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Abstract—In this work the measurement quality of capacitive
displacement sensors is augmented with the high dynamic
sensitivity of piezoelectric transducers. By combining the low-
frequency performance and stability of capacitive sensors with
the high sensitivity and bandwidth of piezoelectric transducers,
a displacement RMS noise of 1 nm and range of 100 μm is
achieved with a bandwidth of 20 kHz. The composite displace-
ment signal is employed with a receding horizon control strategy
to achieve high-speed low-noise control of a piezoelectric tube
scanner.

Index Terms—Sensor fusion, capacitive sensor, piezoelectric
strain sensor, tube scanner

I. INTRODUCTION

A piezoelectric tube scanner is a thin cylinder of radially
poled piezoelectric material, fixed at the base and free to vi-
brate elsewhere, with four external electrodes and a grounded
internal electrode. Figure 1 shows a tube scanner developing
a lateral tip deflection in response to an applied voltage.
When a voltage is applied to one of the external electrodes,
the actuator wall expands, and due to Poisson coupling,
causes a vertical contraction and large lateral deflection of
the tube tip.
Piezoelectric tubes are used extensively in applications

requiring precision positioning such as Scanning Probe Mi-
croscopy [2]–[4], [14], nanofabrication systems [10], [20]
and nanomanipulation devices [15], [21]. In these appli-
cations, piezoelectric tubes are designed with large length
to diameter ratios, this provides a large lateral deflection
range but imposes low mechanical resonance frequencies.
In nanometer precision raster scanning applications, such as
scanning probe microscopy, the maximum triangular scan
rate is limited to around 1-10 % of the first resonance
frequency. To illustrate the problem, consider a typical
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Fig. 1. Voltage driven tube scanner with reference input r, feedforward
filter K(s), displacement measurement d, and feedback controller C(s)

piezoelectric tube with maximum lateral deflection of 100
μm and a resonance frequency of 700 Hz. For a scanning
probe microscope, this equates to more than one minute of
image acquisition time (at 640×480 resolution) and severe
throughput limitations in nanomanipulation and fabrication
processes.
Nonlinearity is another on-going difficulty associated with

piezoelectric tube scanners (and piezoelectric actuators in
general). When employed in an actuating role, piezoelectric
transducers display a significant hysteresis in the transfer
function from an applied voltage to strain or displacement
[1]. Due to hysteresis, ideal scanning signals can result in
severely distorted tip displacements, and hence poor image
quality and poor repeatability in nanofabrication processes.
Techniques aimed at addressing both mechanical dynamics

and hysteresis can be grouped generally into two broad
categories: feedforward, for example [6], [7], [12], [17];
and feedback, for example [16], [19]. Feedback control of
piezoelectric tube scanners and nano-positioners is generally
accomplished with the aid of a capacitive, inductive, or
optical displacement sensor. With the exception of interfer-
ometers which are prohibitively expensive for commercial
applications, and if the target can be adequately grounded,
capacitive sensors offer the greatest resolution and signal-to-
noise ratio. Again with the exception of interferometers, all
of the techniques mentioned are severely limited in band-
width if high resolutions or dynamic ranges are required. As
an example, consider a typical commercial grade capacitive
sensor with a range of ±5 μm and an RMS noise of
1nm/

√
Hz. To achieve an RMS noise of 10 nm, i.e., a signal-

to-noise ratio of 50 dB (at full scale), the bandwidth must
be limited to 100 Hz.
In this work we demonstrate the combination of capacitive

sensing and piezoelectric strain voltage measurement for
high performance displacement estimation. By combining
the low-frequency performance and stability of capacitive
sensors with the high sensitivity and bandwidth of piezoelec-
tric transducers, we demonstrate a signal-to-noise ratio of 90
dB (bipolar 16 bit) at a full-scale range of ±100 μm and
bandwidth of 20 kHz. These ideas are applicable to trans-
ducers such as piezoelectric tubes and kinematic positioning
stages with integrated piezoelectric strain sensors.
With the aid of a low-variance displacement and state

estimation it is possible to construct either an output- or state-
feedback control system. In this work, receeding horizon
control is selected for its ease-of-implementation and its
suitable objective function which is equivalent to minimizing
tracking error over a finite horizon.
This paper proceeds with a description of the scanner
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Fig. 2. The piezoelectric tube mounted inside an aluminium shield. The
x-axis capacitive sensor is shown secured at right angles to a cube mounted
onto the tube tip

apparatus in Section II, then a discussion of signal properties
and displacement estimation in Section III. Receding horizon
control is introduced in Section IV followed by experimental
results in Section V.

