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Abstract: A typical passive mechanical isolation system utilizes a mass-spring-damper as
a mechanical filter. Active isolation control systems typically include an electromagnetic
transducer to develop the required control forces. In this paper, the technique of sensor-less
active shunt control is applied to a mechanical isolation system. An electrical impedance is
designed and connected to an electromagnetic transducer with a view to minimizing structural
vibration. Standard control tools can be applied to design the required shunt impedance. The
technique requires no additional feedback sensors. Vibration of an experimental isolation
apparatus is heavily attenuated by the application of an active shunt impedance.
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1. INTRODUCTION

The objectives ofdampingandisolationof noise and
vibration are sometimes confused. In a few words,
damping is regarded as the reduction of amplitude
of the mechanical system within a limited bandwidth
near the resonance frequency. Whileisolation is de-
fined as supporting a static load within a particular
bandwidthωc, and attenuation of high frequency com-
ponents aboveωc, as shown in Figure 1.

A key example of an isolation system is active suspen-
sion control for automobiles (Choiet al., 1998; Sohn
et al., 2000; Fukaoet al., 1999; Jooet al., 2000; Ike-
naga et al., 2000; Smith and Wang, 2002; Gille-
spie, 1992). Normally an accelerometer, or force trans-
ducer, is used as a sensor while an electromagnetic
transducer is used as an actuator.

Electromagnetic transducers can be used as sensors
and actuators (Rao, 1995). Electromagnetic shunting
control combines both the sensor and actuator to-
gether asself-sensing(Behrenset al., 2003; Fleming
et al., 2003). By connecting an electrical impedance
to the terminals of an electromagnetic coil, the rela-
tive mechanical velocity between the coil and magnet
can be reduced. From a theoretical view point, the
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Fig. 1. Principle of an isolation system and isolation
objectives.

proposed control scheme is considered to be perfectly
collocated (MacMartin, 1995), which improves the
stability and robustness of the closed-loop system.

In this paper, we will develop a sensor-less active
shunt control for a simple mechanical isolation sys-
tem. An electrical impedance is designed using stan-
dard control tools. To validate the proposed theoret-
ical ideas, an active shunt impedance is applied ex-
perimentally to a simple electro-mechanical isolation
apparatus.
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Fig. 2. Simple-mass-spring-damper isolation system:
(a) unforced and (b) forced systems.

2. MODELLING

2.1 Mechanical System

Consider the simple isolation system shown in Figure
2 (a). The isolation system consists of a linear spring
in parallel with a passive damper, wherem is the mass,
k and d are the stiffness and damping coefficients
respectively. The equation of motion is defined as

mẍ(t) + dẋ(t) + kx(t) = dẏ(t) + ky(t), (1)

where (··) and (·) denote the acceleration and veloc-
ity of x(t) andy(t). The resonance frequency of the

mechanical system isωn =
√

k
m

and the amount
of damping is defined by the damping ratioζ where
d
m

= 2ζωn. The transfer function between the distur-
bance displacementy and the mass displacementx,
alternatively, the disturbance velocity̟ and the mass
velocityv, is given by

T (s) , Gyx(s) = G̟v(s) =

2ζs
ωn

+ 1

s2

ω2
n

+ 2ζs
ωn

+ 1
. (2)

Equation (2) is commonly referred to as thetransmis-
sibility ratio T (s). We can plotT (s) against normal-
ized frequencyω

ωn

for various values of damping ratio
ζ, as shown in Figure 3. Many interesting observations
can be learned from Figure 3. They are:

(1) When the disturbing frequency coincides with
the natural frequency of the system, an overshoot
appears showing that the system vibrates at this
frequency with high amplitudes.

(2) The frequency where the curve crosses over the0
dB line is reached when the disturbing frequency
is equal toωc =

√
2ωn. This critical frequency

is the point where the influence of vibration
isolation begins.
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Fig. 3. Normalized transmissibility ratioT (s) of a
passive damper for various values of damping
ratio ζ.

(3) At low frequencies, below the resonance of the
system, the displacement of the sensitive pay-
load follows faithfully the displacement of the
disturbance source as if the isolator were in-
finitely rigid. However, at higher frequencies,
greater than the resonance of the system, the
curve rolls-off and the displacement of the pay-
load decreases gradually while the disturbance is
constant.

(4) When we increase the damping ratioζ, the over-
shoot that appears at the natural frequency de-
creases but, unfortunately, the sharpness of the
roll-off at high frequency decreases too.

(5) To maintain the sharp roll-off at high frequencies
while decreasing the overshoot at the resonance,
a control algorithm is needed.

