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Abstract

A method for electromagnetic shunt damping (EMSD) will
be presented in this paper. Compared to piezoelectric shunt
damping, the proposed EMSD vibration controller has a
number of bene�ts. It requires small shunt voltages, can pro-
vide large stroke and can dampen larger mechanical struc-
tures. A passive control strategy is validated through experi-
mentation on a simple electromagnetic mass-spring-damper
system. Theoretical results are also presented.

1 Introduction

Electromagnetic transducers [1, 2, 3] can be used as actua-
tors, sensors or both. When a current is applied to the ter-
minals of the transducer a force is exerted and when a ve-
locity is applied a voltage is induced across the terminals of
the transducer. Piezoelectric transducers [4] exhibit similar
electromechanical properties, but have considerably differ-
ent physical characteristics to electromagnetic transducers.
Electromagnetic transducers have a much greater stroke,
typically in the millimeter range compared to the microm-
eter range associated with piezoelectric transducers. These
devices are physically robust and can be manufactured to ei-
ther MEMS scale [5], or as large as a ���� electrodynamic
shaker [6]. Electromagnetic transducers have been used in
the �eld of active vibration control of car suspension sys-
tems [7], isolation platforms [8], magnetic levitation [9, 10]
and magnetic bearings [11].

Placing an electrical impedance (or admittance) across the
terminals of a piezoelectric transducer which is bonded to
a resonant structure with the view to minimizing structural
vibrations, is referred to as piezoelectric shunt damping
[12, 13, 14, 15, 16]. This has been proven to be a reli-
able alternative to active control techniques [4, 17], offer-
ing the bene�ts of stability and performance without the
need of additional sensors. Most importantly, the inherent
robustness makes passive shunt control techniques very de-
sirable. Another desirable characteristic is collocation [18].
Shunt damping, by its very nature, is collocated, therefore
enhances the stability characteristics of the closed loop sys-
tem.

This paper presents a new shunt method for reducing struc-
tural vibration� electromagnetic shunt damping (EMSD). By
attaching an electromagnetic (or electrodynamic) transducer

to a resonant mechanical structure and shunting the trans-
ducer with an electrical impedance (or admittance), kinetic
energy from the resonant structure can be dissipated. As the
mechanical structure displaces, an opposing electro-motive-
force (emf) is induced in the transducer. This potential, and
corresponding shunt current, results in the dissipation of en-
ergy in resistive circuit components. Using an appropriately
designed electrical shunt the transducer is capable of signif-
icantly reducing mechanical vibration.

Compare to piezoelectric shunt damping, the EMSD offers
large stroke, more robustness, smaller shunt voltages, and
larger control forces.

2 Background

2.1 Electromagnetic Transducer Model
When an electrical conductor, in the form of a coil, moves
in a magnetic �eld as shown in Figure 1 (a), a voltage �h
proportional to the velocity ��h is induced and appears across
the terminals of the coil, i.e. �h � ��h. Speci�cally,

�h
��h

���� (1)

where� is the magnetic �ux (in Teslas), � is the length of the
conductor (in meters), and ��h is the velocity of the conductor
relative to the magnetic �eld (in m/s). A permanent magnet
is usually the source of the magnetic �eld.
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Figure 1: Electromagnetic transducer, (a) sensor and (b) actuator.

Equation (1) can ideally be rewritten as [2],
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where �h denotes the force (in Newtons) acting on the coil
whilst carrying a current 	h (in Amps), and 
q is the ideal
electro-mechanical coupling coef�cient. As shown in Figure
1 (b), when the coil is employed as a force actuator, Equation
(2) relates the induced force to an applied current. Such de-
signs form the basis for electrodynamic shakers and acoustic
actuators, such as a speaker coil.
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Figure 2: Electromagnetic transducer (a) mechanical model and
(b) electrical model.

Equation (2) can be simpli�ed with the assumption that the
electromagnetic transducer operates in its linear region, i.e.,
undergoes only small displacements. As shown in Figure 2
(a), the coil can be modeled as series connection of an in-
ductor �h, a resistor �h and a dependent voltage source �h
[3]. If the transducer is attached to a resonant mechanical
system, the voltage source �h, represents the induced emf
that is dependent on relative velocity ��h, and hence struc-
tural dynamics.

2.2 Forced Mass-Spring-Damper System
In many cases where vibration becomes an issue, the me-
chanical structure can be modeled as a simple mass-spring-
damper system, as shown in Figure 3 (a). The equivalent
mass  (in Kg), spring constant � (in N/m) and damping
constant 
 (in Ns/m) for such a structure can be easily de-
termined. The equation of motion for this forced one degree
of freedom system is given by:

 ������
 ����������� � �g���� (3)

where �����, ����� and ���� are the acceleration, velocity and
displacement of the mass respectively. Note that �g��� is the
applied force disturbance. The dimensionless representation
of Equation (3) is

������	�q�q �������5
q���� � �g���� (4)

where �q is the natural frequency of the system, and �q is

the damping ratio. Note that �q �
�

N
P

, �q � Fs
7PN

and

�g��� �
I_+w,
P
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Figure 3: (a) Mass-spring-damper system and (b) electromag-
netic shunted mass-spring-damper system.

3 Structural Dynamics from First Principles

3.1 Model System
Consider Figure 3 (b), where a electromagnetic transducer
(coil 1) is attached to the mass. If a current 	g��� is applied
to a linear electromagnetic transducer, a disturbance force
�g��� is induced such that, �g��� � 
g	g���, where 
g is
the electromagnetic coupling coef�cient relating the applied
current to a resulting force in coil 1. Using the equation of
motion, the disturbed system has the following relationship,
 ������
 ����������� �
g	g���.

By taking the Laplace transform, the transfer functions relat-
ing the current 	g��� to displacement ����, and the current
	g��� to velocity ����� are,

�{l��� � ����

	g���
�


g
�5�
���

� (5)

� b{l��� � �����

	g���
�


g�

�5�
���
� (6)

These equations are valid when coil 2, is held in open circuit,
i.e. ���� ��, as shown in Figure 3 (b).

3.2 Composite System
For an electromagnetic shunted composite system, as shown
in Figure 3 (b), an impedance � is attached to coil 2. we
have the following relationship,  ������
 ����������� �
�g�����h���, where �h��� is the opposing force due to the
impedance � attached to the terminals of the electromag-
netic transducer. In the Laplace domain, we have the fol-
lowing relationship,

������5�
���� �
g	g�����h���� (7)

where 	g��� is the input current applied to coil 1, as shown
in Section 3.1.

To determine the opposing force �h���, we need to consider
the simpli�ed electrical model of the electromagnetic shunt,
as shown in Figure 4. Ohm’s law states that

�}��� � 	}�������� (8)
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Figure 4: Simpli�ed model of the electromagnetic shunt.

where �}��� is the voltage across the terminals of the shunt
impedance ����, and 	}��� is the corresponding current.
From the KVL, we obtain the following relationship be-
tween �h��� and �}���, as �}��� � �h������h���h�	}���
which implies

�}��� �
����

�h���h�����
�h���� (9)

As shown in Equation (1), we have the following linear re-
lationship

�h��� �
h������ (10)

where 
h is the electromagnetic constant relating ��h��� to
�h���. Since the shunted electromagnetic transducer is at-
tached to the mass  , ��h��� is equivalent to �����.

By substituting, (10) into (9), we obtain

�}��� �
����

�h���h�����

h������ (11)

Alternatively, the current �owing through the shunt 	}���, is

	}��� �
�}���

����
�




�h���h�����

h������ (12)

and the opposing shunt force �h��� � 
h	}���, assuming a
linear electromagnetic transducer, we obtain

�h��� �
5
h




�h���h�����
����� �
5

h
����������� (13)

where ����� � 4
Oev.Ue.]+v,

.

Substituting (13) into (7), the composite system transfer
function 	g��� to ����, is
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or alternatively, the transfer function relating 	g��� to �����,
is

�� b{l����
�����

	g���
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g�
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�

�
5
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� (15)

4 Composite System in Transfer Function Form

By modeling the system in transfer function form, we gain a
greater abstraction from the underlying system. Such meth-
ods are particularly useful when dealing with higher order
systems or when using models not obtained directly through
physical modeling, i.e., when using models obtained by
means of system identi�cation [19]. Referring to Figure 5,
the models required are: � b{I ���, the transfer function from
an applied force to the resulting velocity ��� and �yl���, the
transfer function from an applied current to the induced emf.
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Figure 5: Electrical equivalent model of a twin coil electromag-
netic system.

