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Abstract:
A piezoelectric tube of the type typically used for actuation in Scanning Tunneling
Microscopes (STMs) and Atomic Force Microscopes (AFMs) is considered. Actua-
tion of this piezoelectric tube is hampered by the presence of a lightly damped
low frequency resonant mode. This resonant mode is first identified and then
damped using a Positive Velocity and Position Feedback (PVPF) controller, a
control technique which is proposed in this paper. Inputs are then shaped such
that the closed loop system tracks a raster pattern.
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1. INTRODUCTION

Scanning Tunneling Microscopes (STM) and Atomic
Force Microscopes (AFM) are used at extreme
magnifications for profiling material surfaces at
micro to atomic resolution.

In general the scanning unit of the STMs and
AFMs would contain a probe the tip of which is
placed in close proximity (typically few Angstroms)
to the surface of the material sample. Scanning the
material surface is done by actuating either the
probe or the material sample in a raster pattern.
Many STMs and AFMs use piezoelectric tubes
(commercially known as PZT scanners) for actu-
ation. In such STMs and AFMS either the probe
or the seat of the material sample is attached
to the piezoelectric tube, and scanning is done
by actuating the piezoelectric tube in a raster
pattern.
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One of the advantages of using piezoelectric tubes
for scanning is that under certain experimental
conditions their dynamics can be well approx-
imated by linear models, see (G. Schitter and
A. Stemmer, 2004; N. Tamer and M. Daleh,
1994). However, the linear models normally pos-
sess lightly damped resonant modes, which make
the piezoelectric tubes susceptible to mechanical
vibrations. Furthermore non-linearities such as
creep and hysteresis have to be taken into account
when actuating the tube with low frequency in-
puts (near DC signals) and high amplitude inputs
respectively (K. K. Leang and S. Devasia, 2002).
The presence of mechanical vibrations and the
non-linearities hinder the actuation of the tube.

Positive Velocity and Position Feedback (PVPF)
control is a controller design technique introduced
in this paper to damp the unwanted vibrations
of the piezoelectric tube. As the name suggests
the inputs to this feedback controller are position
and velocity of the system output, (i.e. the inputs
are y and ẏ, if y is the system output), and the
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controller output is positively fedback into the sys-
tem. In the recent past Caughey and co-authors
had introduced a control technique known as the
Positive Position Feedback (PPF) control, (J. L.
Fanson and T. K. Caughey, 1990), to suppress the
mechanical vibrations in a structure. The model
structures of both PPF and PVPF bare some
similarities. In fact PVPF can be thought of as a
modification of the PPF that is technically more
suited for the piezoelectric tube.

Nonlinearity in the form of hysteresis appears
when a piezoelectric tube is actuated using high
amplitude signals driven by voltage sources. Since
the late 1980’s, it has been known that actuating
piezoelectric transducers with current or charge
sources rather than voltage sources significantly
reduces hysteresis (Newcomb and Flinn, 1982).
In fact it has been noted that using current or
charge sources, a five-fold reduction in hysteresis
can be achieved (Ge and Jouaneh, 1996). In (A.
J. Fleming and S. O. R. Moheimani, Feb 2003),
the authors have designed a charge source for the
general purpose of exciting piezoelectric actuators
without encountering hysteresis. In this work, this
charge source is used for actuating the piezoelec-
tric tube in order to avoid hysteresis.

In this paper a piezoelectric tube of the type
typically used in the scanning unit of the STMs
and AFMs is considered, see Figure 1. In Section 2
linear models are constructed for the tube and the
resonant mode of interest is identified. The need
for designing a feedback controller is motivated
in Section 3. The concept of PVPF is introduced
and a PVPF controller is designed to damp the
resonant mode in Sections 4 and 5 respectively.
Inputs are also designed in Section 5 for accurate
actuation of the closed loop system in a raster
pattern, as shown in Figure 2.

Fig. 1. Illustration of a quartered piezoelectric
tube with its dimensions exaggerated

Fig. 2. Illustration of the raster pattern.

Fig. 3. The piezoelectric tube mounted inside an
aluminum enclosure. The capacitive sensors
are shown secured at right angles to the
perpendicular faces of the cube mounted onto
the tube tip.

2. SYSTEM IDENTIFICATION

In this section the piezoelectric tube is modeled
as a linear system.