From Figure 3, we can see that whenζ = 0, the high
frequency roll-off is 1/s2 (−40 dB/decade) while
very large amplitude is seen near the natural frequency
ωn. On the other hand, when the damping ratioζ is
increased we reduce the overshoot at the resonance but
we reduce also the roll-off to1/s (−20 dB/decade).
As a result, the design of a passive damper involves a
trade-off between the resonance amplification and the
high frequency attenuation.

From these observations we are motivated to design an
active control scheme, which could possibly overcome
a majority of these trade-offs and limitations.

2.2 Composite System in General Form

For the forced isolation problem, as shown in Figure 2
(b), a control forceFe(t) is placed between the mass
and the base. For this system, the equation of motion
is

mẍ(t) + dẋ(t) + kx(t) + Fe(t) = dẏ(t) + ky(t).

The plant two-input-two-output model of the isolation
system,P , is shown in Figure 4, where the disturbance
velocity is referred to as̟ (t), ̟(t) = ẋ(t), and
control forceFe(t). The outputs of the plant are mass
velocity asv(t) and the relative velocity of the base
and massr(t), r(t) = v(t) − ̟(t). That is,



ẋp(t) =

[ −d

m

−k

m
1 0

]

xp(t) +

[

d

m

1

m
−1 0

]

[

̟(t)
Fe(t)

]

[

v(t)
r(t)

]

=

[

1 0
1 0

]

xp(t) +

[

0 0
−1 0

] [

̟(t)
Fe(t)

]

, (3)

where the states arexp(t) = [ v(t) x(t) − y(t) ]
′

.

For the electromagnetic transducer systemE having
the following two-input-two-output system (Behrens
et al., 2003; Fleminget al., 2003),

ẋe(t) =

[−Re

Le

]

xe(t) + [ cvv −1 ]

[

r(t)
Vz(t)

]

[

Fe(t)
Iz(t)

]

=







−cif

Le
1

Le






xe(t), (4)

whereLe and Re are the inductance and resistance
of the electromagnetic transducer respectively. Also,
the coupling coefficients for the electromagnetic trans-
ducer are represented bycvv andcif , wherecvv = Ve

r

and cif = Fe

Iz

. Equation (4), can be represented in
diagram form as shown in Figure 4.
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Fig. 4. Electro-mechanical isolation systemG with
subsystemP andE.

For the electromagnetic isolation system, we can com-
bine systemsP andE to obtain the following compos-
ite systemG, where the dynamics of the transducer
is introduced to the plant, as shown in Figure 4. The
state-space representation ofG, is

ẋg(t) = Axg(t) + B1̟(t) + B2Vz(t)

v(t) = C1xg(t)

Iz(t) = C2xg(t) (5)

where

A =











−d

m

−k

m
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mLe
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cvv 0
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
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



xg(t) =

[

v(t)
x(t) − y(t)

xe(t)

]

B1 =







d

m
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Fig. 5. The composite plantG controlled byZ(s),
an impedance consisting of the state-feedback
controllerK and Kalman filterO.

3. CONTROL DESIGN

The purpose of the controller would be to move spe-
cific poles of the system further into the left-half plane
without affecting the zeros of the system. To achieve
this, we need to design a controller that effectively add
mechanical damping to the electro-mechanical sys-
tem. This is achieved by allowing the damping term
d of the open-loop matrixA to becomed̃ = d + α,
whereα is some positive gain. That is, the effective
closed-loop matrix̃A becomes

Ã =











−d̃

m

−k

m

−cif

mLe
1 0 0

cvv 0
−Re

Le











. (6)

Therefore, the desired closed-loop polesp are the
eigenvalues of̃A.

Now, given the system

ẋg(t) = Axg(t) + B2Vz(t) (7)

and p of desired closed-loop pole locations, we can
use Ackermann’s formula (Kailath, 1980) to calculate
a gain vectorK such that the state-feedbackVz(t) =
−Kxg(t) places the closed-loop poles at the locations
p. In other words, the eigenvalues ofA−B2K match
the entries ofp.

As state-feedbackVz(t) = −Kxg(t) is not imple-
mentable without full state measurement, a linear ob-
server is required, as shown in Figure 5. It is possible,
however, to derive a state estimatex̃g(t) such that
Vz(t) = −Kx̃g(t) remains optimal for the output-
feedback problem. This state estimate is generated by
the Kalman filter (Kailath, 1980)

d

dt
˙̃xg(t) = Ax̃g(t) +B2Vz(t) +L(Īz(t)−C2x̃g(t))

with inputsVz(t) (control) andĪz(t) (measurement).
With the inclusion of measurement noiseη, as shown
in Figure 5, the system representation (5) becomes,

ẋg(t) = Agxg(t) + B1̟(t) + B2Vz(t)

v(t) = C1xg(t)

Iz(t) = C2xg(t) + η.



