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Abstract— Electromagnetic transducers have been used ex-
tensively for active feedback control of mechanical vibration. In
this paper, we demonstrate a new technique where an electrical
impedance, connected to the terminals of an electromagnetic
actuator, is designed to reduce vibration in the host structure.
By measuring the coil terminal voltage and controlling the
resultant current or vice-versa the coupled mechanical system
can be controlled. The problem is cast as a standard MIMO
control objective to facilitate automatic design of the electrical
impedance by such means as regular LQR orH2 controller
synthesis. Potential applications include: vehicle suspension sys-
tems, vibration isolation platforms, and the control of enclosed-
sound fields. Active impedance controllers require no external
sensors. The presented techniques are verified experimentally
through the application to a single-degree-of-freedom system.

I. INTRODUCTION

Electromagnetic transducers [9], [11], [7] can be used as
actuators, sensors, or both. When a current is applied to
the terminals of an electromagnetic transducer, a force is
exerted, conversely, when a transducer experiences a velocity,
an open-circuit voltage is induced. Piezoelectric transducers
[6], exhibit similar electromechanical properties but are char-
acterized by a high mechanical impedance. Electromagnetic
transducers are capable of significantly greater strokes, typ-
ically in the millimeter range compared to the micrometer
range.

In analogy to the technique of piezoelectric self-sensing
[4], [1], a recent literature has also developed on the topic of
electromagnetic self-sensing actuators [12], [2], [10], [7], [8].
This technique involves estimating the system velocity from
the measured coil current whilst applying a driving voltage
to the transducer. An example of this technique can be found
in [3], where the acoustic preasure of an enclosed-sound field
is estimated from the measured current flowing through an
actuating speaker coil. A feedback loop, driving the speaker
voltage, is constructed around the estimate to minimize the
acoustic response of the enclosure.

In this paper, we demonstrate the modelling, design, and
implementation of active impedance controllers for electro-
magnetically actuated systems. By measuring the coil termi-
nal current and controlling the resultant voltage, effectively
implementing some electrical impedance, it is possible to
obtain control over the mechanical system. After revealing
the underlying feedback structure and casting it as a stan-
dard MIMO control problem, the application of synthesis
techniques such as LQR and H2 is straight-forward.

Although, the focus is on the control of a system similar
to an isolation column, the generality of the modelling and
design framework is intended to be extensible to a large class
of mechanical systems. Such applications include: MIMO
vehicle suspension systems, vibration isolation platforms, and
the control of enclosed-sound fields. Active admittance or
impedance controllers require no external sensors, are capa-
ble of minimizing a pre-specified peformance objective, and
can also be used to esitmate physical variables dynamically
related to the system states such as velocity.

Experimentally, the presented techniques are verified
through their application to a single-degree-of-freedom me-
chanical system.

This paper is presented in 5 sections. In Section 2, we
begin with the modelling of mechanical, electromagnetic, and
composite systems. We then present a method in Section 3
for the design of active impedance controllers to minimize a
time domain (LQR) and frequency domain (H2) preformance
objective. The presented techniques are then applied to an
experimental electromagnetic system in Section 4. Finally,
the paper is concluded in Section 5.

II. MODELLING

This section introduces a modelling technique for the
design and analysis of shunted electromechanical systems.
Although the focus is on a single-degree-of-freedom system,
the process is quite general and can easily be extended to
more complex mechanical systems.

A. Electromagnetic System
When an electrical conductor, in the form of a coil, moves

in a magnetic field a voltage V proportional to the velocity
ẋ is induced and appears across the terminals of the coil.
Specifically,

V

ẋ
= Bl, (1)

where B is the magnetic flux (in Teslas), l is the length
of the conductor (in meters), and ẋ is the velocity of
the conductor relative to the magnetic field (in ms−1). A
permanent magnet is usually the source of the magnetic field.
In another configuration the coil is kept stationary and the
magnet is made to move.

