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Abstract: Broadband structural vibration can be suppressed through the connection of
an electrical impedance to the terminals of a bonded piezoelectric transducer. This is
referred to as piezoelectric shunt damping. Good nominal damping performance has been
obtained with resonant shunts, but these shunts are highly sensitive to variations in structural
resonance frequencies. In this paper, we present an online tuned multi-mode resonant
shunt controller. For optimal tuning, the parameters of this shunt are adjusted online by
minimizing the relative phase difference between a vibration reference signal and the shunt
current. Experiments validate the proposed technique and demonstrate the simplicity of
implementation. The tuning law converges quickly and maintains optimal performance in
the presence of environmental uncertainties.
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1. INTRODUCTION

Piezoelectric shunt damping is a popular technique for
vibration suppression in smart structures. Techniques
encompassed in this broad description are character-
ized by the connection of an electrical impedance to
a structurally bonded piezoelectric transducer. Such
methods do not require an external sensor, and may
guarantee stability of the shunted system (Moheimani
et al., 2003). Piezoelectric shunt impedance designs
have included resistors (Hagood and A. Von Flo-
tow, 1991), inductive networks (Wu, 1996; Behrens
et al., 2002; Hollkamp, 1994), switched networks
(Richard et al., 2000; Corr and Clark, 2003), negative
capacitors (Wu, 2000; Behrens et al., 2003), and active
impedances (Behrens et al., 2003). Resonant shunt
impedances (Wu, 1996; Behrens et al., 2002) consist-
ing of resistors, capacitors, and inductors are simple to
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mp (Hollkamp and T. F. Starchville. Jr., 1994)
emonstrated an adaptive single-mode shunt cir-
y varying the value of a virtual inductor to
ize an RMS vibration signal. Virtual circuit
entations are complicated to construct, re-

a large number of high voltage components,
e generally unsuitable for damping more than
odes simultaneously. The synthetic impedance
ing et al., 2002) was introduced as a simpli-
chnique for the implementation of piezoelectric
impedances. A technique exploiting this flexibil-
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Figure 1. A general piezoelectric laminate structure excited by
a point force f(r, t), and the voltage Va applied to a dis-
turbance patch. The resulting vibration d(r, t) is suppressed
by the presence of an electrical impedance connected to the
shunt transducer.

ity was presented in (Behrens et al., 2002). A multi-
mode circuit was tuned online to minimize an RMS
strain signal estimated from the terminal voltage. Al-
though this method requires no vibration sensor, it is
slow to converge and is dependent on the disturbance
spectrum.

A new adaptive technique based on relative phase shift
was presented in (Niederberger et al., 2003a). It was
shown that minimizing the relative phase difference
between a reference signal related to vibration and the
shunt current, results in optimal tuning of the circuit
parameters. This technique is not based on a time
averaged RMS estimate and is thus faster to converge
and displays significantly less mis-adjustment at the
minima. In (Niederberger et al., 2003a) a single-mode
shunt circuit was implemented through the use of a
variable virtual inductance. In this paper, the results
are extended to multiple modes with the utilization of
a synthetic impedance. The impedance dynamics and
adaptation rule are computed in real time on a digital
signal processor.

2. MODELING

Consider the piezoelectric laminate structure shown in
Figure 1. The goal is to suppress vibration resulting
from two disturbances: Va, the voltage applied to a
disturbance patch, and f(r, t), a point force located at
the point r.

For generality, the objective is to model the effect of a
shunted piezoelectric transducer on the known model
of a mechanical structure. The open-loop, i.e. with no
shunt attached, transfer functions required are:

Gva(s) =
Vp(s)

Va(s)
, Gvv(s) =

Vp(s)

Vz(s)
and Gda(r, s) =

d(r, s)

Va(s)

where Vp(s) is the piezoelectric voltage induced in
the shunt transducer, and d(r, s) is the displacement
measured at a point r. If the disturbance and shunt
transducer are identical, collocated, and poled in op-
posite directions like in Figure 2, Gva(s) = −Gvv(s).