II. SCANNING APPARATUS

As pictured in Figure 2, the apparatus used in this
work comprises a piezoelectric tube housed in a removable
aluminium shield. A polished, hollow aluminium cube 8
mm square (1.5 g in mass) is glued to the tube tip to
allow displacement measurements with an ADE Tech 4810
Gauging Module and 2804 capacitive sensor. The sensitivity
of the capacitive sensor is 100 mV/μm over a range of ±100
μm and bandwidth of 10 kHz. During assembly, the shield
serves as a jig to ensure the tube is both vertical and alligned
in the same axis as the cube face and capacitive sensor head.
Nylon grub screws secure the sensor heads after assembly.
The tube was manufactured by Boston PiezoOptics from

high-density PZT-5H piezoceramic. Physical dimensions can
be found in reference [9]. The electrodes are driven with
an in-house ±200V charge amplifier [9]. Charge amplifiers
have been shown to reduce hysteresis in piezoelectric tube
scanners by 89%, see [8] and [9] for details.
The tip displacement frequency response, measured using

an HP 35670A spectrum analyzer, is plotted in Figure 5.
The free response has a first resonance at 850 Hz and a
static sensitivity of 171 nm per volt. To evaluate performance
robustness in the following sections, a worst case mass of
1.5 g is affixed to the top cube surface. The additional mass
reduces the resonance frequency by 110 Hz or 13%.

III. SENSOR DESIGN

A. Signal Characteristics
The available displacement signals: capacitive, piezoelec-

tric, and simulated; are illustrated in Figure 3. The character-
istics and statistical properties of each signal are discussed
in the following.

Simulated Displacement ym(s) = r(s)G(s). The simulated
displacement is the result of filtering the measured input r
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Fig. 3. The signal path and additive noise from the applied voltage to the
measured strain voltage and capacitive sensor output.

with a dynamic model of the scanner dynamics G. Con-
trolling the simulated output ym is equivalent to performing
model-based feedforward control. The output ym is subject
to large uncertainties due to model mismatch, temperature
variation and load changes. The sensitivity of G(s) should
be periodically calibrated using the capacitive sensor.

Capacitive Sensor yc. A capacitive sensor applies a high-
frequency potential between two plates, the resulting current
is proportional to capacitance and displacement. The dis-
placement sensitivity is highly stable and largely invariant
to temperature and environmental conditions; it is the most
reliable measurement.
As shown in Figure 3, the displacement signal is the

filtered sum of the true displacement d and additive white
noise vnc. As discussed in the introduction, a low-pass filter
Gc provides an arbitrary resolution at the expense of band-
width. The capacitive sensor provides an accurate method for
callibration of the simulated model and strain measurement.
Capacitive sensors are also excellent for recording system
frequency responses, for example, the transfer function from
an applied voltage to displacement. Multi-cycle swept-sine
and averaged periodically excited FFT measurements are
two statistically consistent methods for procuring system
frequency response functions.

Piezoelectric Strain Voltage yp. The piezoelectric strain
voltage vp is proportional to the strain ε and tip displacement
d below the resonance frequency. The constant kε, relating
the piezoelectric strain voltage to tip deflection, is a function
of the scanner geometry, material properties, and piezoelec-
tric strain constant.
Due to the high source impedance, especially at low

frequencies, care must be taken to avoid contamination
by interference and loss due to parasitic capacitance and
leakage. An acceptable solution is triaxial cable with the
outer sheath grounded at the instrument case and connected
to one terminal of the transducer. The inner conductor is
connected to the transducers high-impedance terminal with
an intermediate shield driven by a buffer stage to eliminate
parasitic capacitance and leakage. The buffer should be
a high transconductance FET or MOSFET common drain
amplifier or FET input op amp.
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Fig. 4. A Kalman displacement estimator K. The displacement output
matrix C(1, :) and feedthrough D(1, 3) yield the estimated displacement bd
from the optimal state estimation bx. f and in are the disturbance force and
measurement noise-current, while d, yc, and yp are the actual deflection,
the capacitive sensor measurement, and the strain voltage measurement.

