Negative Inductor-Resistor Controller for Electromagnetic Shunt Damping

S. Behrens, A.J. Fleming and S.O.R. Moheimani.

Abstract: One approach to vibration control involves shunting an electromagnetic transducer by an electrical impedance to dampen vibration of a mechanical structure. This letter presents a method for designing a novel shunt impedance: the negative inductor-resistor controller. Experimental validation is performed on a simple electromagnetic mass-spring-damper system.

Introduction: Mechanical structures are subject to vibrations that can diminish structural life, or in the worst case, contribute to mechanical failure. Due to the highly resonant nature of these structures, a disturbance, if occurred at a resonance frequency, may cause catastrophic failure.

Electromagnetic (or electrodynamic) transducers can be used as actuators, sensors, or both. By attaching an electromagnetic transducer to a resonant mechanical structure and shunting the transducer with an electrical impedance (or admittance), an opposing electro-motive-force (emf) is induced in the transducer, resulting in mechanical damping.

This letter will attempt to develop a simple broadband shunt controller by using some of the fundamental properties of the electromagnetic transducers.

Background: An ideal electromagnetic transducer, as shown in Fig. 1, satisfies the following

relationship, $\frac{V_e}{\nu_e} = \frac{F_e}{I_e} = C_i$, where V_e is the induced voltage, proportional to the velocity ν_e , that appears across the terminals of the transducer. F_e denotes the force acting on the coil whilst carrying a current I_e and C_i is the ideal electro-mechanical coupling coefficient.

As shown in Fig. 1, an electromagnetic transducer coil can be modeled as the series connection of an inductor L_e , a resistor R_e and a dependent voltage source V_e . If the transducer is attached to a resonant mechanical structure, the voltage source V_e represents the induced emf that is dependent on relative velocity ν_e , and hence structural dynamics.

Using Ohm's law, KVL and the principle of superposition, we obtain the following relationship between the measured velocity $\nu_e(s)$ to the force $F_e(s)$ generated by the shunted electromagnetic transducer, $F_e(s) = \frac{C_e^2}{Z(s) + L_e s + R_e} \nu_e(s)$ [1]. Note C_e is the electro-mechanical constant for the shunted electromagnetic transducer.

Developing the Negative Inductor-Resistor Controller: Assuming a resonant structure, a simple electromagnetic mass-spring-damper system as shown in Fig. 1, the composite system transfer function relating $I_d(s)$ to $\nu(s)$, is

$$\frac{\nu(s)}{I_d(s)} = \frac{C_d s}{Ms^2 + \left(C + \frac{C_e^2}{Z(s) + L_e s + R_e}\right)s + K}$$

where M, K and C represents the mass, spring constant, and damping constant respectively [1]. $\nu(s)$ is the velocity of the mass M and $F_d(s) = C_d I_d(s)$, where $I_d(s)$ is the applied current disturbance and C_d is a electro-mechanical constant.

Assuming we want infinite damping of the mechanical structure, i.e.

 $\left(C + \frac{C_e^2}{Z(s) + L_e s + R_e}\right) = \infty$, the ideal shunt circuit network should consist only of the negative inductor and resistor, that is, $Z_{ideal}(s) = -(L_e s + R_e)$. This is not a realizable network as it creates an undamped resonance when attached to the electromagnetic transducer. Instead, we implement $Z(s) = -\varepsilon(L_e s + R_e)$, where ε is some gain $\varepsilon < 1$.

Implementation of the Negative Inductor-Resistor Controller: There are two possible ways to implement the proposed negative inductor-resistor controller: (a) negative impedance converter (NIC) [2] or (b) voltage-controlled-current-source (VCCS) [1, 3], as shown in Fig. 2.

In this letter, we employ the VCCS which is defined as a two terminal device that establishes some arbitrary relationship between voltage and current at its terminals i.e., $I_z(s) = \frac{V_z(s)}{Z(s)} = V_z(s)Y(s)$. For experimental purposes, a digital signal processor (DSP) system $dSPACE^1$ was used to implement the required function Y(s) in real time.

Application: To support the preceding sections, a simple electromagnetic mass-spring-damper experimental apparatus was used [1]. Schematics of this system are shown in Fig. 3. The assembly is essentially a translational solenoid with two identical fixed coils and a magnetic plunger supported at each end by flexible supports. Experimental apparatus parameters are M = 0.15Kg, $C = 2.677Nsm^{-1}$, $K = 56kNm^{-1}$, $C_e = 3.4$, $C_d = 3.65$, $L_e = 1mH$ and $R_e = 3.3\Omega$.

Together with the proposed electrical admittance $Y(s) = \frac{-1}{\varepsilon(L_e s + R_e)}$ where $\varepsilon = 0.94$, as synthesized by VCCS, coil 2 is employed to damp translational vibrations resulting from an applied disturbance current I_d to coil 1. To remove discrepancies in C_e at high frequencies, the experimental admittance is low-pass filtered at $\approx 1kHz$, i.e. $Y(s) = \frac{-1}{0.94(L_e s + R_e)}\frac{1}{0.16s+1}$.

Open-loop and closed-loop responses are compared in Figure 4. It can be observed that the fundamental mechanical resonance is heavily damped, approximately 28dB.

Conclusions: In this letter, we have introduced a new type of electromagnetic shunt impedance. The proposed negative inductor-resistor controller was experimentally validated on a simple electromagnetic mass-spring-damper system.

¹dSPACE is a rapid prototyping digital signal processor system.

Acknowledgements: This research was supported by the Centre for Integrated Dynamics and Control (CIDAC) and the Australian Research Council (ARC).

References

- S. Behrens, A. J. Fleming and S. O. R. Moheimani. Electrodynamic Vibration Suppression. In Proc. of SPIE Smart Structures and Materials 2003: Damping and Isolation. Paper No. 5052-43. March 2003, San Diego CA, USA.
- [2] P. Horowitz and W. Hill. The Art of Electronics. Cambridge University Press, 1980.
- [3] A.J. Fleming, S. Behrens and S.O. Reza Moheimani. Synthetic Impedance for Implementation of Piezoelectric Shunt Damping Circuits. IEE Electronics Letters No. 36, Vol. 18, pp. 1525-6. 31st August 2000.

Author Affiliations

S. Behrens, A.J. Fleming, and S.O.R. Moheimani (School of Electrical Engineering and Computer Science, The University of Newcastle, University Drive, Callaghan NSW 2308, Australia.)

Corresponding Author

S. Behrens (sbehrens@ecemail.newcastle.edu.au)

Figure Captions

Fig. 1: Electromagnetic shunted mass-spring-damper system.

Fig. 2: Implementation of negative impedance-resistor controller using a voltage-controlcurrent-source (VCCS), where R_s is a sensing resistor.

Fig. 3: Experimental electromagnetic shunted mass-spring-damper apparatus. Note all dimensions are in millimeters (mm).

Fig. 4: Experimental results $\nu(s)/I_d(s)$: open-loop (···) and closed-loop (—).

Figures

Figure 1:

Figure 2:

Figure 3:

Figure 4: