
Integral control of smart structures with collocated sensors and

actuators

Sumeet S. Aphale, Andrew J. Fleming and S. O. Reza Moheimani*

Abstract— This paper introduces a novel way of implement-
ing simple first- and second-order feedback controllers, for
vibration control in smart structures with collocated sensors
and actuators. As these controllers are motivated by the simple
integrator, the scheme is called Integral Resonant Control
(IRC). In this approach a direct feed-though is added to a
collocated system and the transfer function is modified such that
it contains zeros followed by interlaced poles. This modification
permits the application of the IRC scheme which results in
good performance and stability margins. Problems due to
unnecessarily high controller gain below the first mode are
alleviated by slightly increasing the complexity from a first
to a second order controller. Experiments carried out on a
piezoelectric laminate cantilever beam demonstrate up to 24
dB modal amplitude reduction over the first eight modes.

I. INTRODUCTION

The presence of noise and vibration is of great concern in

many industrial, scientific and defense applications [1], [2],

[3]. Smart Structures have shown potential to offer improved

vibration control in applications where passive techniques are

either insufficient or impractical. Active structural control in-

volves two main tasks; selection and integration of actuators

and sensors, and the control system design. This work pro-

poses a new control methodology for smart structures with

collocated piezoelectric actuators and sensors. Piezoelectric

materials have emerged as the transducer of choice in the

field of smart structures. Their small volume, low weight and

ease of structural integration, are some of the many desirable

properties exhibited by these unique materials [4], [5], [6],

[7].

Designing an effective control strategy for flexible struc-

tures presents many difficulties due to inherent system

properties such as variable resonance frequencies, high sys-

tem order, and highly resonant dynamics. Many traditional

control techniques such as LQG, H2 and H∞ have been

researched and documented by earlier researchers [8], [9].

These techniques tend to result in control systems of high-

order and poor stability margins. Thus a simple, robust and

well-performing control technique is sought after.

It has proved beneficial to exploit the underlying structure

of a collocated resonant mechanical system while designing

controllers for damping resonant vibration modes. Greater

robustness, performance, and ease of implementation relative
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to traditional techniques are some of their well-known bene-

fits. The most useful characteristic of a collocated system is

the interlacing of poles and zeros up the jω axis. This results

in a phase response that lies continuously between 0 and -

180 degrees. This property has been successfully exploited

by Positive Position Feedback (PPF) [10], a popular control

design technique. PPF controllers come with many built-in

benefits such as stability in the presence of uncontrolled in-

bandwidth modes and quick roll off at higher frequencies

which, in turn, reduces the risk of destabilizing systems with

high-frequency dynamics. Their main drawback is that the

PPF controllers are also equal in order to the system which

they are designed to control. Furthermore, they require a

model based design process (often requiring a non-linear

search); and they are difficult to tune if more than one

mode is to be controlled. The phase profile of collocated

system is also exploited in another control technique known

as Velocity feedback [11]. In theory, velocity feedback

implements pure viscous damping with a phase margin of

90 degrees. Unfortunately, the high frequency gain must be

attenuated to avoid noise amplification and destabilization

due to unmodeled or non-collocated dynamics. Due to the

two additional poles required at high frequencies, velocity

feedback results in relatively low performance and poor

phase margin. Resonant control has also been successfully

applied to collocated resonant systems [12]. Though this

technique guarantees closed-loop stability in the presence of

unmodeled out-of-band modes, the high-pass nature of the

controller may deem it unsuitable in certain scenarios.

The control design proposed in this work is based on

augmenting the feed-through of a collocated system by

adding a small portion of the actuator signal to the sensor

signal. Section III will show that this procedure results in the

addition of a pair of resonant system zeros at an arbitrarily

chosen frequency. Choosing this frequency lower than the

first mode results in a compound system with interlaced zeros

then poles, rather than poles then zeros. The phase response

of this system lies between 0 and +180 degrees. This property

can be exploited through the use of direct integral feedback

which results in a loop phase response that lies between

−90 and +90 degrees. Direct integral strain feedback has the

benefit of substantial damping augmentation while naturally

rolling off at higher frequencies.