The noise covariance data

E {̟̟′} = Qn E {ηη′} = Rn

determines the Kalman gainL through an algebraic
Ricatti equation (Skogestad and Postlethwaite, 1996).

The Kalman filter is an optimal estimator when deal-
ing with Gaussian white noiseη. Specifically, it mini-
mizes the asymptotic covariance

lim
t→∞

E
{

[xg(t) − x̃g(t)] [xg(t) − x̃g(t)]
′} (8)

of the estimation errorxg(t) − x̃g(t).

Based onQn andRn a Kalman observer that min-
imizes (8) can be found through the solution of an
algebraic Ricatti equation (Skogestad and Postleth-
waite, 1996). The ratio ofQn to Rn essentially rep-
resents the confidence in the measured variableIz(t)
and modelG. In this work, Qn and Rn, are not
quantified and simply treated as design parameters
influencing the closed-loop pole locations, damping
performance, and closed-loop stability.

4. EXPERIMENTAL VERIFICATION

To verify the modeling and design techniques pre-
sented in the previous sections, each method has been
applied to an experimental electromechanical isola-
tion system.

4.1 Electromagnetic Apparatus

To support the proposed electromagnetic shunt iso-
lation technique, experiments were carried out on a
simple electromagnetic isolation apparatus, as shown
in Figure 6. The apparatus consist of five identical
Jaycar Electronics3 subsonic transducers Cat. XC-
1008. Each transducer consists of a permanent toroid
magnet, a coil, supporting frame, magnetic circuit and
flexible supports, as shown in Figure 7 (a). Each trans-
ducer is mechanically equivalent to the electromag-
netic mass-spring-damper, as shown in Figure 7 (b).

By connecting electromagnetic transducers together,
as shown in Figures 6 and , where isolation transducer
is the isolated mass-spring-damper system and base
transducers as the base disturbance, we obtain a sim-
ple experimental isolation system. Note that the base
transducers are connected to ground. For our case a
Newportc© RS 3000 optical table was utilized.

Now, a disturbance currentId(s) is applied to the
base transducers as a base disturbance. To measure the
transmissibility ratioT (s), two B&K c© accelerome-
ters were used to measure the applied base velocity
̟(s), accelerometer2, and the isolated mass velocity
v(s), accelerometer1, as shown in Figure 8.

Experimental parameters for the isolated system are
the isolated massm = 0.4 kg, the damping con-
stant d = 2.18 Nsm−1, the spring constantk =
29.4 kNm, the electro-mechanical couplingcvv =
3.65 and cif = 3.6, the coil inductanceLe =
0.320 mH, and the coil resistanceRe = 4.0 Ω.

3 www.jaycar.com.au

Fig. 6. Isolation experimental apparatus.
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to base transducers.

4.2 Power Amplifier and Instrumentation

In order to implement the arbitrary shunt impedance
resulting from the control design, a power amplifier
was developed capable of driving differential terminal
voltages. During operation the device is capable of
instrumenting the respective load current.

A current-controlled-voltage-source (CCVS) is shown
in Figure 9. In Figure 9, within the high frequency
bandwidth of the control loop, the reference potential
Vref appears across the load, i.e. we have a unity gain
voltage amplifier. The additional resistance and differ-
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voltage feedback amplifier. The load impedance
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Fig. 10. Practical implementation of a voltage ampli-
fier with current instrumentation.

ential amplifier generate the current measurementVR

with gainRs V/A.

A practical implementation of the amplifier is shown
in Figure 10. The device is capable of±200 V op-
eration at a maximumDC current of±32 Amps.
Further analysis and a more detailed discussion of
the implementation can be found in (Fleming and
Moheimani, 2002). A dSpacec© 1005 based system
is used to implement the required impedanceZ(s)
transfer function.

4.3 Verification

Figure 11 shows the instrumentation and driver gains
associated with the underlying electromechanical sys-
tem. The voltagesV1 throughV4 represent the sig-
nals applied to, or measured from, the power am-
plifiers and instrumentation. The gain and units as-
sociated with each signal area1 = 1.0 ms−1/V ,
a2 = 1.0 V/ms−1, a3 = 1.0 V/V anda4 = 1.0 V/A.
The actual electrical shunt impedance applied to the
coil is related to the controller through the gainsa3

anda4, specifically,

a1 a 2

a 4

V z I z

G

V1

V3

V2

V4

w

u

z

y

C

a 3

ϖ ν

Fig. 11. External gains associated with the amplifier
and instrumentation.
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Zc(s) =
Vz(s)

Iz(s)
= a3C(s)a4. (9)

To validate the proposed model for the electro-
mechanical isolation system, experimental frequency
response data was obtained. The magnitude and phase
frequency responses are shown respectively in Figures
12 and 13. From Figures 12 and 13, we can see a
good correlation between the analytical model and
experimental data. Therefore, validating the proposed
model of the electromagnetic isolation apparatus.

