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Abstract— Piezoelectric transducers are commonly used as
strain actuators in the control of mechanical vibration. One
control strategy, termed piezoelectric shunt damping, involves
the connection of an electrical impedance to the terminals of
a structurally bonded transducer. Many passive, non-linear,
and semi-active impedance designs have been proposed that
reduce structural vibration. This paper introduces a new
technique for the design and implementation of piezoelectric
shunt impedances. By considering the transducer voltage and
charge as inputs and outputs, the design problem is reduced to
a standard linear regulator problem enabling the application
of standard synthesis techniques such asLQG, H2, and H∞.
The resulting impedance is extensible to multi-transducer
systems, is unrestricted in structure, and is capable of mini-
mizing an arbitrary performance objective. An experimental
comparison to a resonant shunt circuit is carried out on a
cantilevered beam. Previous problems such asad-hoc tuning,
limited performance, and sensitivity to variation in structural
resonance frequencies are significantly alleviated.

I. I NTRODUCTION

Active feedback control involves the use of sensors and
actuators to minimize structural vibration. The vibrationis
sensed directly and used to derive an actuator voltageVa

counter-active to the applied disturbance. Typical vibration
sensors include accelerometers, velocimeters, and strain
sensors. The foremost difficulties associated with active
feedback control are due mainly to the intrinsic nature of
the plant G. Mechanical systems are of high order and
contain a large number of lightly damped modes. The
modeling and control design for such systems is well known
to pose significant challenges. In addition, environmental
variation of the structural resonance frequencies can further
complicate the problem by compromising stability margins
and restricting performance.

In active vibration control, and many other applications,
piezoelectric transducers are used exclusively as either
sensors or actuators. Dosch, Inman, Garcia [1] and An-
derson, Hagood, Goodliffe [2] were able to demonstrate
a technique now referred to as piezoelectric self-sensing,
or sensori-actuation. By subtracting the capacitive voltage
drop from the applied terminal voltage, a reconstruction of
the internal piezoelectric strain voltage can be obtained.
The reconstructed strain voltage can be employed as an
active feedback sensor effectively eliminating the need for
an auxiliary transducer. In addition to the usual problems
associated with active feedback control, piezoelectric self-
sensing systems are also highly sensitive to the transducer
capacitance value. A sensing capacitance not perfectly

School of Electrical Engineering and Computer Sci-
ence, University of Newcastle, Callaghan 2308, Australia
andrew@ee.newcastle.edu.au
reza@ee.newcastle.edu.au

matched to the transducer capacitance can result in sig-
nificant errors in the strain estimation. If the estimate is
used within a feedback control loop, such uncertainty may
severely affect performance or cause instability. An attempt
to address the problem of capacitance sensitivity can be
found in [3], [4].

Another technique, first appearing in [5], termed shunt
damping, involves the connection of an electrical impedance
to the terminals of a piezoelectric transducer. Impedance
designs have included resistors [6], inductive networks
[7], [8], switched capacitors [9], switched networks [10],
negative capacitors [11], and active impedances [12]. Shunt
damping has a number of benefits and disadvantages when
compared to active feedback control. Shunt circuits do not
require a feedback sensor, and in some circumstances, may
not require any support electronics or power supply at
all. Typically, a shunt damping strategy involves a specific
impedance structure which is designed to damp a number
of targeted structural modes. Another advantage of shunt
damping is that the circuits can be fine-tuned online to
compensate for any modeling errors experienced during the
design process. Automatic online tuning techniques have
also been presented [13].

This paper presents a fully automatic technique for the
design and implementation of piezoelectric shunt damping
circuits. By viewing the transducer voltage and charge as
inputs and outputs, the task of impedance design can be
cast as a standard regulator problem. Synthesis techniques
such asLQG, H2, andH∞ are readily applied to procure
a suitable impedance. Unlike present methodologies, the
impedance is unrestricted in structure, is multi-port for
multi-transducer systems, and can be designed to meet any
set performance specification within the flexibility of the
synthesis process.

The following two sections, Impedance Synthesis, and
Modeling, review the basic concepts of impedance synthesis
and introduce a simple, charge based modeling technique
for piezoelectric laminate structures. Section 4 outlinesthe
control objectives and presentsH2, and H∞ approaches
to the task of impedance synthesis. Experimental results
in Section 5 show superior performance to passive shunt
damping circuits. The results and contributions are summa-
rized in Section 6.