The following section states the objectives and scope of

this work together with a description of the experimental

apparatus. The characteristics of collocated systems, feed-

though augmentation, and integral feedback design are then

discussed in Section III. Experimental results demonstrating
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Fig. 1. Picture of the cantilever beam.

up to 24 dB reduction over eight modes are presented in

Section IV followed by concluding remarks in Section V.

II. OBJECTIVES

The main objective of this work is to propose, imple-

ment and evaluate a simple and robust control technique

to damp multiple low-frequency modes of a class of res-

onant mechanical systems that exhibit interlaced poles and

zeros in their collocated transfer functions. We begin by

analyzing the interesting properties of transfer functions of

resonant systems with collocated sensors and actuators. This

will be followed by a mathematical proof for the pole-

zero interlacing phenomenon in such transfer functions. It

is shown that a pair of resonant zeros can be added at

an arbitrarily chosen frequency by adding a specific feed-

through term to this transfer function. A parametric form of

the appropriate feed-through term necessary to manipulate

the pole-zero interlacing of the collocated transfer function

is formulated. Furthermore, analysis of this modified transfer

function shows that simple second-order controllers based

on the integral controller, can be implemented to damp

vibrations over multiple low-frequency resonant modes. This

scheme is called the Integral Resonant Control (IRC) scheme.

A cantilever beam, which is clamped at one end and free

at the other end is a well-known example of a resonant

mechanical system susceptible to high amplitude vibrations

when disturbed. A piezoelectric laminate cantilever beam is

used to experimentally verify our theoretical results.

A. Experimental setup

Figure 1 shows the piezoelectric laminate cantilever beam

used in this work. This cantilever beam has three pairs

(sensor-actuator) of collocated piezoelectric patches attached

to it. In this work, one collocated pair is used for actuation

and sensing. The second collocated pair is shorted, thus for

all practical purposes, it has no effect on the open or closed

loop beam dynamics. Of the third collocated pair, one patch

is shorted and the other is used as an independent disturbance

source. This arrangement replicates most practical distur-

bance sources.

w

u

z

y

C(s)

Fig. 2. Schematic diagram of the control strategy showing the inputs and
outputs.

The equivalent two-input two-output system of the can-

tilever beam is shown in Figure 2. The inputs are the control

voltage applied to the collocated actuator patch (u) and the

disturbance generated by the third (non-collocated) piezo-

patch (w). The outputs are the collocated sensor voltage (y)

and the tip displacement (z).

The frequency response functions (FRF) correspond to

a particular combination of the input and the output (for

example Gyw(jω) = y(jω)/w(jω) when u = 0). They are de-

termined by applying a sinusoidal chirp of varying frequency

(from 5-250Hz) as inputs (w and u) to the corresponding

piezoelectric actuators and measuring the output signals (y
and z). This frequency range (from 5-250Hz) captures the

first three resonant modes of the cantilever beam. A Polytec

Scanning Laser Vibrometer (PSV-300) was used to record

all the needed FRFs.

III. CONTROLLER DESIGN

A model of the system is required to analyze and design

a control strategy. A subspace based modeling technique

[13] is used to procure an accurate model of the cantilever

beam system. Figures 3 and 4 show the magnitude and phase

responses of the modeled and the actual system. The model

captures the dynamics of the system with high accuracy.

A. Properties of collocated transfer functions

The transfer function associated with a single collocated

actuator/sensor pair displays many interesting properties

[14], [15]. It is a minimum phase system where the poles and

zeros of the system interlace. This ensures that the phase of

a collocated transfer function will be within 0◦ and −180◦.

The system transfer function can be represented as the sum

of many second order blocks and can be written as

G(s) =

M∑

i=1

αi

s2 + 2ζiωis + ω2
i

(1)

where αi > 0 ∀i and M → ∞ [16]. A very large but finite

M represents the number of modes that sufficiently describe

the elastic properties of the structure under excitation. In

most cases, N < M modes of the structure would fit

in the ‘bandwidth of interest’ and are controlled (damped)
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Fig. 3. Magnitude response of the measured (- -) and modeled (—) system.
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Fig. 4. Phase response of the measured (- -) and modeled (—) system.

while modes N + 1 and above are left uncontrolled. The

out-of-band (truncated) poles have a significant effect on

the in-band zeros and this can potentially destabilize the

closed-loop system, if left unaccounted. To guarantee that

unmodeled high frequency modes do not affect the position

of low frequency zeros, a feed-through term is added to the

truncated model [17]. The resulting system can be written

as,

G̃(s) =

N∑

i=1

αi

s2 + 2ζiωis + ω2
i

+ D (2)

where D ∈ R. Note that the parametric model for the

collocated transfer function Gyu(s) is of the form (2). The

remaining transfer functions are of the form (1), but with no

positivity constraint on αi, see Figure 3(a).

B. Feed-through and pole-zero interlacing

This section will mathematically explain the interlacing

pole-zero pattern exhibited by a collocated transfer function.

The effect a particular choice of feed-through (D) will have

on the truncated system model will also be discussed in

detail. For the sake of brevity, zero damping is assumed in

the following analysis (ζ = 0). However, the results can

easily be extended to include systems with damping 1.

Theorem 1: Let G(s) =
∑N

i=1
αi

s2+ω2
i

such that αi > 0

for i = 1, 2, 3, · · · and ω1 < ω2 < · · · < ωN . Then, between

every two consecutive poles of G(s) there exist a zero.

Proof: We begin with a truncated case of G(s) denoted by

Ĝ(s) such that,

Ĝ(s) =
3∑

i=1

αi

s2 + ω2
i

. Expanding, we get

Ĝ(s) =
α1

s2 + ω2
1

+
α2

s2 + ω2
2

+
α3

s2 + ω2
3

Expanding and collecting terms we get,

Ĝ(s) =
α1(s2+ω2

2)(s2+ω2
3)+α2(s2+ω2

1)(s2+ω2
3)+α3(s2+ω2

1)(s2+ω2
2)

(s2+ω2
1)(s2+ω2

2)(s2+ω2
3)

The numerator of Ĝ(s) is a polynomial in s2. Let this be

known as N(s2). Then,

N(s2) |s2=−ω2
1
= α1(−ω2

1 + ω2
2)(−ω2

1 + ω2
3) > 0

as αi > 0 ∀i and ω1 < ω2 < ω3. Similarly,

N(s2) |s2=−ω2
2
= α1(−ω2

1 + ω2
2)(−ω2

1 + ω2
3) < 0

and

N(s2) |s2=−ω2
3
= α1(−ω2

1 + ω2
2)(−ω2

1 + ω2
3) > 0

N(s2) is a continuous function in s. The value of

N(s2) |s2=−ω2
1

is positive while at N(s2) |s2=−ω2
2

is

negative. N(s2) must therefore, be 0 for a value of s2

somewhere between −ω2
1 and −ω2

2 . Thus for s2 = −ω2
z1

such that ω1 < ωz1
< ω2, N(−ω2

z1
) = 0. Similarly, it can

be shown that N(−ω2
z2

) = 0 where ω2 < ωz2
< ω3.

Using the same argument for the numerator of G(s) (un-

truncated) it can be shown that there exist n − 1 zeros

ωz1
, ωz2

, · · · , ωzn−1
for G(s) =

N∑

i=1

αi

s2 + ω2
i

such that, ω1 <

ωz1
< ω2 < · · · < ωzn−1

< ωN , i.e. between every two

consecutive poles lies a zero.

This theorem shows that a system obtained by adding

N second order terms of the form αi

s2+ω2
i

has N pairs or

complex conjugate (resonant) poles and N − 1 pairs of

1Note that as these systems have extremely small damping coefficients
(ζ), the effect of the damping term is only to shift the poles and zeros to
the left half plane by a small real value.
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complex conjugate (resonant) zeros such that between every

two poles, there is a zero.