As discussed in Section 3, we can use the Matlabc©

place command to design a state-feedback controller
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K. Assumingα = 46, the state-feedback controller is
K= [ 38.9 −300.5 −115.0 ] .

An observer is required to estimate the system states
from the measured shunt currentIz. A Kalman ob-
server was designed to estimate the system statex̃g(t)
utilizing the measured shunt transducer currentIz and
control signalVz. Referring to Section 3, the distur-
bance and output noise process covariance matrices,
Qn andRn, were chosen to be3 and0.1 respectively.
Such a weighting, although not quantitative, expresses
a moderate confidence in the fidelity of the measured
variableIz.

By concatenating theK gain matrix and Kalman
observer, and compensating for the system gainsa3

anda4, the actual impedance presented to the shunt
transducer, is

Zc(s) = −2.448×10
4s2−2.193×10

8s+1.308×10
11

s3+6.345×104s2+9.247×107s−4.219×1010 .

The open- and closed-loop transfer function from an
applied disturbance to the measured vibration can be
seen in the frequency domain, Figure 14. The resonant
peak has been experimentally damped by26.2 dB.

5. CONCLUSION AND DISCUSSION

In this paper, the connection of electrical impedance
to the terminals of an electromagnetic isolation sys-
tem was shown to be equivalent to implementing a
standard feedback controller. A method using pole
placement and a Kalman observe for the design of
appropriate designed impedance is proposed. While
designing the controller two important objectives were
considered, they are; resonant peak damping and high
frequency attenuation. Both of these objectives where
achieved through simulation and experimentation on a
simple isolation apparatus.

Current and future work involves both the exploration
of the control theory associated with the synthesis
step and inclusion of uncertainty in the plant model
to guarantee robustness and stability.

6. REFERENCES

Behrens, S., A. Fleming and S. O. R. Moheimani
(2003). Electromagnetic shunt damping. In:
IEEE/ASME International Conference on Ad-
vanced Intelligent Mechatronics 2003. Kobe,
Japan.

Choi, J. W., Y. B. Seo, W. S. Yoo and M. H. Lee
(1998). Lqr approach using eignstructure assign-
ment with an active suspension control applica-
tion. In: Proc. IEEE International Conference on
Control Applications. Trieste, Italy. pp. 1235–
1239.

Fleming, A. and S. O. R. Moheimani (2002). Im-
proved current and charge amplifiers for driv-
ing piezoelectric loads, and issues in signal pro-
cessing design for synthesis of shunt damping
circuits..Journal of Intelligent Material Systems
and Structures.

Fleming, A., S. Behrens and R. Moheimani (2003).
Active H2 andH∞ shunt control of electromag-
netic transducer. In:IEEE Conference on Deci-
sion and Control.

Fukao, T., A. Yamawaki and N. Adachi (1999). Non-
linear and hinf control of active suspension sys-
tems with hydraulic actuators. In:Proc. IEEE
Conference on Decision and Control. Phoenix,
Arizona USA. pp. 5125–5128.

Gillespie, T. D. (1992).Fundamentals of Vehicle Dy-
namics. Society of Automotive Engineers.

Ikenaga, S., F. L. Lewis, J. Campos and L. Davis
(2000). Active suspension conrol of ground vehi-
cle based on a full-vehicle model. In:Proc. IEEE
American Control Conference. Chicago, Illinois
USA. pp. 4019–4024.

Joo, D. S., N. Al-Holou, J. M. Weaver, Lahdhiri and
F. Al-Abbas (2000). Nonlinear modeling of vehi-
cle suspenesion systems. In:Proc. IEEE Ameri-
can Control Conference. Chicago, Illinois USA.
pp. 115–118.

Kailath, T. (1980).Linear Systems. Printice-Hall. Up-
per Saddle River, NJ 07458.

MacMartin, D. G. (1995). Collocated structural con-
trol: motivation and methodology. In:Proc. IEEE
International Conference on Control Applica-
tions. Albany, New York USA. pp. 1092–1097.

Rao, S. S. (1995).Mechanical Vibrations. 3rd ed..
Addison-Wesley Publishing Company.

Skogestad, S. and I. Postlethwaite (1996).Multivari-
able Feedback Control. John Wiley and Sons.

Smith, M. C. and F. Wang (2002). Controlle parame-
terization for disturnbance response decoupling:
Application to vehicle active suspension control.
IEEE Transactions on Control Systems Technol-
ogy10(3), 393–407.

Sohn, H. C., K. S. Hong and J. K. Hedrick (2000).
Semi-active control of the macpherson supension
system: Hardware-in-the-loop simulations. In:
Proc. IEEE International Conference on Control
Applications. Anchorage, Alaska USA. pp. 982–
987.