The transducer capacitance cp together with the lumped
dielectric leakage and external resistance rp creates the first-
order high-pass filter

Gp(s) =
s

s + 1
rpcp

. (1)

The dominant noise processes vnp and in are the input
voltage noise and current noise of the buffer stage respec-
tively. Due to the high source impedance at frequencies
below 1 kHz, buffer current noise is of the greatest concern.
Although the true current noise filter is a leaky integrator

1
cps+1/rp

with breakpoint ω = 1
rpcp

, it is approximated as a
pure integrator 1

cps as shown in Figure 3. The justification
for this simplification is in the nature of the current noise
density. Both the voltage and current noise density increase
at lower frequencies with a first-order break-point of around
1 to 100 Hz. The low frequency increase in current noise
density approximately cancels the integrator leakage yielding
a white current noise density and pure integrator. Voltage
noise is insignificant by comparison at low frequencies.

B. Kalman Sensor Fusion

An automated choice of estimator is a linear observer
or Kalman filter [5]. With the assumption of Gaussian
distributed random disturbance and measurement noise, a
Kalman filter provides the minimum variance state estimate.
Figure 4 illustrates the physical system (Figure 3) ‘repack-

aged’ as a system block diagram. The noise input vnc

has been approximated as pure measurement noise, this
simplifies the design process with negligible error. The
discretized system G described below incorporates all of the
mechanical and electrical dynamics including noise filters,

sensor dynamics, and amplifier dynamics.

xt+1 = Axt + B

⎡
⎣ f

in
r

⎤
⎦ (2)

⎡
⎣ d

yc

yp

⎤
⎦ = Cxt + D

⎡
⎣ f

in
r

⎤
⎦

where A, B, C andD are the system matrices of G procured,
for example, by system identification or manipulation of the
individual transfer functions. The Matlab function connect
is useful for this purpose.
Based on the variance of the disturbance Q and measure-

ment noise R, defined as

Q=E

{[
f
in

] [
f in

]}
(3)

R = E

{[
vnc

vnp

] [
vnc vnp

]}
,

a Kalman observer that minimizes

J = lim
t→∞ E

{
[xt − x̂t] [xt − x̂t]

′} (4)

can be found through the solution of an algebraic Ricatti
equation [18]. The magnitude of Q and R expresses the
relative confidence in the measured variables and defines
the frequency regions where each signal is dominant. Note,
as the noise in is integrated, the Kalman filter will always
have zero sensitivity to constant error in the measured
piezoelectric strain voltage, a desirable property.

C. Estimator Variance Improvement
In many applications the frequency dependent nature of

the capacitive and strain signals can be exploited to signif-
icantly improve the displacement estimate. One particular
method can be used in cases where the desired scan trajectory
consists of a large low-frequency component and smaller
high-frequency components, for example, a scanning probe
microscope triangular scanning pattern.
In a 100 μm, 10 Hz triangular scan, the majority of signal

power lies in the first few harmonics. The input impedance
of the piezoelectric strain voltage buffer can be dropped to
a few hundred kΩs in order to increase the high-pass cut-
off frequency to 100 Hz. Now the majority of low-frequency
signal power, that would usually comprise 90% of the signal
amplitude, has been reduced by 20 dB. This allows the
strain voltage gain to be increased by a factor of 10 without
worry of saturation, which affords an increase in dynamic
range by 20 dB. The combination of low measurement noise
associated with the piezoelectric strain voltage, and low-
bandwidth of the capacitive sensor provides a displacement
sensing technique with dynamic range and signal-to-noise
ratio exceeding 16 bit or 90 dB.
The obvious disadvantage of this approach is that dynamic

range is only improved so long as the fundamental frequency
of the scan signal does not enter the bandwidth of the strain
voltage measurement. If it were to, the size of the scan signal
would be limited to one tenth its full scale range to avoid
saturation.
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IV. RECEDING HORIZON CONTROL
The purpose of fusing the signals yp and yc is to obtain an

estimate of the tube displacement d̂ over a wide bandwidth.
With such an estimate, a controller is designed in this section
using the receding horizon framework. The major benefits of
receding horizon control are: 1) it is inherently discrete and
straight-forward to implement in real-time; 2) only places
a penalty on tracking error over a finite horizon time not
infinity as in LQG; and 3) it allows simultaneous design of
feedforward and feedback controllers.
Alternative controllers include almost any state- or output-

feedback controller (based on d̂). One simple controller that
was also tested is a Positive Position Feedback controller
[11] with FIR feedforward compensation.
A receding horizon control strategy results in the control

law:
ut = Kx̄t, (5)