Theorem 2: Let G(s) =

N∑

i=1

αi

s2 + ω2
i

such that αi >

0 ∀i and ω1 < ω2 < · · · < ωN . If G̃(s) = G(s) + D
such that D ∈ R and G̃(jωz) = 0 such that ωz is not

a zero of G(s) then, G̃(s) can be written as G̃(s) =

(s2 + ω2
z)

N∑

i=1

βi

s2 + ω2
i

.

Proof: At s2 = −w2
z , G̃(s) = 0. Substituting s2 = −w2

z in

G̃(s) we have,

G̃(jωz) =

N∑

i=1

αi

−ω2
z + ω2

i

+ D = 0

Thus, D = −

N∑

i=1

αi

−ω2
z + ω2

i

Substituting the value of D in G̃(s) we get

G̃(s) =

N∑

i=1

αi

s2 + ω2
i

−

N∑

i=1

αi

−ω2
z + ω2

i

=
N∑

i=1

αi(
1

s2 + ω2
i

−
1

ω2
i − ω2

z

)

Let 1
ω2

i
−ω2

z

= ai. Then,

G̃(s) =

N∑

i=1

αi(
1 − ais

2 − aiω
2
i

s2 + ω2
i

)

=

N∑

i=1

− αiai(
s2 + ω2

i − 1
ai

s2 + ω2
i

)

Note that ω2
i − 1

ai
= ω2

z . Thus,

G̃(s) =
N∑

i=1

− αiai(
s2 + ω2

z

s2 + ω2
i

)

Let −αiai = βi. Then G̃(s) = (s2 + ω2
z)

N∑

i=1

βi

s2 + ω2
i

.

This theorem shows that for a system obtained by adding

N second order sections of the form αi

s2+ω2
i

, the addition of a

feed-through term D ∈ R can effectively introduce a pair of

complex conjugate (resonant) zeros. A typical pole-zero plot

of the collocated transfer function before and after addition

of the feed-through D term is shown in Figure 5. The pole

location remains the same even after adding the feed-through

term.

Using the residue function in MATLAB, the fixed

structure form of the collocated transfer function of the

piezoelectric laminate cantilever beam can be extracted

from the identified model Gyu(s) as shown in Figures 3

and 4. This is written as

+ D

x

x

x

x

x

x

x

x

x

x

x

x

Re Re

Im Im

Fig. 5. Poles (x) and Zeros (o) of the collocated transfer function, before
and after the addition of the feed-through term (D).

Gyu(s) =
225

s2 + 0.3854s + 6035
+

8971

s2 + 1.49s + 217100

+
90960

s2 + 3.573s + 1.697 × 106
+ 0.7456

Due to the fully parameterized nature of the identified

model, the residuals of each second order section will also

contain a small ‘s’ term that can be neglected. Note that in

this case, Gyu(s) ≡ G̃(s) (defined in Theorem 2), where

G(s) = 225
s2+0.3854s+6035

+ 8971
s2+1.49s+217100

+ 90960
s2+3.573s+1.697×106

and D1 = 0.7456.

The first resonant mode of the cantilever beam is at a

frequency of 12.33 Hz. By using Theorem 2, it is seen that

a feed-through of D2 = −0.1372 places a zero at 4.1858Hz

(< 12.33 Hz). Combining D1 and D2, a feed-through term

of Df = (−0.1372 − 0.7456) = −0.8828, was added to

Gyu(s).
The addition of a low-frequency zero results in a phase

inversion at DC relative to the original transfer function as

explained in Theorem 2. The magnitude and phase response

of the collocated open-loop and modified transfer functions,

Gyu(s) and (Gyu(s)+Df ) respectively, are plotted in Figure

6. It is observed that the phase of the modified transfer

function lies between 0 and -180 degrees; thus, a negative

integral controller (C(s) = −1
s ) in negative feedback, which

adds a constant phase lead of 90 degrees will yield a

loop transfer function whose phase response lies between

+90 and -90 degrees, that is, the closed-loop system has a

highly desirable phase margin of 90 degrees. The following

section discusses the advantages and disadvantages of a

simple integral controller, a lossy integral controller and

a simple second-order band-pass filter type controller. The

controller gain can be selected using the root-locus plot and
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++

-

w

Gyu(s)

Gyw(s)

C(s)
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Fig. 7. Schematic diagram of the implemented IRC control strategy.

can be targeted to damp specific modes. Subsection III-D

will present a brief discussion on gain selection.

