discussed in [7] the model can be expressed in the
frequency domain.

G, (37p)=Z_M (1)
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Gy(s, p) is the transfer function from an external force,
or for the system considered in this paper, the piezo-
electric voltage, to the displacement at a point p, a co-
ordinate vector on the spatial domain R. The ¢;(p)’s
are the system eigenfunctions and must form a com-
plete coordinate basis for the system, satisfy the geo-
metric boundary conditions, and for analytic analysis
be differentiable over the spatial domain to at least the
degree required by the describing partial differential
equations. Many practical systems also obey certain
orthogonality conditions. ¢; and w; are the damping
ratios and resonance frequencies of each mode ¢; {p).

For practical reasons, (1) is often truncated to include
only a certain number of modes that approximate the
response over a limited bandwidth. Reference [14] in-
troduces a model reduction technique for systems that
satisfy certain modal orthogonality conditions. We de-
fine the model of a general single input spatially dis-
tributed system as,
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where, H(s) is the concatenation of all non-distributed
transfer functions, @;(p) is the i** mode shape, and
D(p) is the feed-through function included to compen-
sate for all higher order truncated contributions to zero
dynamics. The filter H{(s} is used to model the addi-
tional dynamics of sensors, actuators, and for example,
anti-aliasing filters. In this work H{s) is not identified
automatically.

The system (2) has a corresponding state space repre-
sentation.

%) = Ax(t)+ Bu(f) (3
dp,t) = Cyr(p)x()+ Dy(p)u(t)
where, Cy(x) = [ &;(p) © @n(p) 0], B =
[0 1 .-~ 0 117, Nis the number of modes to
be identified, Vand
0 1 0 0
~w? =2 0 ]
A= . € R2N*2N
0 0 0 1
0 0 —wl —2gwn
(4)

2 Spatial Sampling

Consider the model structure (2}, the spatial functions
®,(p) and D(p) must be reconstructed from their iden-

tified samples. For a uniformly sampled one dimen-
sional system,

®i(pn) _
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there are a number of options available for reconstruct-
ing the continuous functions. Two of which are, tradi-
tional linear reconstruction, and spline reconstruction.
The aim of this section is to quantify the expected mean
square difference between the original continuous func-
tion and its corresponding reconstruction. This will
allow us to evaluate the required spatial sampling inter-
val as a function of the permissible error. An example
of this procedure is performed for a simply supported
beam in Section 2.1.

In general, a spatial function f(x) will not be band-
limited. Examples include, the mode shapes of a can-
tilever beam {8], and the feed-through function for a
simply supported beam [14]. Since the samples are
obtained indirectly from point-wise frequency response
data, no form of low pass filtering is possible.

In recent years, splines have been recognized for their
usefulness in curve and surface fitting problems [15],
[16]. The function f(z} can be approximately recon-
structed from a spline basis g}, with coefficients c(k)
derived from f(kAz).

Q" fla) = 3 W (o — ) (5)

keZ

where, ¢(k) € I3 are the (finite square summable)

sp

spline coefficients, ()™ f(x} is the spline reconstruction

of f(x), and ¢™(z) is the spline generating function.

We will limit our choice of generating functions to the

(n+1)* order 3-splines (degree n) [16]. The condition
8p

c(k) € I3 ensures that Q™ f(z) is a well defined sub-
space of L, a considerably larger space than the tra-
ditional Shannon space of band limited functions. Ref-
erences [17) and [18] present a unified sampling theory
for a wide class of interpolating functions. In likeness
to the Shannon sampling theorem, the optimal spline
reconstruction involves an optimal prefiltering before
sampling and reconstruction by the chosen spline ba-
sis. The results in this area, including expressions for
the RMS error, are summarized in [16]. In our applica-
tion where a least squares fit is sought, the method of
quantitative fourier analysis is easily applied to quan-
tify the RMS reconstruction error {19]. The sampling
phase averaged error is given by,

1

Er = [51; f | Flwa)f B™(Az ws) dw._:] )

-0

where Er = H f(z) - 0" f(@)|| | and En(Az w.) is

2
defined as the frequency error kernel and is a function
of the interpolant and Azx. Analytic expressions for
E™(Az w;) have been given for the F-splines of order
up to 6 [19].




2.1 Sainpling of a Simply Supported Beam
This section demonstrates how the previous results can
be applied to spatial systems. We preseat an example
analysis for a simply supported beam. The objective is
to arrive at a point where Equation (6) can be applied.
Both expressions require only power spectral density of
the function.

The moede shapes of a simply supported beam are given
in [7], ¢;(z) = */pArL sin (22) = asin (£2) ,where p

is the material density, A, is the cross-sectional area,
and L is the length of the beam. The spatial spectra

of Zfil ¢;{x) is impulsive and easily determined,

{Z@‘)(r)}~3'_fa2[ ~ b - ]
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(7
The highest frequency component of ¢;(z) ¢ €
{1,...,N}is %, thus, if we were to apply Shannon’s

Theorem 2 to reconstruct N mode shapes of a simply
supported beam, 2T > 287, that is, Az < %.This
simple and complete result applies in general to a sub-
class of the systems (1). Such systems are referred to
as having periodic boundary conditions and are char-
acterized by sinusoidal mode shapes.

The feed-through function D{x) can be found an-
alytically for systems of the form (1), D{z) =
Sy kigi(x),where k; is given in {14] as k; =
sFin (@ctw=)  In order to find the power spec-

2wty Wi—e
tral density |F {D(x)}|?, it may be simpler to make
a change of basis from the signal subspace spauned
by ¢,(z) i € {N+1,...,00}, to an enveloping sub-
space spanned by a set of functions with a known
Fourier transform. In our case where ¢;(x) Is si-’
nusoidal, the following transformation is useful. By
simply cons;dermg the Fourier series representation,

D(z) =3 jcg e Sz where T, = 2L,

lazf G- In (Witee) tef...,~N-1}

= 0 i€ {-N,...,N}
_21Q2w}:w11n(w; 5;) ie{‘N"'lv"'} ( )
: 8

The complex coefficients ¢; reveal the spatial Fourier
transform of D{zx).

FAD(=)} :f{_z kmz-(x)} = D 2meiblws - ig)
) i=N+1 1=
' )
where w, = 2% = §. As F{D(x)} does not have
compact support on the interval (—joo, joo), D(x} can

not be exactly reconstructed with any finite number of
samples. It is also obvious from (9) that the spectra
of D(z) lies completely outside the bandwidth of the
mode shapes, thus dictating the spatial sampling re-
quirements of the system. We can now apply Equa-
tion (6) to determine the required spatial sampling

2Neglecting all other errors such as those resulting from trun-
cation.
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Figure 1: The RMS reconstruction error.

interval. For a periodic signal ¢(t), the energy den-
gity per unit frequencv is given in [20], |G(f)]* =
Y ez |cn| 8f —nyp ) where 77 is the period, G{f)

denotes the Fourier transform, and ¢, are the Fourier
coefficients of g(t). By making a change of variables we
can find the power spectral density of D(z),

2
|F{D@)} =20Te > Jel® Slws — i) (10)
. x
ieZ
Hence, from equation (6), the error in reconstructing
D(z) from an n'* order spline basis,

W=

1DG) - D@l = |22 Y el Bim =22
i (11)

where D7, () is the spline reconstruction of D(z). The

error kernel for & cubic spline E4(lﬂ’—L‘) is plotted
together with the equivalent Shannon kernel in [19].
We can also apply Parseval’s equality to find the mean
square value of D(z) over one period, 350 __ leil* =

&[5, 1D

We now consider a specific example: the simply sup-
ported beam described in Section 4, where 3 modes are
retained for identification. In Figure 1 the RMS value
of the reconstruction error (L2 norm on [—L, L]) is plot-
ted against the sampling interval Az. As ep\pected as
the sampling interval becomes large, the RMS error ap-
proaches the RMS value of the continuous function®.
This plot can be used to select a spatial sampling in-
terval that achieves some error specification on D(z).