2.1 Experimental Setup

The piezoelectric tube considered here is a sym-
metric thin walled cylindrical tube made of a
piezoelectric material, with its inner and the outer
walls finely coated with a layer of copper. The
copper coating on the inner and outer walls of
the tube act as electrodes. The outer electrode is
axially quartered into four equal sections. A pair
of the opposite sections of the quartered electrode
is referred to as the x−x electrodes and the other
pair is referred as the y − y electrodes, see Fig-
ure 1. A jig is constructed to hold the piezoelectric
tube along the z axis. A small aluminum cube is
bonded to the upper end of the tube. This cube
represents the seat where the materials that need
to be scanned are placed. The heads of two ADE
Technologies 4810 capacitive sensors are placed in
close proximity to the adjacent faces of the alu-
minum cube in the x and y directions respectively.
The inner electrode of the piezoelectric tube is
grounded. One electrode each of the x − x and
y− y pairs, referred to as x+ and y+ respectively,
are chosen as the input ends of the piezoelectric
tube, and the corresponding opposite ends, re-
ferred to as x− and y− respectively, are chosen
as the output ends of the piezoelectric tube. The
whole setup, consisting of the piezoelectric tube
with the bonded aluminum cube and the heads of
the capacitive sensors, is placed in a specially con-
structed circular enclosure, illustrated in Figure 3.
The circular enclosure protects the experimental
setup from external disturbances.

When charge signals Qx+ and Qy+ are applied
at the electrodes x+ and y+ respectively, the
piezoelectric tube deforms inducing voltages Vx−

and Vy− at the output electrodes x− and y−,
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respectively. The induced voltages
[

Vx− , Vy−

]⊤

are recorded and taken as outputs of the sys-
tem. Furthermore, due to the deformation of the
tube, the capacitance between the aluminum cube
and the head of the capacitive sensors change.
The change in the capacitance is measured by
capacitive sensor in terms of the distance between
its head and the aluminum cube. This distance,
denoted by C = [Cx, Cy]

⊤
, is also recorded as

an output. The outputs Cx and Cy indicate the
lateral displacements of the tube in the x and y

directions respectively.

Quantitatively the piezoelectric tube setup is
modeled as having linear subsystems V and C of
the form

Yv(s) , Gvq(s)U(s) (1)

and

Yc(s) , Gcq(s)U(s) (2)

respectively, where U(s) is the Laplace trans-

form of the input signal
[

Qx+ , Qy+

]⊤
, Yv(s) and

Yc(s) are the Laplace transforms of the volt-
ages

[

Vx− , Vy−

]

and capacitive sensor outputs

[Cx, Cy]
⊤

, respectively, and

Gvq(s) =

[

Gxx(s) Gxy(s)
Gyx(s) Gyy(s)

]

(3)

and

Gcq(s) =

[

Gxcx
(s) Gxcy

(s)
Gycx

(s) Gycy
(s)

]

(4)

are a 2 × 2 transfer function matrices.

2.2 Modelling

An experiment is performed on the piezoelec-
tric tube by inputting swept sine waves into the
electrodes x+ and y+, and recording the corre-
sponding voltage outputs at x− and y− and the
capacitive sensor outputs Cx and Cy. Using a
HP 35670A dual channel Spectrum Analyser, the
recorded input output data is processed to ob-
tain Frequency response functions (FRF) Gvq(iω)
and Gcq(iω) corresponding to the transfer func-
tions Gvq(s) and Gcq(s), respectively, in the non-
parametric form.

In Figures 4 and 5 the magnitude and the phase of
the FRFs Gxx(iω), Gyy(iω), Gxy(iω) and Gyx(iω),
obtained from the Spectrum Analyser, are plot-
ted. Similarly, in Figures 6 and 7 the magnitude
and the phase of the FRFs Gxcx

(iω), Gxcy
(iω),

Gycx
(iω) and Gycy

(iω) are plotted. It is worth
noting that the cross coupling terms Gxcy

(iω) and

Gycx
(iω) in the subsystem C are negligible in

magnitude, except at the frequencies around the
resonance, when compared with the direct terms
Gxcx

(iω) and Gycy
(iω). In other words, input Qx+

will have little effect on the capacitive sensor out-
put Cy in the y direction, unless the frequencies
close to the resonance are excited. The same holds
for input Qy+ and the capacitive sensor output
Cx.
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Fig. 4. Bode magnitude plots of the non-
parametric models (solid) along with their
corresponding parametric models (dashed
dots).
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Fig. 5. Bode phase plots of the non-parametric
models (solid) along with their corresponding
parametric models (dashed dots).