The above transfer functions can be derived analyt-
ically, for example by solving the Euler-Bernoulli
beam equation (Fuller et al., 1996). Alternatively,
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2. The physical and electrically equivalent view of a
tructure disturbed by an applied actuator voltage Va(s)

nd external force F (r, s). The resulting vibration d(r, s) is
uppressed by the presence of a shunt impedance.

identification (Ljung, 1999) can be employed
mate these models directly from experimental

ing the modal analysis procedure (Meirovitch,
, the resulting transfer functions have the famil-
m

Gda(r, s) =
d(r, s)

Va(s)
=

∞∑
k=1

Fkφk(r)

s2 + 2ζkωks + ω2
k

, (1)

Gvv(s) =
Vp(s)

Vz(s)
=

∞∑
k=1

αk

s2 + 2ζkωks + ω2
k

, (2)

Fk, and αk represent the lumped modal and
lectric constants applicable to the kth mode of

ion.

odeling the Presence of a Shunt Circuit

the open-loop transfer functions (1), the pres-
of an electrical impedance Z(s) will now be
orated into the structural dynamics. Referring to
2, the relationship between voltage and current

Laplace domain is

Vz(s) = Iz(s)Z(s). (3)

ing Kirchhoff’s voltage law we obtain

Vz(s) = Vp(s) − 1

Cps
Iz(s) , (4)

Cp represents shunt transducer capacitance.
ining (3) and (4) we obtain

Vz(s) =
CpsZ(s)

1 + CpsZ(s)
Vp(s). (5)

plying the principle of superposition, the distur-
and shunt voltage strain contributions are

Vp(s) = Gva(s) Va(s) + Gvv(s)Vz(s) . (6)

unted composite system can be obtained from
ions (3), (4), and (6),

Vp(s)

Va(s)
=

Gva(s)

1 + Gvv(s)K(s)
, (7)

K(s) =
−Z(s)

Z(s) + 1
Cps

. (8)
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Figure 3. The strain-feedback interpretation of piezoelectric shunt
damping with Gvv(s) = −Gva(s).

The composite displacement transfer function can also
be derived in a similar fashion,

d(r, s)

Va(s)
=

Gda(r, s)

1 + Gvv(s)K(s)
. (9)

By again applying the principle of superposition, the
effect of force disturbance F (r, s) located at point r
can be included,

Vp(s) =
Gva(s)Va(s)

1 + Gvv(s)K(s)
+ Gvf (r, s)F (r, s) , (10)

d(r, s) =
Gda(r, s)Va(s)

1 + Gvv(s)K(s)
+ Gdf (r, s)F (r, s) , (11)

where Gdf (r, s) and Gvf (r, s) are the respective
transfer functions from an applied force F (r, s) to the
displacement d(r, s) and shunt transducer piezoelec-
tric voltage Vp. i.e.

Gvf (r, s) =
Vp(s)

F (r, s)
Gdf (r, s) =

d(r, s)

F (r, s)
. (12)

From Equation (7) it can be concluded that the pres-
ence of an electrical shunt impedance parameterizes
an equivalent collocated strain feedback controller. A
diagrammatic representation of equation (7) is shown
in Figure 3. Further interpretation and analysis can be
found in (Moheimani et al., 2003).

In section 4, where the experiments are presented,
the transfer function Gν(r, s) from an actuator distur-
bance voltage Va(s) to the velocity ν(r, s) is measured
to validate the performance of the proposed shunt con-
trollers. This transfer function is defined as

Gν(r, s) =
ν(r, s)

Va(s)
= sGda(r, s). (13)

3. ADAPTATION LAW

In this section, a new adaptation law for multi-mode
resonant shunts is derived. First, the relative phase
adaptation of single-mode R − L shunts is reviewed,
then extended to multi-mode resonant shunts.