In summary, the sampling limitations for a simply sup-
ported beam have been derived. Even when the mode
shapes are known a priori, this analysis can be difficult
to perform. For the praciitioner, we offer a rough rule
of thumb. 1) Estimate, by means of a similar system
or finite element analysis, the highest significant spa-
tial frequency component of the highest order mode to
be identified. 2) Consider the feed-through function
D(p). Assume that its highest significant frequency

3In this analysis we have considered D{z) & Lz. When we
refer to the RMS or mean square value of such signals, we are
implicitly referring to the RMS or mean square value over a single
period.



component is three times that estimated in step 1).
{This step is suggested on the experience of studying
and identifying a number of such systems). 3} Sample
the structure as would be done in practice for a func-
tion with spatial bandwidth derived in step 2). Taking
into consideration the limited domain of the structure,
(allowing for truncation errors), this would normally be

between 2 to 5 times the rate suggested by the Nyquist
criterion.

3 Identification

The first step in the identification procedure is to ob-
tain an estimate for A, the system matrix whose eigen-
values reveal the parallel dynamics of each mode. On
first inspection, this problem may appear trivial as
the transfer function obtained from a single frequency
response would perform the task. For spatially dis-
tributed systems we must redefine our measures of
model quality and stochastic performance. In essence,
the two main sources of error in the identification arise
from measurement noise and slight changes in sys-
tem dynamics over the spatial domain. Intuitively, we
would like to distribute the resulting model error in a
similar, equally distributed fashion. The task of quan-
tifying such errors is the subject of current research.

The problem can be cast as a MIMO system identifica-
tion problem where each point is regarded as a single
output. Subspace based algorithms have proven par-
ticularly useful for identifying high order multi-variable
resonant systems [21]. The reader is referred to {22 and
[23] for a full discussion of frequency domain subspace
techniques.

3.1 Identifying the Mode Shapes and Feed-
through Function

Samples of the spatial functions will now be identified
from the available frequency response data. Some Def-
initions: G, the spatial response matrix, P¥/, the dy-
namic response matrix, ¥, the modal function matrix,

D the feed-through vector.

G(p1. ju1) G(Px,: jwi1)
G= : € CONwxNe
Glp1,jwn,) G(pn,,jwn,)
(12)
P (juws) Pt (jun)
pii= : e CNw x N
P (jwn,) Pyl Gwn,)
(13)

where P;1(ju) is the response of the ordered i** mode
dynamics found from the system matrix A.

_— - —_— 1
P (jw) = ls + (e + o)l [s + (s = oa)l |omjes
(14}
@+ (p1) :(pw,)
W= e RV* %, (15)
v {p1) en(pw,)
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Frequency Range 10-200 {H=z)
Eqgi-distance F Samples | 3031

Spatial Sampling interval | 2.5 cm
Tdentification Samples 13

Validation Samples 13

Excitation Colored Noise

Table 1: Identification Parameters

D = [ D(p1} D(py,) | € RY*M.  (16)

We can form the following complex matrix equation

-

c=[P 1wa1]{§]. (an)

Equation (17} has a unique least squares solution if
N, = N, this condition is automatically satisfied if
the restrictions in Section 3 are met [23]. Since we
are interegted in real valued functions we restrict the
matrices ¥ and D accordingly.

For notational simplicity, we assume p is single di-
mensional. Here the ordering and dimension of the
co-ordinate vector p becomes important. When using
linear resconstruction, the spatial system can be writ-
ten in state space form

Ax+ Bu
B, (x)T¥7 Jx + DB, (z)u

Y{z)

(18)

if

where B, (r) is the shannon reconstruction basis, and

: T
J= [ el ef e?;N—ll } € RV*2N,

The spline reconstructed system is similar to (18) ex-

cept that the function samples [ ¥ D ]T and recon-
struction basis B, are replaced by the spline coefficients
and chosen basis.

4 Experimental Results

The presented technigue will now be applied to identify
two spatially distributed systems, a simply supported
beam, and asymmetric cantilever plate. Both struc-
tures are excited using bonded piezoelectric actuators.
Although the simply supported beam is easily mod-
elled using analytic methods {albeit with experimental
tuning), applying such techniques to the plate is signif-
icantly more difficult. The problem is complicated by
the irregular geometry of the plate boundary.