Since there is only one resonance frequency in the
FRFs Gxx(iω), Gyy(iω), Gxcx

(iω) and Gycy
(iω), in

the frequency regions presented in the plots, sec-
ond order models are fitted to their corresponding
non-parametric data. The following models were
found to fit the non-parametric data:

Gxx(s) = Gyy(s) =
k1

s2 + 2σωs + ω2
+ d1, (5)

Gxcx
(s) = Gycy

(s) =
c1s

2 + c2s + c3

s2 + 2σωs + ω2
, (6)
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Fig. 6. Bode plots of the non-parametric models
(solid) along with their corresponding para-
metric models (dashed dots).
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Fig. 7. Bode plots of the non-parametric models
(solid) along with their corresponding para-
metric models (dashed dots).

where the model parameters are as tabulated in
Table 1. In Figures 4 and 5 magnitude and phase

k1 4.8736 × 106

2σω 78.9826

ω
2 2.942 × 107

d1 −7.8 × 10−2

c1 0.0015

c2 0.1185

c3 5.874 × 105

Table 1. Parameter values of the FRFs
Gxx(s), Gyy(s), Gcxx

(s) and Gcyy
(s).

of the parametric fit (5) are plotted along with
the non-parametric data, and in Figures 6 and
7 magnitude and phase of the parametric fit (6)
are plotted along with the corresponding non-
parametric data. Parametric fits for cross coupling
terms Gxy(s), Gyx(s), Gxcy

(s) and Gycx(s) are not
presented here as they are not used for actuating
the tube.

3. FEED-FORWARD CONTROL

As mentioned earlier the goal is to actuate the
piezoelectric tube in a raster pattern. Therefore a
desired trajectory for the piezoelectric tube would
be to repeatedly trace straight lines back and forth
in x direction, while slowly increasing its position
in the y direction, as illustrated in Figure 2. A
common practice to achieve such a path is to
input a triangular waveform in x+ electrode and a
“very slowly” increasing ramp in the y+ electrode
as reference signals for the system. Normally for
illustration purposes the slowly varying ramp in
the y+ electrode is either replaced by a DC signal
or assumed to be earthed or open circuited, (G.
Schitter and A. Stemmer, 2004; N. Tamer and M.
Daleh, 1994).

In Figure 8 the capacitive sensor response Cx,
to a triangular waveform input of amplitude
3.3µcoulombs and fundamental frequency of 40Hz
at the x+ electrode with the y+ electrode being
earthed is plotted. Note that the capacitive sensor
output Cx is not exactly a triangular waveform,
but appears to be equal to a triangular waveform
plus certain periodic corrugations. The distortion
in the capacitive sensor output Cx is due to the
amplification of the 21st and the 23rd harmonics
of the triangular waveform which are close to the
resonance frequency of the piezoelectric tube. A
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Fig. 8. Response recorded by the capacitive sensor
Cx for a triangular waveform input with
amplitude 3.3µ coulombs and fundamental
frequency 40Hz.

standard practice to eliminate the periodic corru-
gations at the output Cx, is to use a feedback
controller and damp the resonant mode which
causes the amplification.

4. POSITIVE VELOCITY AND POSITION
FEEDBACK CONTROLLER

In this section, the concept of Positive Velocity
and Position Feedback (PVPF) control is intro-
duced, and a design procedure, linking the output
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Vx− to the input Qx+ , is presented to damp the
resonant mode using a PVPF controller.

In the current context, Positive Velocity and Po-
sition Feedback (PVPF) controller is defined by
the second order controller

KPV PF (s) ,
Γ1s + Γ2

s2 + 2ξws + w2
, (7)

where ξ, w,Γ1 and Γ2 are the design parameters.

Since the feedback is positive, it can be checked
that the transfer-function relating the reference
signal r(t), which is the triangular waveform,
inputted at x+ and the output x− is given by

Gcl
xx(s) =

Gxx(s)

1 − Gxx(s)KPV PF (s)
. (8)

It can be checked from (8) that the poles of the
closed-loop system are the roots of the polynomial

P (s) = s4 + (2σω + (2ξw − Γ1d))s3

+ (ω2 + 2σω(2ξw − Γ1d) + (w2 − Γ2d))s2

+ (2σω(w2 − Γ2d) + (2ξw − Γ1d)ω2 − k1Γ1)s

+ ω2(w2 − Γ2d) − k1Γ2. (9)

For the closed loop system to be well damped, it
is desirable to have the roots of polynomial P (s)
well inside the left half plane. Assume that {pi}

4
i=1

are the desired pole positions of the closed loop
system and

Q(s) , s4 + K1s
3 + K2s

2 + K3s + K4 (10)

is the corresponding polynomial with roots {pi}
4
i=1.