Assuming the coil is exposed to a field of constant flux
density and the relative displacement is small, Equation (1)
can be rewritten [11] as,

V

ẋ
=

F

I
= Bl = Cn, (2)

where F denotes the force (in Newtons) acting on the coil
carrying a current I (Amps), and Cn is the ideal electro-
mechanical coupling coefficient.

When the coil is employed as a force actuator, Equation
(2) relates the induced force to an applied current. Electrody-
namic shakers and acoustic speakers operate on this principle.

An electromagnetic coil can be modeled as the series
connection of an inductor L, a resistor R, and a dependent
voltage source V [7]. When coupled to a mechanical system,
the induced emf and hence mechanical velocity can be
determined from the open-circuit coil terminal voltage.

B. Mechanical System
The input/ouput model of a general mechanical system is

shown in Figure 2 (a), the mechanical plant is denoted P . In
addition to various application specific inputs and outputs, to
couple the system to an electromagnetic actuator, the model
requires a force input Fe and a velocity output ẋ. In a typical
sceanario, the model would also descibe the influence of a
specific disturbance input w.
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Fig. 1. Mass-spring-damper system (a), coupled to two electromagnetic
coils (b).

In many cases where vibration becomes an issue, the
mechanical structure can be modeled as the simple mass-
spring-damper system shown in Figure 1 (a). Examples
include, but are not limited to: isolation columns, magnetic
bearings, and suspension systems.

The equation of motion for a forced one degree of freedom
system is,

Mẍ(t) + Cẋ(t) + Kx(t) = Fd(t), (3)

where Fd(t) is the applied force, M is the equivalent mass
(in kg), K is the spring constant (in N/m), C is the
damping constant (in Ns/m), and ẍ(t), ẋ(t) and x(t) are
the acceleration, velocity and displacement respectively. In
the Laplace domain, the transfer function GẋF (s) from an
applied force to the resulting velocity is,

GẋF (s) =
s x(s)
Fd(s)

=
1
M

s2 + s C
M + K

M

. (4)

In later sections we will also require the following minimal
state-space model for GẋF (s),

ẋp(t) = Apxp(t) + BpFe(t) (5)
ẋ(t) = Cpxp(t)

Consider Figure 1 (b), where a single-degree-of-freedom
system is coupled to two electromagnetic coils. Coil 1 is
used to introduce a force disturbance and coil 2 to control
the resulting vibration. The corresponding mechanical plant
model P is shown in Figure 2 (a). The general constants C1
through C4 represent the various electromachanical coupling
contants as defined in (6). The constants are defined indi-
vidually as the two coils will neither be perfectly matched
nor have exactly identical force-current or velocity-voltage
ratios.

C1 = F
I1

C2 = Ve1
ẋ C3 = F

I2
C4 = Ve2

ẋ
(6)

Using the constants defined in (6), the electromagnetic
system E associated with coil 2 is shown in Figure 2 (b).

C. Shunted composite electromechanical system
We now consider a mechanical system GẋF (s) coupled to

a shunted electromagnetic transducer as shown in Figure 1
(b). In this case, coil 1 is used to introduce a force disturbance

Fd, and coil 2, the shunted coil, is used to control the
resulting vibration.

Within the modeling framework introduced in the previous
two subsections, it is a simple and intuitive task to construct
the composite system. The interconnection of the electromag-
netic system E and the mechanical plant model P is shown
in Figure 2 (a).

In Figure 2 (a) the impedance Z(s), interpreted simply
as the transfer function relating the coil terminal current
to voltage, appears like a feedback controller for the elec-
tromechanical system. By concatenating the mechanical and
electromagnetic systems, P and E, as shown in Figure 2 (b),
the composite system is cast as a typical regulation problem
for the abstracted system G. It is easily shown that the closed-
loop transfer function from an applied disturbance current
I1(s) to the resulting plunger velocity s x(s) is,

s x(s)
I1(s)

=
GẋF (s)C1C4

1 + K(s)C3C4GẋF (s)
, (7)

where K(s), the equivalent feedback controller is,

K(s) =
1

Ls + R + Z(s)
. (8)

III. CONTROL DESIGN

As shown in Figure 2, and in Equation 7, the impedance
connected to a mechanically coupled electromagnetic trans-
ducer can be viewed as parameterizing a feedback controller
for the mechanical system GẋF (s). The following subsec-
tion introduces two techniques for the synthesis of active
impedance and admittance controllers designed to minimize
structural vibration.