3.1 Adaptive single-mode R-L Shunt

As shown in Section 2, an electrical shunt impedance
parameterizes an equivalent collocated strain feedback
controller. If the impedance Z(s) is chosen as a series
inductor-resistor network (R − L shunt), a resonant
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ng. To this end, adaptive techniques based on
Mean Square (RMS) minimization (Hollkamp
. F. Starchville. Jr., 1994), and relative phase
Niederberger et al., 2003a) have been proposed.
two approaches, applied to an electromagnetic
are compared in (Niederberger et al., submit-

03b). In that instance, relative phase adaptation
faster with less misadjustment than the RMS
dology. In the following, a review and extension
relative phase adaptation is presented.

ve phase adaptation is based on adjusting the
e phase difference between the velocity and
current to −π/2. A simple multiplication and
peration evaluates the relative phase difference.

der Figure 2, where Z(s) = R + sL. Inserting
= Iz(s) · (R + sL) into Equation (5) leads to

Iz(s) = Vp(s)
sCp

s2LCp + sCpR + 1
. (14)

p is dynamically proportional to the strain
xperienced by the piezoelectric transducer, i.e.
= cx(s) = cν(s)/s, where c is a constant and

s the velocity, the transfer function GIv(s) from
locity ν(s) to the current Iz(s) can be expressed

GIν(s) =
Iz(s)

ν(s)
=

cCp

1 + sCpR + s2LCp
. (15)

hase of GIν(jω) is

(GIν(jω)) = φn = −tan−1

(
ωCpR

1 − LCpω2

)
. (16)

rding to (Hagood and A. Von Flotow, 1991),
al tuning of the R − L shunt is achieved when
1/(LCP ), where ωn is the structural resonance
ncy of the nth mode. From Equation 16, one
e that this tuning condition can be reformulated

condition � GIν(jωn) = −π/2. A function
ωn) = sign

(
� (GIν(jωn)) + π

2

)
can be de-

that reveals the required tuning direction of the
ance value. The discrete adaptation of L that
the nth mode is given by

Lk+1 = Lk + α · sign (fp(Lk, ωn)) (17)

= Lk + α · sign

(
� (GIν(jωn) +

π

2

)
,

e α is the tuning constant. A direct evaluation
phase angle is not straight-forward and compli-
he adaptation scheme shown above. A practical
tive for evaluating the tuning direction is shown
following. If we assume that the velocity ν(t)
rrent Iz(t) are tonal, a reasonable assumption



as the resonances are very lightly damped, the multi-
plication of ν(t) = sin(ωnt) with Iz(t) can be written
as

ν(t) · Iz(t) = sin(ωnt) · Ansin(ωnt + φn),

where φn is the phase shift equal to � (GIν(jωn))
and An = |GIν(jωn)|. After some manipulations, the
following expression can be obtained

ν(t) · Iz(t) = An

(
1

2
(cos(φn) − cos(2ωnt + φn))

)
. (18)

By low-pass filtering the above expression with a
cut-off frequency below 2ωn, the second term can be
neglected and one gets

gLP (t) ∗ [ν(t) · Iz(t)] =
An

2
· cos(φn), (19)

where gLP (t) represents the impulse response of a
low-pass filter, and ∗ denotes the time domain convo-
lution operator. It can be seen that

sign (gLP (t) ∗ [ν(t) · Iz(t)]) = sign(cos(φn)) (20)

= sign

(
� (GIν(jωn)) +

π

2

)
,

for − 3π
2 < φn < π

2 . This technique constitutes a new
means for evaluating the tuning direction. The discrete
adaptation law can be rewritten as

Lk+1 = Lk + α · sign (gLP (t) ∗ [ν(t) · Iz(t)]) . (21)

By removing the sign operator, effectively allowing
the tuning rate to vary, the following continuous tun-
ing law can be obtained

dL(t)

dt
= β (gLP (t) ∗ [ν(t) · Iz(t)]) , (22)

where β is the tuning rate. Equation 22 represents
the proposed relative phase adaptation law for single-
mode R − L shunts.

3.2 Adaptive Resonant Multi-Mode Shunts

Multi-mode shunt damping techniques were intro-
duced to allow the control of multiple structural modes
with a single piezoelectric transducer. (Wu, 1996) pro-
posed the so-called current-blocking techniques where
a parallel capacitor and inductor are inserted in series
with each single-mode shunt branch. One associated
problem is the required circuit size to damp 3 or more
modes, the order of the shunt circuit increases quadrat-
ically as the number of modes to be damped increases.
Current-flowing circuits (Behrens et al., 2002), such
as that pictured in Figure 4, are easier to tune and
increase only linearly in order as a greater number of
modes are to be shunt damped simultaneously. At a
specific frequency ωi, the inductor capacitor network
CFi − LFi allows current to flow through the rest of
the branch, at all other frequencies the branch appears
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4. Current-flowing circuit and its simplification

imately as an open circuit. The damping induc-
d resistor LSi − RSi acts analogous to a single-
shunt circuit at the frequency ωi. The circuit is
fied by combining the series inductors LFi and
Li (Figure 4 bottom).

following, the inductive elements in a current-
g circuit will be adapted online to compensate
riation in structural resonance frequencies and
ucer capacitance. In previous multi-mode tech-
, the inductors have been tuned by minimiz-

signal related to the RMS strain (Fleming and
imani, 2003a). The branch inductor values were
d using a gradient search algorithm. As the per-

nce function is rather flat around the optimum,
rategy is slow to converge and is prone to misad-
nt after the minimum has been reached. A new
que based on relative phase adaptation will now
sented.

due to the series CFi − LFi network, we notice
ch branch can be regarded independently. The
CFi − LFi network has zero impedance for

1
CF iLF i

and has high impedance at all other fre-
ies. Therefore, the transfer function from struc-
elocity to the current Ii in the ith branch can

itten around the ith modal resonance frequency
ωi) as

Gi(s) =
In(s)

ν(s)
=

c

s
· s/Li

s2 + s Ri
Li

+
Ci+Cp

CpCiLi

, (23)

the electrical resonance frequency is

ω2
iel

=
Ci + CP

CiCP Li
=

1

LiCeqi

. (24)

hase of Gi(jω) becomes

i(jω)) = −tan−1

(
ωRi/(Li)

(Ci + Cp)/(CiCpLi) − ω2

)

is −π/2 for ωi = 1/
√

Ceqi
Li with Ceqi

=
Cp)/(CiCp). Thus we can use relative phase
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Figure 5. Experimental piezoelectric laminated cantilever struc-
ture.

adaptation to tune the ith branch to the corresponding
mechanical mode. As the branches naturally bandpass
filter the current at the corresponding resonance fre-
quency, no additional bandpass filters for the current
signal are necessary. Velocity bandpass filters are not
required either as long as the mechanical resonance
frequencies are not harmonic. The adaptation of the
inductor vector L̄(s) is

∂L̄(s)

∂t
=




L̇1(t)

L̇2(t)
...

L̇n(t)


 =




α1 · g1
LP (t) ∗ [ν(t) · I1(t)]

α2 · g2
LP (t) ∗ [ν(t) · I2(t)]

...
αn · gn

LP (t) ∗ [ν(t) · In(t)]




where αi is the ith tuning rate, and gi
LP (t) is the ith

low-pass filter with a cut-off frequency below 2ωi.

4. EXPERIMENTS

In this section, relative phase adaptation is used to tune
and maintain the optimal performance of a two mode
resonant shunt damping circuit. The experiments were
carried out on a cantilevered piezoelectric laminate
beam at the Laboratory for Dynamics and Control of
Smart Structures, University of Newcastle, Australia.

4.1 Synthetic Impedance

As shown in Figure 2, an arbitrary impedance can
be implemented with a voltage measurement, signal
filter, and current source. A dSpace 1005 system was
used to implement all of the filtering and processing
tasks. More details on the construction of the electron-
ics can be found in (Fleming and Moheimani, 2003b).