II. M ODELING

With the aim of facilitating active shunt design, this
section introduces a charge-based modeling technique for
piezoelectric laminate structures.

Consider the piezoelectric laminate structure shown in
Figure 1 (a). Through the use of a shunt patch driven by the



C p1

V
z1

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

V a1

V am

V z1

V zm

i
1

i m
Z (s)

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

V a1

V am

C pm

V pm

+
q

1

V zm

+
q

m

f d f d

Z (s)

Vp1

(b)(a)

...
... ...

...

Fig. 1. A shunted multi-transducer structure (a). Syntheticimplementation
of the impedance (b).

voltageVz, the goal is to suppress vibration resulting from
two disturbances:Va, the voltage applied to a disturbance
patch, andf(r, t) a generally distributed external force. The
implemented transfer function between the measured charge
q and applied voltageVz effectively presents an electrical
impedanceZ(s) to the transducer. The structure is disturbed
by m transducers on the left side, and controlled by a further
m collocated transducers on the other. Each piezoelectric
transducer is modeled electrically as a capacitorCpm in
series with a strain-dependent voltage sourcevpm [1],
[6], [14]. The possibility for multiple transducers will be
considered.

Expressions for the open-loop and shunted dynamics, can
be found in [15]. The effect of a connected shunt impedance
can be viewed as equivalent to a strain-feedback control
system [16].

As discussed in [15], the system shown in Figure 1
(b) can be reduced to the input-output model shown in
Figure 2. In conformance with the standard MIMO control
formulation, the plant contains two sets of inputs: the
disturbance signalsw, and the control signalsu. For the
case under consideration, the disturbance and control signals
are realized through a set of voltagesVa andVz applied to
a number of laminated piezoelectric patches. The system
outputsVp, d(r, t), and q, correspond respectively to the
piezoelectric voltages induced in each shunt patch, the
dynamic displacement measured at a pointr, and the charge
resident on each patch. The displacement signald(r, t) is
chosen as our performance variablez, while the measured
chargeq is our feedback variabley. Although the induced
shunt piezoelectric voltagesVp are not required during
the design, their inclusion aids in the modeling process.
Given a specific s-impedance, the signalVp also allows
us to compute the equivalent collocated active feedback
controller. A state-space realization is easily generatedto
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Fig. 2. The composite structural piezoelectric plant P.

represent the systemP [15].
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whereςk are the damping ratios of each mode,ωk are the
resonance frequencies,Fk and Hk k ∈ {1, 2, · · ·N} are
the state-input weightings of each disturbance and shunt
transducer. The vectorsEk k ∈ {1, 2, · · ·N} represent
the contribution of each mode to the induced piezoelectric
voltages.

As an alternative to the parameterized modeling approach
presented above, a multi-variable time or frequency domain
system identification technique could be employed to esti-
mate the plantP directly from experimental data.

III. S-IMPEDANCE CONTROL DESIGN

Given the composite model discussed in Section II,
the problem of designing an appropriate impedance can
be cast as a standardH2 or H∞ regulator problem. As
shown in Figure 3, the regulatorC(s) accepts the measured
chargeq to provide a control signalVz counteractive to the
applied disturbanceVa. The objective is to minimize the
structural displacementd(r, t) subject to a weighting on the
magnitude of the required terminal voltageVz.

In an H2 sense, the goal is to minimize the transfer
function from an applied disturbancew to the performance
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Fig. 3. The standardH2 and H∞ design problem containing the
composite plantP and a secondary performance signal weighting the
applied shunt voltageVz .

signalz, i.e. we seek to minimize
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where theH2 norm ‖F (s)‖2 of F (s) is defined as
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By Parseval’s equality, the optimalH2 controller mini-
mizes the expected root-mean-square (RMS) value ofz. An
optimalH2 controller can be found through the solution of
an algebraic Ricatti equation.

Disadvantages associated withH2 and LQG methods
include the unrealistic Gaussian disturbance model, and
problems related to integral performance constraints.H∞

optimization and robust control, originally championed by
Zames [17], is an alternative toH2 andLQG methods.