A. Impedance synthesis
Referring to Figure 2, the shunted electromechanical sys-

tem can be regarded as a typical control design problem
where a disturbance I1 results in a vibration characterized
by the velocity x(t).

In order to apply standard synthesis techniques such as
LQR, we require a minimal state space model respresenting
the composite system. By defining the following state-space
model for the coil admittance 1

Ls+R ,

ẋy(t) = Ayxy(t) + ByV (t) (9)
Iz(t) = Cyxy(t)

where, for example, Ay =
[−R

L

]
, By = [1], and Cy =

[
1
L

]
,

a state-space model is easily derived for the composite system
G.

ẋg(t) = Agxg(t) + Bg

[
I1(t)
Vz(t)

]
(10)

[
ẋ(t)
Iz(t)

]
= Cgxg(t)

where,

xg(t) =
[

xp(t)
xy(t)

]
, Bg =

[ BpC1C4 0
0 −By

]
, (11)

and

Ag =
[ Ap BpCyC3C4

ByCp Ay

]
, Cg =

[
1

C4
Cp 0
0 Cy

]
.

(12)
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Fig. 2. The shunt admittance controlled electromechanical system (a), in
generalized plant/controller form (b).

Our design objective is to minimize the velocity ẋ(t)
whilst restraining the magnitude of the control signal Vz .
In a linear quadratic sense, the objective is to minimize,

J =
∫ ∞

−∞
ẋ2(t) + kuV 2

z (t) dt (13)

where ku is the weighting on the control signal Vz . Restated,
in the standard LQR context,

J =
∫ ∞

−∞
x

′
(t)Qx(t) + u

′
(t)Ru(t) dt, (14)

the corresponding Q and R matrices are Q =[
1

C4
Cp 0

]′ [
1

C4
Cp 0

]
, and R = ku.

We can also consider the H2 control objective where
we seek to minimize, in the H2 sense, the weighed sum
of the velocity and control signal in response to a specific
disturbance I1, i.e., we seek to minimize,

J =
∥∥∥∥s x(s) + kuVz(s)

I1(s)

∥∥∥∥
2

(15)

Parameter Value
Spring constant K 56 kNm−1

Damping coefficient C 2.667 Nsm−1

Plunger mass M 0.150 kg
Electromagnetic Coupling C1 3.55
Electromagnetic Coupling C2 4.06
Electromagnetic Coupling C3 3.55
Electromagnetic Coupling C4 4.06
Coil Inductance L 1 mH
Coil Resistance R 3.3 Ω

TABLE I
ELECTROMECHANICAL SYSTEM PARAMETERS.

This specification is easily cast as a standard H2 problem by
considering the modified plant G̃ that includes a performance
weighting on the control signal. Minimizing (15) is now
equivalent to minimizing,

J =
∥∥∥∥ z(s)

w(s)

∥∥∥∥
2

(16)

where the modified plant G̃ is that of (10) with a non-zero
D matrix,

D̃g =
[ 0 ku

0 0

]
(17)

IV. EXPERIMENTAL RESULTS

To verify the modelling and design techniques presented
in the preceding sections, each method was applied to an
experimental electromechanical system.

A. Electromagnetic Transducer
A photograph of the electromagnetic transducer showing

the rigid body, flexible end supports, mounting plate, and
coils is provided in Figure 3. The apparatus is essentially
a translational solenoid with two identical fixed coils and
magnetic plunger supported at either end by flexible disks. A
side section including dimensions and magnetic orientations
is shown in Figure 4.