C. Controller design for zero-pole systems

As the following controller designs are motivated by the

simple integrator, this control scheme is called the Integral

Resonant Control, IRC. The block diagram of this proposed

IRC scheme is shown in Figure 7. In the following discus-

sion, three suitable controllers - direct integral control, its

lossy variant and a simple band-pass filter type controller -

are introduced and evaluated for performance and robustness.

The frequency response of each controller is plotted in Figure

8.

• Simple Integrator C(s) = −γ
s : Integral control has

been extensively researched and documented [15]. As

it applies an unnecessarily high gain at low frequencies,
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Re

Im

To ∞

Fig. 9. Root-Locus plot showing the trajectories of the poles due to change
in system gain.

it may lead to actuator saturation due to input amplifi-

cation.

• Lossy integrator C(s) = −γ
s+p1

: This controller has

reduced gain at low frequencies when compared to that

applied by the pure integrator. It is necessary to select

p1 close to the first structural resonance frequency.

The penalty associated with its implementation is of

a slightly reduced closed-loop phase margin.

• Band-pass filter C(s) = −γs
(s+p1)(s+p1)

: To ensure

the controller response rolls-off at low-frequencies, a

controller with two poles at p1 rad.s−1 and a zero at

0 rad.s−1 is suitable. The resulting closed-loop phase

margin is inferior to that exhibited by the two previous

controllers but the gain attenuation is greater. The

phase margin can be further improved by implementing

C(s) = −γs
(s+p1)(s+p2)

where p2 < p1.
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D. Gain selection

The gain of the IRC, γ, can be determined by analyzing the

loop gain. A root-locus plot depicts the trajectories traveled

by the poles with respect to increase in the system gain,

see Figure 9. It is found that by increasing the controller

gain, the poles follow a curve and finally reach the zeros

they are paired with. This plot also reveals the damping

of each pole along the trajectory. As the gain increases,

the poles initially move away from the imaginary axis and

the damping increases until it reaches a maximum point.

Further increases in gain drag the pole closer to the imaginary

axis and reduce the damping. Finally the pole is placed at

the same position as its paired zero. At this position, the

improvement in damping is negligible.

Thus, the gain of the controller can be chosen such that

maximal damping performance is achieved at the in-band

resonant modes that lie within the bandwidth of interest.

To achieve maximum damping of higher frequency modes,

higher gains are required. This high gain may place the

low frequency poles close to the imaginary axis (with no

significant increase in damping) and thus low frequency

modes are not attenuated. As we are considering a cantilever

beam with dominant low frequency dynamics (with the first

resonant mode at 12.33 Hz), a gain that provides optimal

damping of the first three structural modes is chosen. For

the cantilever beam used in our experiments, the required

gain was found to be γ = 550.

E. Summary

The IRC controller design process can be summarized in

the following steps:

• Step 1: Measure the open-loop frequency response of

the system and preferably obtain a model for the system

as described in subsection III-A.

• Step 2: Use results in Subsection III-B. Determine

the required feed-through term that adds a zero at a

frequency lower than the first resonant mode of the

system.

• Step 3: Design a controller of the form C(s) =
−γs

(s+p1)(s+p1)
by choosing p1 to be approximately a

decade lower in frequency than the first mode, see

subsection III-C.

• Step 4: By plotting the root-locus, select a suitable gain

which results in peak attenuation at resonant frequencies

lying in the band of interest, see subsection III-D.