Beamn Identification: A photograph and physical pa-
rameters of interest can be found in [24]. Colored noise
is applied to the actuator, the spatial response is mea-
sured sequentially using a Polytec scanning laser vi-
li')rometer. Details of the data set are given in Table

The extracted mode and feed-through function samples
together with their spline reconstructions is shown in
Figure 2. To evaluate mode! quality, we will compare
the spatial beam response plotted in Figure 3 (a), to
the identified model response plotted in Figure 3 (b).
The magnitude response of the error system is plotted
in Figure 3 {¢)



Figure 2: The extracted mode samples and spline recon-

struction

(o) rror

Figure 3:

Plate Identification: The experimental plate is con-
structed from aluminum of 4 mm thickness. Geometry
and dimensions are shown in Figure 6. System identi-
fication parameters are given in Table 2.

An estimate for the system matrix A is first obtained
using a scaftered subset of the spatial frequency sam-
ples. The locations of subset points are shown in Fig-
ure 6. Equation (17) is solved to identify the mode
shapes and fecd-through function. The normalized
mode shapes and feed-through function are plotted in
Figures 4 and 5.Due to the difficulties in visualizing a
four dimensional guantity, we evaluate model quality
by taking a planar section of the spatial frequency re-
sponse An elevation of the section is shown in Figure 6.
The measured, identified model, and error system fre-
quency responses evaluated along the section are shown
in Figures 7 (a), (b), (c) respectively.

Frequency Range 10-100 (Hz)
qi-distance ' Samples Y
nunber of Spatial Samples | 468
patial Sampling interval 2.63 cm
Excitation Colored Chirp

Table 2: Plate system identification parameters
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Figure 6: Distribution of the spatial samples. An "< rep-
resents the location of a sample used to identify
the system matrix 4. The dashed line repre-
sents the side elevation of a cross-section used
to analyze mode! quality.
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5 Conclusions

A technique has been presented for identifying a class
of distributed parameter systems from a set of spatially
distributed frequency responses. The systems are mod-
elled as a finite sum of second order transfer functions
with spatially variant numerators and feed-through.

In an attempt to evenly distribute model error, the
identification is cast as a single-input multi-output
identification problem. An estimate for the system dy-
namics is sought using a frequency domain subspace al-
gorithm. Samples of the mode shapes and feed-through
function are first identified then used to reconstruct the
continuous functions. If the spatial Fourier transform
is known, the error due to under sampling can be quan-
tified.

Experimental identification of a simply supported
beam and cantilever plate has shown an adequate cor-
relation in the frequency domain between the measured
system and identified model. In both cases the major-
ity of discrepancy is due to small errors in the resonant
frequencies. Current work involves the development of
an efficient optimization algorithm to minimize such
eITOrS.

Other topics of current research include: the automatic
identification of non-distributed dynamics H(s), exper-
imental identification incorporating piezoelectric sensor
voltages, time domain identification techniques, and
stochastic analysis.

References
[1] D. Halim and 8. O. R. Moheimani, “Experi-
ments in spatial Ho, control of a piezoelectric lami-
nate beam,” in Perspectives in Robust Control (S. O. R.
Igg}%heimani, ed.), ch. 8, pp. 104-121, Springer-Verlag,
1.

[2] S. Skogestad and 1. Postlethwaite, Multivariable
Feedback Control. John Wiley and Sons, 1996.

{3] K. Zhou, J. C. Doyle, and K. Glover, Robust and
Optimal Control. Upper Saddle River, N.J.: Prentice
Hall, 1996.

[4} 8. 0. R. Mochkeimani, “Broadband disturbance at-
tenuation over an entire beam,” Journal of Sound and
Vibration, vol. 227, no. 4, pp. 807-832, 1899.