4.2 Damping of a Piezoelectric Laminated Beam

The experimental structure is a uniform aluminum
beam with rectangular cross-section. The set-up is dis-
played in Figure 5. Two identical piezoelectric patches
are laminated symmetrically onto the front and back
faces of the beam. One patch generates strain distur-
bance in the beam. The adaptive shunt impedance is
connected to the other patch.

The second and third modes of the cantilever beam are
damped using the online-tuned multi-mode resonant
shunt. We examine the behavior of the adaptive shunt
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6. a) Time evolution of the inductance values LS2 and
S3 after a step change in the resonance frequencies. b)
agnitude of Gν(s) as a function of time, after a change
the resonance frequencies.
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7. Magnitude of the transfer functions Gν(r, s) during
daptation. At time t = 10 s, the modal frequency changes.

the following plots 3 to 6, the relative phase adaptation is
-tuning until the optima is reached again in plot 6.

t to a step change in the structural resonance
ncies. The modal frequencies are disturbed by
ing an additional mass to the cantilever beam.
econd mode moves from 69.5 Hz to 71.2 Hz,
e third mode from 201.2 Hz to 192.6 Hz. In
7-1, the multi-mode shunt is optimally tuned

e corresponding inductances are LS2 = 44.5 H
S3 = 4 H (see Figure 6 a). The additional mass

attached effectively detuning the multi-mode
In the following plots 3 to 6 of Figure 7, the

e phase adaptation is re-tuning until the optima
hed again in plot 6. The tuning behavior can

e observed in Figure 6 a) where the initial induc-
are LS2 = 44.5 H and LS3 = 4 H (optimal).

the additional mass is attached, the inductance
tune to LS2 = 34.5 H and LS3 = 7.5 H. The

ion of the magnitude transfer-function Gν(r, s)
adaptation is shown in Figure 6 b).

Sensitivity Analysis This section analyzes the
vity of the tuning law. Figure 8 a) shows the tun-
ection of LS2, i.e. sign

(
g2

LP (t) ∗ [I2(t) · ν(t)]
)
,

nction of LS2 and LS3. As desired, the tuning
on is dependent only on LS2. The tuning direc-
LS3 is shown in Figure 8 b) and it is dependent
n LS3. From these plots we can ascertain that
is no cross correlation between the tuning of
nd LS3, and that each current-flowing branch
es independently over the range examined.



4 5 6 7 8 9 10 11 12
26

28

30

32

34

36

38

40

42

−

+ +

−− − −

+ + +

L
S
2

[H
]

LS3 [H]

L
S
2

o
p

t

g2
LP (t) ∗ [I2(t)ν(t)]

4 5 6 7 8 9 10 11 12
26

28

30

32

34

36

38

40

42

+

+

−

−

+

+

+

−

−

−

L
S
2

[H
]

LS3 [H]LS3opt

g3
LP (t) ∗ [I3(t)ν(t)]

a) b)

Figure 8. Measured tuning direction a) dLS2(LS2, LS3) and
b) dLS3(LS2, LS3), i.e. sign

(
g2

LP (t) ∗ [I2(t)ν(t)]
)

and
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)

.

5. CONCLUSION

Standard multi-mode resonant shunts are known to be
highly sensitive to variations in the transducer capac-
itance and structural resonance frequencies. In many
practical applications, such shunt circuits require on-
line component value optimization.

Former adaptive techniques based on RMS minimiza-
tion require excessively long convergence times and
are prone to misadjustment. In this paper, a new tech-
nique has been introduced for the online tuning of res-
onant piezoelectric shunt damping circuits. The tuning
law is based on minimizing the relative phase dif-
ference between a vibration reference signal and the
shunt branch current.

Experiments have demonstrated the adaptive shunt
damping of two structural modes simultaneously. Op-
timal performance was maintained in the presence of
artificial variations in structural resonance frequency.
The technique is easy to implement, requires little
additional computation or electronics, and is suitable
for practical applications.
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