Matching the coefficients of P (s) and Q(s) would
give

2σω + 2ξw − Γ1d = K1 (11)

ω2 + 2σω(2ξw − Γ1d) + (w2 − Γ2d) = K2 (12)

2σω(w2−Γ2d)+(2ξw−Γ1d)ω2−ΨΓ1 = K3 (13)

and
ω2(w2 − Γ2d) − ΨΓ2 = K4. (14)

Note that the equations (11)-(14) are linear in
2ξw,w2,Γ1 and Γ2, and can be solved for them
to get the PVPF controller KPV PF (s). However,
for the controller KPV PF (s) to be stable, or
even meaningful, the quantities 2ξw and w2, have
to be positive. Therefore the desired polynomial
coefficients K1,K2,K3 and K4 have to be such
that equations (11)-(14) yield positive solutions
for 2ξw and w2.

5. NUMERICAL ILLUSTRATIONS AND
EXPERIMENTS USING THE PVPF

CONTROLLER

In this section, first a PVPF controller connecting
the output Vx− to the input Qx+ is constructed to

damp the resonant mode of the piezoelectric tube,
and the closed loop system is then actuated in a
raster pattern.

Note that poles of Gxx(s), computed from (5), are

p± =−39.5 ± i5424.4. (15)

Here the desired closed-loop poles are set to

P1+ = P2+ =−2039.5 ± i5424.4,

(16)

P1− = P2− =−2039.5 ± i5424.4.

which amounts to placing the closed-loop poles
of the system further into the left half plane by
2000 units. It can be checked that the polynomial
coefficients corresponding to the desired poles (16)
are K1 = 8.158 × 103, K2 = 8.381 × 107, K3 =
2.74 × 1011 and K4 = 1.128 × 1015. Solving for
the controller parameters Γ1,Γ2, ξ and w from
equations (11)-(14), gives the PVPF controller

KPV PF (s) ,
−6564s + 9.302.107

s2 + 8591s + 4.649.107
. (17)

In order to actuate the closed-loop system in a
raster pattern, a triangular waveform of amplitude
3.3µ coulombs and fundamental frequency 40Hz
is inputted at the x+ electrode with the y+ elec-
trode being earthed. The response Cx recorded
by the capacitive sensor to that input is plotted
in Figure 9. It is apparent that the periodic cor-
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Fig. 9. Response recorded by the capacitive sen-
sor Cx for a triangular waveform input of
3.3µcoulombs and 40Hz.

rugations in open-loop capacitive sensor response
Cx are not present in the closed-loop response.
In Figure 10 the closed-loop frequency responses

(FRFs) G
(cl)
xcx

(iω) and G
(cl)
xcy

(iω) relating the input
x+ and the outputs at Cx and Cy respectively
are plotted. Note that, the resonance mode of the

closed loop FRF G
(cl)
xcx

(iω) is damped by about
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Fig. 10. Closed loop magnitude response of the
subsystem C (dashed dots) along with its
open loop counterpart (solid).

30dB when compared with the open loop FRF
Gxcx

(iω). Hence, as a consequence the harmonics
of the triangular waveform close to the resonance
are not amplified.

However, the response plotted in Figure 9 is not
really a smooth triangular waveform, in particu-
lar near the peaks of the response. In order to
rectify this problem, instead of using a triangular
waveform as input, the input signal is shaped such
that the corresponding output at Cx is the desired
triangular waveform. In other words instead of us-
ing a triangular waveform as input, the following
signal is used as the input:

u(t) ,

∞
∑

k=1

ak

| G
(cl)
xcx

(iωk) |
sin(ωkt − φk), (18)

where ak and ωk are the Fourier components of

the desired triangular waveform, G
(cl)
xcx

(iω) denotes
the FRF obtained by fitting a parametric model
to the non-parametric data plotted in Figure 10

and φk = ∠G
(q,cl)
dxx (iωk). The response at Cx to the

input u(t), (18), is plotted in Figure 11. Note that
it is a smooth triangular waveform.

6. CONCLUSIONS

A piezoelectric tube of the type typically used
in STMs and AFMs is considered for actuation.
Actuation of this tube is hampered by presence of
resonant modes and hysteresis. Hysteresis, gener-
ally observed while actuating piezoelectric materi-
als, is negated by actuating the tube using charge
sources, as opposed to using voltage sources. The
piezoelectric tube is modeled as a linear system,
and a lightly damped resonant mode hampering
the actuation of the tube is identified. The concept
of PVPF control is introduced, and a design pro-
cedure to damp the resonant mode using a PVPF
controller is presented. It is observed that using a
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Fig. 11. Response recorded by the capacitive sen-
sor Cx for an input of the form (18) with am-
plitude 3.3µcoulombs and fundamental fre-
quency 40Hz.

PVPF controller a 30dB damping of the resonant
mode can be achieved without much control effort.
Inputs are shaped based on the closed loop system
to accurately actuate the piezoelectric tube in a
raster pattern.
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