Considering �rst the case where two identical coils expe-
rience the same velocity. When an impedance ���� is at-
tached to coil 	, �}��� � �h���� ��h���h�	}���,

�}��� �
����

�h���h�����
�h���� (16)

	}��� �



�h���h�����
�h���� (17)

By considering the emf induced in both coils 
 and
	, and applying the principle of superposition, �h��� �
�yl���	g��� � �yl���	}���. Substituting (17) yields,
�h��� � �yl���	g�����yl���

Ye+v,
Oev.Ue.]+v,

. Hence, the
composite transfer function relating 	g��� to �h��� is

��yl����
�h���

	g���
�

�yl���


� ������yl���
� (18)

where ������ 4
Oev.Ue.]+v,

. The reader will appreciate that

the damped system transfer function ��yl��� is in the form of
a feedback system where the impedance ���� parameterizes
a controller �����, as shown in Figure 6 (a).

The open loop transfer function �yl��� consists of both
the structural dynamics and the electromagnetic coupling,
�yl��� �
h� b{l��� �
5

h� b{I ����

In a more general case, we wish to know the damped transfer
function �� b{I ��� from some disturbance force � ��� to the
resulting velocity �����. This is easily found,

�� b{l��� � �����

	g���
�

�h���

	g���

�����

�h���



� ��yl���
�����

�h���
�

� b{l���


� ������yl���
� (19)

Thus, �� b{I ���� v{+v,
I +v, � v{+v,

FeL_+v,
� 4

Fe
�� b{l���, and

����� �
� b{l���


� ������yl���
	g����

� b{I ���


� ������yl���
� ����

(20)
as shown in Figure 6 (b). If coils are not identical, where
�yl��� is transfer function from the current in coil 	 to the
induced emf, and � b{l��� is the transfer function from the
current in coil 
 to the velocity.
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Figure 6: Electromagnetic shunt damping feedback structure: (a)
Equation (18) and (b) Equation (20).

5 Single Mode Electromagnetic Shunt Controller

When a piezoelectric transducer is shunted by a passive elec-
trical network, it acts as a medium for dissipating mechani-
cal energy of the attached structure. Hagood and von Flotow
[13] suggested that a series resistor-inductor circuit attached
across the conducting surfaces of a piezoelectric transducer
can be tuned to dissipate mechanical energy of a host struc-
ture. They demonstrated the effectiveness of this technique
by tuning the resulting resistor-inductor (���) and inherit
capacitance of the piezoelectric transducer, to a speci�c res-
onance frequency of the host structure.

For electromagnetic shunt damping, we can apply the same
methodology as suggested above. For this particular sys-
tem, though, we need to apply a resistor-capacitor (��
)
circuit to the terminals of the electromagnetic transducer.
That is, ���� � 4

F@Rv
��, where 
ds � 4

$2
?Oe

. There-

fore, the shunted electromagnetic transducer ����� is re-
lated to �h via �h��� � 
5

h�ds��������, where �ds��� �
�

ue

v2.
-|
ue

v. �

�@Rue

. It should be noted that the controller has

a resonant structure, where �w � ��h��� determines the
controller damping and �q is the resonance frequency of
the mechanical structure to be damped.

The closed loop composite transfer function be-
tween current-to-velocity is �� b{l��� � v{+v,

L_+v,
�

F_v

Pv2.�F.F2
eN@R+v,�v.N

or alternatively, �� b{l��� � v{+v,
L_+v,

�

J �%�+v,
4.N@R+v,J��+v,

.

Figure 7: An external photograph of the experimental electro-
magnetic apparatus.
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Figure 8: Side section of the experimental electromagnetic appa-
ratus. (All dimensions in mm)

6 Experimental Veri�cation of Electromagnetic Shunt
Damping Concept

6.1 Electromagnetic Transducer Design
In support of the preceding sections, the technique of elec-
tromagnetic shunt damping was applied to an experimen-
tal assembly at the Laboratory for Dynamics and Control
of Smart Structures in The University of Newcastle, Aus-
tralia 1. A photograph of the electromagnetic transducer
apparatus, showing the rigid external support, �exible end
supports, mounting plate, coils and winding cables is pro-
vided in Figure 7. As shown in Figure 8, the assembly is
essentially a translational solenoid with two identical �xed
coils and a magnetic plunger supported at either end by �ex-
ible supports. This system is mechanically equivalent to the
mass-spring-damper shown in Figure 3. Together with an
attached electrical impedance ���� � 4

F@Rv
��, coil 	 is

employed to damp translational vibrations resulting from an
applied disturbance current 	g to coil 
.