The receding horizon framework minimizes a cost function
J in order to obtain the next control action ut+1. Then at the
next time interval, based on new measurements, the process
is repeated again but this time generating ut+2. While the
cost function J can be quite general, for the purposes of this
application we consider

J(ut+1|t, . . . , ut+N |t) �
1
2

∑N
k=1 ||ŷt+k|t − rt+k||2Q + ||ut+k|t − ut+k−1|t||2S .

(6)

In the above, ŷt+k|t is a prediction of the system output at
some future time t + k based on measurements up to and
including the current time t. The quadratic form ||ŷt+k|t −
rt+k||2Q � (ŷt+k|t − rt+k)T Q(ŷt+k|t − rt+k) is included to
penalize deviations of the predicted output from future refer-
ence values rt+k. Furthermore, the notation ut+k|t is used to
highlight that these are future inputs based on information up
to and including time t and ||ut+k|t−ut+k−1|t||2S is included
to penalize control movements.
Hence, at time t we can compute the optimal sequence of

control movements
{

u�
t+1|t, . . . , u

�
t+N |t

}
via{

u�
t+1|t, . . . , u

�
t+N |t

}
=

arg minut+1|t,...,ut+N|t J(ut+1|t, . . . , ut+N |t),
(7)

and then apply u�
t+1|t at the next time interval t + 1.

In order to compute u�
t+1|t, we need to be able to predict

the output yt+k for k = 1, . . . , N . To achieve this, we
employ a state-space model and Kalman filter as discussed in
section III-B. Due to page limitations, the remaining standard
derivation of receding horizon control is omitted, but can be
found in reference [22], or obtained by emailing the first
author.

V. EXPERIMENTAL RESULTS
Results are presented in the following that demonstrate

the efficacy of sensor fusion and receding horizon control
in dynamic positioning applications. As discussed in Section
II, we consider two cases, one where the scanner is operated
under nominal conditions, and another where a significant
load is affixed to the tip.
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Fig. 5. The open- and closed-loop scanner frequency response measured
from the reference input to the tip displacement (in μm/V); open-loop (· · · ),
unloaded (—), with 1.5 g compliant mass (- -).

In order to procure a model of the system G (Figure
4) the frequency response functions from r to all outputs
were acquired with an HP 35670A spectrum analyzer. The
displacement d was measured using a Polytec PI PSV300
laser vibrometer
The dynamics of G were obtained using a frequency

domain system identification algorithm [13] 1. The distur-
bance input f was chosen equivalent to r, and the dynamics
due to in set as an integrator. The concatenated plant
including disturbance inputs f and in, the reference input
r, the measured and reference outputs yc, yp and d, and
the performance output z, was assembled using the Matlab
function connect. As the control system is implemented
digitally, a single delay is added to the reference input to
account for conversion and processing delay.
The Matlab function kalman was used to design the

Kalman estimator K. Due to the syntax of kalman, a
new system is required with outputs yc and yp, and inputs
reversed, i.e. r is the first input, followed by f and in. With
Q = I, and

R = α

[
1 0
0 E{in}

]
(8)

the parameters α and E{in} can be varied to express
confidence in the measured variables and manipulate the
frequency regions where yc and yp are dominant.
In order to compute the controller gain matrix K in

Section IV, we need to specify the parameters N, Q, S. In
this experiment N = 200, Q = 0.1 and S = 0.2.
The estimator and controller were implemented using the

Real Time Workshop for Matlab and a dSpace DS1103 DSP
prototyping system. The open- and closed-loop frequency
responses, plotted in Figure 5, show a peak reduction of at
least 24 dB in both the nominal and perturbed response.