• Step 5: Implement IRC using either an analog or digital

transfer function. Measure the open- and closed-loop

frequency responses and check that they agree with the

simulated results as shown in Section IV.

IV. EXPERIMENTAL RESULTS

The controller was digitally implemented using a dSPACE

rapid prototyping system with a sampling frequency of 20

kHz. The continuous transfer function of the controller, given

by C(s) = −550s
(s+0.3(2π))(s+0.3(2π)) , was converted to a discrete

transfer function using the zero order hold approximation.

A time advance of one sample, achieved by multiplying
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Fig. 10. Simulated (a) and experimental (b) open-loop (- -) and closed-loop
(–) responses of the cantilever beam measured from disturbance input w to
the tip displacement z.

the transfer function of the controller by the forward shift

operator z, was incorporated into the control loop to account

for the system delay. This is possible because C(z) is strictly

proper and has a relative degree of 1. Frequency responses

are measured from the input disturbance w to the output

tip displacement z of the cantilever beam, denoted by Gzw.

Figure 10 (a) shows the simulated open- and closed-loop

frequency responses while the measured open- and closed-

loop frequency responses are shown in Figure 10 (b). The

first three modes are attenuated by 22 dB, 24 dB and 21 dB

respectively.

Open- and closed-loop frequency responses are measured

for a band of frequencies from 0 Hz to 2.5 kHz, to evaluate

the controller performance, see Figure 11. This band captures

the first eight resonant modes of the cantilever beam. Table

I shows the attenuation achieved for the first eight modes.
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TABLE I

DAMPING FOR THE FIRST EIGHT MODES OF THE CANTILEVER BEAM

Mode Number 1 2 3 4 5 6 7 8

Frequency(Hz) 12.33 74.25 207.48 408.75 682.32 1020.85 1427.23 1914.01

Attenuation (dB) 22 24 21 0.7 16 9 3 7

The minimal attenuation of the fourth mode is due to the

position of the collocated patches.

Loading the beam with a mass introduces changes in the

resonant mode frequencies. IRC’s damping performance is

evaluated for its robustness for variations in resonance fre-

quencies by first loading the cantilever beam with a mass and

then recording its open- and closed-loop responses. Loading

the beam with a mass introduces changes in the resonant

mode frequencies and is equivalent to adding uncertainty.

It is seen that even though the additional mass shifts the

resonant mode frequencies by as much as ten percent, there

is minimal performance degradation. All of the eight modes

show significant damping even with the mass present, see

Figure 12. Table II documents the damping achieved on the

loaded beam for the first eight modes.

V. CONCLUSIONS

A mathematical proof for the pole-zero interlacing found

in the transfer functions of collocated smart structures is

given. The effect of adding a feed-through to these transfer

functions is the addition of a pair of resonant zeros at a

particular frequency, depending on the magnitude and sign

of the feed-through term. This effect is also mathematically

formulated and a parametrized structure of the feed-through

term in terms of frequencies at which it adds the resonant

zeros is given. The phase response of the transfer functions

of collocated smart structures show that by adding a pair of

zeros at a frequency below the first resonant mode, simple

first- or second-order controllers can provide good damping

performance and stability margins. Three controllers moti-
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Fig. 12. Open- (- -) and closed-loop (—) system response for the additional
mass-loaded cantilever beam measured from disturbance input w to the tip
displacement z.

TABLE II

DAMPING FOR THE FIRST EIGHT MODES FOR A CANTILEVER BEAM WITH

ADDED MASS

Mode Number 1 2 3 4 5 6 7 8

Frequency(Hz) 10.625 67.48 195.76 356.68 702.38 1028.98 1435.82 1921.97

Attenuation(dB) 17 19 20 0.5 4 4 1 5

vated by the integral controller are proposed, and their perfor-

mance benefits and drawbacks are discussed. The so-called

Integral Resonant Control scheme, IRC, is implemented on

a cantilever beam. This IRC scheme is shown to damp the

first eight resonant modes of the cantilever beam by up to

24 dB even under resonance frequency uncertainties.
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