In practice, the magnetic �eld strength, as well as being a
function of the magnetic material, is limited by the maxi-
mum allowable dimensions and weight of the magnets. In
these experiments, three rare earth magnets (Neodymium
Iron Boron), are arranged to form the magnetic plunger, as

1http://rumi.newcastle.edu.au/



shown in Figure 8. At the two points where opposing poles
meet (at the center of each winding), a strong magnetic �eld
exits at right angles to the plunger. When the plunger is in
motion, the strong parallel �eld �owing through the coil re-
sults in a high �ux density and corresponding large induced
force.

Each coil is wound from ��	� �� diameter enamel coated
copper wire and has an electrical impedance of � � and

��. Non-magnetic materials, such as aluminum and cop-
per, were used in the construction of the rigid external sup-
port, �exible end supports and the mounting plate. Non-
magnetic materials were utilized so as to prevent the mag-
netic disturbance.

Parameter Value
Spring constant � �� ����4

Damping coef�cient 
 	��������4

Plunger mass  ��
�� ��
Electromagnetic Coupling 
g ���
Electromagnetic Coupling 
h ��
Coil Inductance �h 
��
Coil Resistance �h � �

Table 1: Electromechanical system parameters.
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Figure 9: The open loop frequency response from an applied ac-
tuator current to plunger velocity, i.e. � b{l���, model
(–) and measured results (- -).

6.2 Determining Optimal Damping Resistance
The electromechanical model � b{l��� was �rst determined
by measuring the resonance frequency and plunger weight
 , and subsequently the spring constant �. The remaining
parameter �q, together with the electromagnetic coupling
coef�cients 
g and 
h, were determined experimentally. A
summary of the model parameters is provided in Table 1.
The frequency response from an applied current to the re-
sulting plunger velocity � b{l���� is shown in Figure 9. It is
observed that the model is an accurate representation of the
physical system.

Since we wish to damp the fundamental frequency of the

mass-spring-damper system, i.e. �q � ��� ��, the re-
quired shunt capacitance value is 
ds � 	���� .

In order to determine an appropriate value for the total shunt
resistance �w, an optimization approach was used to mini-
mize the �5 norm of the closed loop system �� b{l���. This
required a solution to the following optimization problem to

be found ��w �
dujplq
U|A3

��� �� b{l���
���
5
�

Using the proposed optimization strategy the required opti-
mal shunt resistance ��w � ��	� �, and alternatively ��w can
be found by plotting �5 norm against �w, as shown in Fig-
ure 10.
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6.3 Impedance Implementation
To implement the proposed arbitrary shunt impedance ����,
a current controlled voltage source was utilized, as shown in
Figure 11. The controlled voltage �} was set to be a func-
tion of the measured current �} , i.e., �}��� � ���}����, as
shown in Figure 11 (a). If the function ���}����, is a linear
transfer function ���� whose input impedance is the mea-
sured current 	}���, i.e., �}��� �����	}���, then the termi-
nal impedance �w��� is equal to ����, as shown in Figure
11 (b). For a more detailed description of the impedance
apparatus, the reader is referred to Fleming et. al. [20, 21].
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Figure 11: (a) Ideal current controlled voltage source, and (b)
experimental current controlled voltage source.

6.4 Simulated vs Experimental Results
With the aim of damping the mechanical system, a total se-
ries resistance �w of ��� � and a capacitor of 	���� were
applied to the second windingusing the synthetic impedance
apparatus explained in Section 6.3. The measured open
loop, theoretically predicted damped, and measured damped



frequency responses are shown in Figure 12. A signi�cant
reduction of 	
�� �� in the magnitude of the electromechan-
ical system can observed.

Simulated and experimental results closely agree, therefore
validating the proposed electromagnetic shunt damping.
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Figure 12: The open loop (� � �), theoretically predicted damped
(–), and measured damped (- -) frequency responses
from an applied current to the resulting plunger ve-
locity.
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