The coils are wound from 0.25 mm diameter enamel
coated copper wire and have an electrical impedance of 3.3 Ω
+ 1 mH . In order to prevent distortion of the magnetic
flux field, only non-magnetic materials, such as aluminum
and copper, were used in the construction of the rigid body,
flexible end supports and mounting plate.

In practice, the magnetic field strength, as well as being a
function of the magnetic material, is limited by the maximum
allowable dimensions and weight of the magnets. In these
experiments, three rare earth magnets (Neodymium Iron
Boron), are arranged to form the magnetic plunger as shown
in Figure 4. At the two points where opposing poles meet (at
the center of each winding), a strong magnetic field exits at
right angles to the plunger. When the plunger is in motion, the
strong parallel field flowing through the coil results in a high
flux density and correspondingly large induced voltage. The
physical parameters of the electromagnetic and mechanical
systems are summarized in Table I.

The plunger velocity is measured using a PSV-300 Polytec
Scanning Laser Vibrometer.



Fig. 3. An external photograph of the experimental electromagnetic
apparatus.
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Fig. 4. Side section of the experimental electromagnetic apparatus.

B. Power amplifier and instrumentation
In order to implement the arbitrary shunt impedances

resulting from the control design, a power amplifier was
developed capable of driving differential terminal voltages.
The device is also capable of instrumenting the resulting load
current.

The simplified schematic of such a circuit is shown in
Figure 5. Within the high frequency bandwidth of the control
loop, the reference potential Vref appears accross the load,
i.e. we have a unity gain voltage amplifier. The additional
resistance and differential amplifer generate the current mea-
surement VR with gain Rs V/A.

A practical implementation of amplifier is shown in Figure
6. The device is capable of ± 200 V operation at a maximum
DC current of 32 Amps. Further analysis and a more detailed
discussion of the implementation can be found in [5].

A dSpace 1005 based system is used to implement the
required impedance transfer functions.

C. Impedance synthesis
Figure 7 shows the instrumentation and driver gains as-

sociated with the underlying electromechanical system. The
voltages V1 through V4 represent the signals applied to, or

Z  (s)L

R s

Vref

V
R

I L

Fig. 5. The simplified schematic of a differential voltage feedback amplifier.
The desired transducer voltage Vz is applied to the reference Vref . The
transducer is represented by the load impedance ZL(s). The sensing resistor
Rs yields a measurement of the transducer current Iz which is proportional
to the resistor voltage Vr .

Fig. 6. Implementation of a voltage and current fluxion amplifier.

measured from, the power amplifiers and instrumentation.
The gain and units associated with each signal can be found
in Table II. The actual electrical shunt impedance presented
to the coil is related to the controller through the gains k3
and k4, specifically,

Zc(s) =
Vz(s)
Iz(s)

= k3C(s)k4 (18)

To assess the accuracy of the analytic model (discussed in
Section II-C), the simulated frequency response is compared
to that measured directly from the experimental system. A
multivariable frequency response is measured successively
from each input to output pair. During the component SISO

Gain Value
k1 1 A/V
k2 40 V/ms−1

k3 −4 V/V
k4 10 V/A

TABLE II
EXTERNAL GAINS ASSOCIATED WITH THE SHUNT VOLTAGE

CONTROLLED ELECTROMAGNETIC SYSTEM
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response of the shunt voltage controlled electromagnetic system.

frequency response measurements, the residual input is set
to zero. The magnitude and phase frequency responses are
shown respectively in Figures 8 and 9. In the frequency
domain, a good correlation can be observed between the
analytic model and measured system.

1) LQR impedance synthesis: As discussed in Section III-
A, a linear quadratic regulator can be designed to command
the shunt terminal voltage Vz with a view to regulating a
performance signal consisting of the weighted sum of plunger
velocity and the control signal. An observer is required to
estimate the system states from the measured shunt current
Iz . Once designed, the concatenation of the observer and
LQR gain matrix results in a system, interpreted as an
active shunt impedance, that can be applied to one of the
electromagnetic coils in order to reduce structural vibration.