1An implementation of the multivariable frequency domain subspace
algorithm by McKelvey et. al. [13] is available by contacting the first author.
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Fig. 6. A 3 Hz 120 nm closed-loop scan; capacitive sensor (top), estimator
(bottom).
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Fig. 7. A 50 Hz 1.6 μm open-loop scan; capacitive sensor (top), estimator
(bottom).

To evaluate the noise and dynamic performance in the
time domain, we must consider a number of scenarios. A
series of experiments are described below that evaluate the
large-signal static and dynamic displacement accuracy, noise-
performance, and dynamic performance.

Low Frequency, Small Amplitude (Figure 6). In this
experiment the scan amplitude is 120 nm, or 0.06 % of the
capacitive sensor range. The capacitive sensor is approaching
the limit of its dynamic range (16 bit, or 90 dB) and displays
a significant noise component. In contrast, the estimated
displacement shows no sign of quantization error and has
an unfiltered RMS noise of approximately 1 nm (sampled
at 40 kHz). The dynamic range, or the ratio of the largest
to smallest signal that can be resolved at full bandwidth
is approximately 100 dB. These figures are approximate
(but conservative) as it is impossible to differentiate the
measurement noise from mechanical disturbance.

High Frequency, High Amplitude (Open-loop Figure 7,
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Fig. 8. A 50 Hz 1.6 μm closed-loop scan; capacitive sensor (top), estimator
(bottom).
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Fig. 9. A 50 Hz 120 nm open-loop scan; capacitive sensor (top), estimator
(bottom).

closed-loop Figure 8). In Figure 7, a 50 Hz 1.6 μm scan
is chosen that clearly excites the mechanical resonance with
its 17th harmonic. Although this is a worst case scenario, it
clearly illustrates the errors that usually occur on a smaller
scale. A simple feedforward controller would effectively
reduce this error by nine tenths or more without significantly
distorting the scanning signal. In this experiment, where
sensor noise is not significant, the controller successfully
attenuates resonant dynamics by 24 dB.

High Frequency, Low Amplitude (Open-loop Figure 9,
closed-loop Figure 10). In this experiment the control per-
formance is examined at low amplitudes. It is clear from
Figures 9 and 10 that the controller works effectively to
reduce vibration even at low amplitudes. The excellent noise
performance of the state estimate affords a high gain con-
troller without significantly increasing measurement-noise-
induced displacement error.

Performance Robustness As can be ascertained from the
nominal and perturbed closed-loop frequency response ,
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Fig. 10. A 50 Hz 120 nm closed-loop scan; capacitive sensor (top),
estimator (bottom).

Figure 5, the tip mass has little effect on the estimate quality
and control performance. Triangular scanning accuracy was
slightly reduced around the turning points but the degredation
in the linear region was negligible.

VI. CONCLUSIONS
In addition to capacitive or inductive sensors, a piezoelec-

tric strain sensor can provide large increases in measurement
performance at little cost. A piezoelectric tube scanner is a
special case where a redundant electrode can provide high
precision sensing. The only significant cost is the reduction
in displacement range that could be achieved with a second
voltage amplifier driving the electrode used for sensing.
Although high sensitivity piezoelectric materials, such

as PZT-5H, exhibit significant temperature dependence and
poor signal qualities at low-frequencies, a technique is pre-
sented here to utilize only the desirable characteristics of
each sensor collaboratively. With a model of the sensor
dynamics and a linear estimator or Kalman filter, significant
improvements to noise performance and dynamic range can
be realized.
Experiments on a standard piezoelectric tube, as utilized in

scanning probe microscopes, demonstrate an RMS displace-
ment noise of 1 nm (sampled at 40 kHz) with a full-scale
range of ±100 μm. The estimation technique lends itself
easily to the inclusion of high-performance state-dependent
controllers. A receding horizon control strategy was imple-
mented and proven to attenuate resonant mechanical dynam-
ics by 24 dB without increasing displacement noise (within
the limits of measurement). Both the controller and Kalman
estimator were insensitive to the dominant uncertainty - large
variations in the resonance frequency.
Present and future work includes extending the technique

to other nanopositioning applications where high dynamic
range, low-noise and wide-bandwidth displacement feedback
is required. Examples include kinematic stages with multiple
axis and systems with different transducer arrangements, e.g.,
electromagnetically driven stages with strain and velocity
feedback.
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