Applying H
∞

control to the problem of s-impedance
synthesis involves finding a controllerC(s) that minimizes
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where theH∞ norm ‖F (s)‖∞ of F (s) is defined as

‖F (s)‖∞ = max
ω

σ̄ (F (jω)) (5)

whereσ̄ denotes the maximum singular value.
In the time domain,H∞ control can be interpreted as

minimizing the worst-case induced 2-norm ofz, i.e.
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Closely resembling the solution toH2 synthesis, an
optimal H∞ controller can be found through the solution
of an algebraic Ricatti equation. Linear Quadratic Gaussian
methods (LQG) are also readily applied [15].

IV. EXPERIMENTAL RESULTS

In the following sub-sections, anH∞ s-impedance con-
troller is designed and applied experimentally to control a
piezoelectric laminate cantilever beam.

A. Experimental Apparatus

The experimental apparatus, shown in Figure 5 and
pictured in Figure 4, consists of a uniform aluminium can-
tilever beam. Three piezoelectric transducers are laminated
onto the front face and connected electrically in series
to the voltage sourceVz. A single collocated disturbance
transducer, identical to each of the shunt transducers, is
also mounted on the back face and driven with the dis-
turbance voltageVa. Details of the beam, piezoelectric
transducers, and voltage amplifier can be found in [15].
The displacement measurementd(r, t) is acquired using a
Polytec PSV300 scanning laser vibrometer.

B. Parameter Identification

To determine the model parameters shown in equation
(1), a simple optimization scheme is employed. From an
initial guess,ωi and ςi, are found through a simplex opti-
mization based on the measured disturbance to displacement
transfer functiond(r,s)

Va(s) , i.e.
[

ωk ςk
]

= arg min
∥

∥

∥
P̃dVa

(s) − PdVa
(s)

∥

∥

∥

2
, (7)

where P̃dVa
(s) is the measured transfer function from an

applied disturbanceVa(s) to the displacementd(r, s). With
these parameters in hand, those remaining are determined
from a final global optimization,

arg min
∥

∥

∥
P̃ (s) − P (s)

∥

∥

∥

2, W
. (8)

As gains from channel to channel vary greatly, a multivari-
able frequency weightW is required to normalize the cost
of each error transfer function. After identification, a good
correlation between the model and experimental data was
observed [15].

In the following sections it will be of interest to examine
the robustness of each control strategy to a change in the
structural resonance frequencies. Experimentally, such vari-
ation is accomplished by affixing a mass60 mm from the
beam tip. The corresponding change in structural resonance
frequencies is illustrated in Figure 6.

C. Passive Shunt Design

For the sake of comparison, eachLQG andH∞ shunt
impedance will be judged against a traditional resonant
piezoelectric shunt damping circuit applied to the same
structure. A current-flowing shunt circuit [18] was designed
and tuned to minimize theH2 norm of the cantilever beam.
The schematic and component values can be found in Figure
7 and Table I.



D. H∞ Shunt Design

As discussed in Section III, anH∞ s-impedance is
designed to minimize the following cost function,

J =
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∞

, (9)

whereku, the control signal weighting, was chosen to be
3.2×10−7. A random auxiliary input of negligible influence
was also included to avoid plant inversion. For a discussion
on plant inversion and its avoidance, see Fleming 2004 [15].

The complex s-impedance of the resultingH∞ controller
is plotted in Figure 8.

Examining the open- and closed-loop pole locations
shown in Figure 9, the controller is clearly augmenting the
system damping. Corresponding mitigation of the transfer
function from an applied disturbance to the measured dis-
placement can be seen in both the frequency domain, Figure
10, and the time domain, Figure 12. The magnitude of the
first and second structural modes are reduced by 30.3 and
24.0 dB respectively. Damping ratios are increased from
0.00246 and0.0011 to 0.0288 and0.00766.

An unexpected feature of the s-impedance is its smooth
frequency response; there are no localized peaks at the
resonance frequencies. In contrast, active strain-, velocity-,
or acceleration-feedback controllers characteristically apply
a highly localized gain at the frequencies of structural
resonance. In the advent of model variation, such localized
behavior can result in considerable performance degrada-
tion. In order to examine system robustness, the nominal
system is perturbed by adding a mass 60mm from the
beam tip. Aside from the disturbance to the underlying
partial differential equation, the first and second resonance
frequencies are decreased by 13.5 and 2.2 % respectively.
The consequence on both passive and active shunt circuits
is shown in Figure 11. While theH∞ shunt loses only
3.3 and 0.8dB from its unperturbed attenuation of the first
and second modes, the passive shunt loses 13.4 and 4.8dB.
Corresponding time domain results are shown in Figure 12.

Fig. 4. The cantilever beam.

V. CONCLUSIONS

A framework has been presented for the design of active
shunt impedances. By viewing a piezoelectric laminate
structure as a system with transducer voltage inputs and

Vz

dSpace

q

Fig. 5. A front elevation of the cantilever beam. A single co-located
disturbance transducer excited by the voltageVa, is also mounted on the
back face.
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Fig. 6. The experimental frequency response (in decibels) from an applied
disturbance voltageVa (V ) to the resulting tip displacementd (m). Free
(- -), With Mass (—).

charge outputs, the task of shunt impedance design can
be accomplished through the solution of a standard control
problem e.g. byLQG, H2, or H∞ synthesis. The resulting
controller, effectively the derivative of impedance, can be
implemented directly with a voltage amplifier and charge
measurement.

Although the fundamental goal in smart structure design
is often to the augment system damping, this cannot be
specified directly as anLQG, H2, or H∞ performance
objective. The approach has been to achieve this indirectly
through mitigation of the performance transfer function
d(s)

Va(s) .
Experimentally, the active shunts have proven to intro-

duce significant system damping, up to 30.3dB attenuation
of the first cantilever mode.

While achieving levels of performance previously only
available through sensor-based feedback control, active
shunt impedances are remarkably insensitive to variation
in the structural resonance frequencies. A13.5 % change
in the first resonance frequency resulted in only a slight
loss in performance. By comparison, the same variation
had a disastrous consequence on the performance of a



C1 10 nF C2 10 nF

L1 11690H L2 348 H

R1 15 kΩ R2 9 kΩ

TABLE I

COMPONENT VALUES OF THE CURRENT-FLOWING SHUNT CIRCUIT.

C1

L 1

C2

L 2

ω1 ω2

R1 R 2

Fig. 7. A dual-mode current-flowing piezoelectric shunt damping circuit
[18].

passive shunt damping circuit. Such sensitivity has limited
the practical application of smart structures incorporating
either active feedback or passive shunt vibration control
systems.

Another well known problem associated with passive
shunt damping is the lack of control influence. Given
a lightly damped structure, even the small counteractive
forces associated with passive shunt circuits can signifi-
cantly increase system damping. Many practical mechanical
structures naturally exhibit higher levels of damping. In
such cases, passive piezoelectric shunt circuits are of limited
use. As the amount of control influence associated with
active shunt impedances is arbitrary, the possibility now
exists for controlling more heavily damped systems. In such
cases, the control voltageVz is expected to become quite
large. At high drive voltages it may be necessary to address
the inherent piezoelectric hysteresis.

The reader will appreciate that the presented techniques
are quite general and valid for structures incorporating mul-
tiple piezoelectric transducers. Although the application of
sensor-based feedback control is well defined and feasible
for structures with multiple sensors and actuators, the same
can not be said for multi-transducer shunt circuits [16]
. Present multi-transducer, multi-mode shunt circuits are
simply a direct extension of single transducer shunt circuits.
Each circuit is restricted to be independent and attached to
a single transducer. If a single mode is to be targeted by two
or more transducers, the task of tuning the shunt circuit can
become extremely tedious. In addition to the complicated
interaction between transducers at those frequencies, there
are now as many more tuning parameters as there are
transducers per mode. The design freedom afforded with
active shunts not only eliminates the complicated task of
tuning, but allows for full utilization of each patch. The
resulting impedance is unstructured, multivariable, and able
to exploit benefits that may arise from inter-transducer
coupling.
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Fig. 8. Complex s-impedance of theH∞ (—), and ideal negative
capacitor (- -) shunt controller.
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Fig. 9. The open- (©), and closed-loop (×) pole locations of theH∞
shunt controlled system.

Possible applications of active piezoelectric shunt
impedances include sensor-less, high performance vibra-
tion control of acoustic panels, flexible structures, and
positioning systems. Future work includes multi-transducer
structures and restricted impedance design. TheLQG and
H∞ impedance designs contained negative reactive compo-
nents and are unstable in a systems perspective. Although
the connection of the transducer and control impedance
is stable, an inherently stable controller is desirable. Itis
presently unclear if an unstable controller is necessary to
result in effective vibration reduction.
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