Based on the physical model (including external gains)
that was validated in the previous sub-section, and referring
to the notation introduced in Section III-A, an LQR gain
matrix was designed to minimize the following performance
function,

J =
∫ ∞

−∞
k2ẋ(t) +

7
k3

Vz(t) dt, (19)

where the factor 7 represents the relative control weighting.
The gains k2 and k3 are included as the design is based
on the input-output model which includes the amplifier and
instrumentation dynamics. The observer was designed by
pole placement, where the target poles were chosen as that
of the closed-loop system with real components multiplied
by 2. As is routine in control system design, the control
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Fig. 10. Magnitude and phase response of the LQR impedance controller.

weighting of 7 and observer pole locations were chosen
experimentally to achieve a reasonable trade-off between
damping performance, robustness, and the control signal
magnitude.

The frequency response of the positive feedback regulator
is shown in Figure 10. The damping performance of the
LQR controller was assessed in both the frequency and
time domains. With the controller in the loop, a disturbance
current I1, proportional to a force disturbance, is applied to
the system. Experimental and simulated open- and closed-
loop frequency responses are shown in Figure 11. The
controller was measured to reduce the resonant peak by 19.4
dB. The corresponding time domain velocity response to a
300 Hz low-pass filtered step change in disturbance current
I1 is shown in Figure 12. The simulated closed-loop step
response was obtained by recording the applied step signal
and applying it in simulation to the closed-loop model.

2) H2 impedance synthesis: In analogy to Section IV-C.1,
and as discussed in Section IV-C.2, a shunt impedance was
designed to minimize the H2 norm of the transfer function
between a disturbance current I1 and a performance signal
z. As in Section IV-C.1, the performance signal consists of
the weighted sum of plunger velocity and control signal.

For the plant under consideration, the H2 problem is
well defined and feasible. All of the standard requirements
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are met, i.e., the plant is minimal, proper, controllable,
observable, and of finite dimension. However, in order to find
a solution using existing tools, i.e., the algebraic Riccati solu-
tion implemented by the µ-Synthesis Toolbox for Matlab c©,
the system must meet some additional requirements. The
most problematic of which, is the requisite full rank condition
on the standard plant matrices D21 and D12. In this case,
where each of the signals w, u, y, and z are uni-dimensional,
this condition requires that the feed-through term from w
to y, and u to z, is non-zero. As the performance signal z
already contains a direct weighting on the control signal Vz ,
the only condition not met is that on D21. To overcome this
problem, for the purpose of controller synthesis, we include
an artificial feed-through term D21. We now have two design
parameters: ku and D21. These were chosen to be 0.1 and
1 respectively. In the authors expererience, both parameters
tend to have a similar effect on the controller bandwidth
and closed-loop performance. As either is decreased, the
controller bandwidth and closed-loop damping increases.

Under the same test conditions as discussed in Section
IV-C.1, the damping performance of the H2 controller, was
measured to be 19.25 dB.

V. CONCLUSIONS

Electromagnetic transducers have been employed exten-
sively in active vibration control systems as force actuators,
velocity sensors, or both. Compared to other transducers such
as piezoelectric materials and shape memory alloys, the large
stroke, physical robustness, high bandwidth, and low-cost
render them useful in a wide range of applications.

In this paper, we have demonstrated that the connection
of an electrical impedance to the terminals of an electromag-
netic coil is equivalent to implementing a standard feedback
controller around the mechanical system. By revealing the
underlying feedback structure and casting it as a typical
MIMO control problem, an impedance can be found that
minimizes some arbitrary performance objective.

The presented techniques are successfully applied to the
design and implementation of an LQR and H2 based, active
impedance controller. Without the need for any external
sensors, the resonant peak of an experimental single-degree-
of freedom system was substantially reduced in magnitude
by up to 19.4 dB.
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