[5] D. Halim and S. Q. R. Moheimani, “Spatial res-
onant control of flexible structures - application to a
piezoelectric laminate beam,” IEEE Transactions on
%)Oritml Systemn Technology, vol. 9, pp. 37-53, January

6] D. Halim and 3. O. R. Moheimant, “Spatial Ha
control of a piezoelectric laminate beam: Experimental
implementation,” IEEE Transactions on Contrel Sys-
tems Technology, vol. 10, pp. 533-546, July 2002.

7] L. Meirovitch, Elements of Vibration Analysis.
Sydney: McGraw-Hill, 2nd ed., 1996.

[8] A.R.Fraser and R. W. Daniel, Pertubation Tech-
niques for Flezible Manipuleiors. Kluwer Academic
Publishers, 1991.

[9] J.Heng, J. C. Akers, R. Venugopal, M. Lee, A. G.
Sparks, P. D. Washabaugh, and D. Bernstien, “Mod-
elling, identification, and feedback control of noise in an

acoustic duct,” IEEE Transactions on Conirol Systems
Technology, vol. 4, no. 3, pp. 283-291, 1996.

[10] R. D. Cook, Finite Element Modelling for Stress
Analysis. John Wiley and Sons, 1995.

{11} Y.-H. Lim, V. V. Varadan, and V. K. Varadan,
“Closed-loop finite element modelling of active/passive
damping in structural vibration control,” in Prec.
SPIE Smart Materials and Structures, Mathematics
and Control in Smart Structures, SPIE Vol.8039, (San
Diege, CA), March 1997.

{12] D. J. Ewins, “Modal testing as an aid to vibra-
tion analysis,” in Proc. Conference on Mechanical En-
gineering, May 1990.

[13] N. M. M. Maia and J. M. M. e Silva, eds., The-
oretical and Experimental Modal Analysis. Hertford-
shire, England: Research Studies Press, 1997.

[14] S. O. R. Mohiemani, “Minimizing the effect of
out-of-bandwidth dynaimcs in the models of reverber-
ant systems that arise in modal analysis: Implications
on spatial Ho. control.,” Automatica, vol. 36, pp. 1023—
1031, 2000.

[15] P. Lancaster and K. Salkauskas, Curve and Sur-
Jace Fitting. Academic Press, 1986.

[16] M. Unser, “Splines, a perfect fit for signal and
image processing,” IEEFE Signal Processing Magazine,
vol. 16, pp. 22-38, Novenmber 1999,

[17] M. Unser, A. Aldroubi, and M. Eden, “Polyno-
mial spline signal approximations: Filter design and
asymptotic equivalence with shannon’s sampling the-
orem,” IEEE Transactions on Information Theory,
vol. 38, pp. 95-103, January 1992.

[18] R. Hummel, “Sampling for spline reconstruc-
tion,” SIAM Journal of Applied Mathematics, vol. 43,
pp. 278-288, April 1983.

[19] T. Blu and M. Unser, “Quantitative fourier anal-
vsis of approximation techniques: Part 1 - interpolators
and projectors,” IEEE Transactions on Signal Process-
ing, vol. 47, pp. 27832795, October 1999.

[20] R. L. Fante, Signal Analysis and Estimation. An
Introduction. John Wiley and Sons, 1988.

[21] T. McKelvey, A. J. Fleming, and 5. O. R. Mo-
heimani, “Subspace based system identification for an
acoustic enclosure,” ASME Journal of Vibration and
Acoustics, vol. 124, pp. 414-419, July 2002.

[22] K. Liu, R. N. Jacques, and D. W, Miller, “Fre-
quency domain structural system identification by ob-
servability range space extraction,” in Proc. American
Controel Conference, Vol 1, (Baltimore, MD), pp. 107-
111, June 1994.

[23] T. Mckelvy, H. Akcay, and L. Ljung, “Sub-

‘space based multivariable system identification from

4520

frequency response data,” IEEE Transactions on Au-
tomatic Control, vol. 41, pp. 960-978, July 1996.

[24] A. J. Fleming, S. Behrens, and $. O. R.
Mohelmani, “Optimization and implementation of
multi-mode piezoelectric shunt damping systems,”
IEEE/ASME Transactions on Mechatronics, vol. 7,
pp. 87-94, March 2002.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


