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Abstract— This paper describes a method for feedforward
tracking control of linear and non-linear systems with peri-
odic desired trajectories. The method utilizes adaptive Finite
Impulse Response (FIR) filters to realize an adaptive inverse
control scheme. Compared to previously reported frequency
domain methods, this technique can be implemented in real-
time and generates a coefficient update every sampling instance.

The proposed method is successfully applied to the adaptive
inverse control of an experimental nanopositioning system.
The maximum RMS error during both large-range and high-
speed scans was 0.23%. This is comparable to previously
reported frequency-domain techniques and is far superior to
the performance achievable with standard feedback methods.

I. INTRODUCTION

Mechanical scanners with periodic trajectories are found

in many types of scientific and industrial machine. Such

devices include beam scanners [1], manufacturing robots,

cam motion generators, and scanning probe microscopes

(SPMs) [2]. Of these applications, the SPM scanner has

received the most attention in recent years [3], [4], [5]. This is

because the positioning performance, or lack thereof, defines

the microscope’s imaging speed and resolution, two valuable

commodities.

Although piezoelectric nanopositioning systems are de-

signed to provide the greatest possible positioning accuracy,

in practice they exhibit a number of non-ideal characteristics

that severely degrade performance. These include creep,

hysteresis and mechanical resonance [5]. As a result of

these problems, practical nanopositioning systems require

position sensors and a control system to provide satisfactory

performance.

A. Feedback control

The most popular technique for control of commercial

nanopositioning systems is sensor-based feedback using in-

tegral or proportional-integral control. Such controllers are

simple, robust to modeling error, and due to high loop-

gain at low-frequencies, effectively reduce piezoelectric non-

linearity. However, the bandwidth of such controllers is

severely limited by the presence of resonant mechanical

modes. Techniques aimed at improving the closed-loop band-

width are based either on inversion of resonant dynamics

using a notch filter [6] or damping of resonant dynamics
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[7], [8]. Although these techniques do improve closed-loop

bandwidth, they also increase the amount of sensor-induced

positioning noise which decreases resolution [7]. Even with

the increases in closed-loop bandwidth that can be obtained,

the performance is still not sufficient in many applications.

For example, due to the tracking lag and sensor noise

associated with closed-loop control, high-speed scanning

probe microscopes currently use open-loop nanopositioners

[9], [10], [11], [12].

B. Feedforward / inversion control

Feedforward or inversion based control is commonly ap-

plied to both open- and closed-loop nanopositioning systems

that require improved performance [5], [13]. Good refer-

ence tracking can be achieved if the plant model or its

frequency response are known with high accuracy. In addi-

tion to improved performance, other attractive characteristics

of inversion based control are the lack of additive sensor

noise and ease of implementation, particularly in high-speed

applications [14].

The foremost difficulty with inversion based control is

the lack of robustness to variations in plant dynamics,

especially if the system is resonant [15], [13]. However,

this problem only exists with static feedforward controllers.

More recently, iterative techniques have been reported that

eliminate both vibration and non-linearity in systems with

periodic inputs [16]. Although such techniques originally

required a reference model [16], in 2008, both Kim and

Zou [17] and Li and Bechhoefer [18] presented techniques

that operate without any prior system knowledge. Both

techniques achieve essentially perfect tracking regardless of

non-linearity or dynamics. This is an extremely desirable

characteristic and was previously unobtainable prior to the

publication of this work.

The only apparent disadvantage associated with iterative

feedforward techniques [17], [18] is the computational com-

plexity. As both methods operate in the frequency domain,

a single iteration requires a number of input and output

periods and the computation of Fourier and inverse Fourier

transforms. Even considering the signal processing capabil-

ities available in modern scanning probe microscopes, the

required computations are significant.

Contribution of this work

In this work, a new time-domain feedforward controller is

reported that achieves a similar level of tracking performance

to frequency domain techniques [17], [18], but without the

computational load. Due to the lesser computational load,
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(a) P-734 Nanopositioner

(b) Frequency Response (µm/V )
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Fig. 1. The P-734 nanopositioning platform (a), and frequency response of one axis (b) (with an amplifier gain of 20)

the proposed technique is straight-forward to implement in

real-time and at high-speed. In addition, the filter coefficients

are updated every sample rather than every period.

This paper continues in the next Section with a description

of the experimental apparatus. This is followed by Section III

that demonstrates the capability of an FIR filter to perfectly

invert non-linearity and dynamics. The standard adaptive FIR

filter is then reviewed in Section IV. This adaptive filter is

then utilized in an adaptive inverse scheme in Section V. The

paper is concluded in Section VI.

II. EXPERIMENTAL SETUP

All of the concepts discussed throughout this paper will

be demonstrated on a piezoelectric nanopositioning system.

Such a system is an ideal demonstration platform as it

exhibits both non-linearity and a lightly-damped resonance,

two challenging characteristics to control [5].

Two-axis micro- and nano-positioning stages are used

extensively in many forms of scanning probe microscope.

They typically comprise a pair of piezoelectric actuators,

mechanical displacement amplifiers and a flexure guided

sample platform. Although these configurations can achieve

high precision with millimeter range motion, the internal dis-

placement amplifiers, large piezoelectric stacks and platform

mass contribute to a low mechanical resonance frequency.

An example of such a stage is the Physik Intrumente P-

734 pictured in Figure 1(a). This stage has a range of 100

microns but a resonance frequency of only 420 Hz. The

frequency response of one axis is plotted in Figure 1(b).

The position is measured with a two-plate capacitive sensor

fitted to both axes, the accompanying electronics provides a

full scale output of 6.7 V at 100 µm displacement.

In open-loop or with integral control, the P-734 is limited

by mechanical resonance to scan frequencies of 5 Hz or less.

The aim of this paper is to invert these dynamics to allow

scanning at any frequency or amplitude. The only remaining

r

e
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u

P yx z

Fig. 2. An adaptive feedforward control scheme where the input r is
filtered to minimize the difference between the the desired trajectory r and
plant output y

limitations should be the physical limitations imposed by the

mechanics of the positioner and amplifier electronics. These

limitations include the maximum tensile load of the actuators

and the maximum slew-rate and current limit of the amplifier

[19].

The control techniques presented are implemented using

Simulink, the Real Time Workshop, and a dSpace ds1103

rapid prototyping system.

III. INVERSE MODEL STRUCTURE

The goal of a feedforward controller is to ameliorate the

dynamics and non-linearity of a plant P so that a reference

command r is perfectly reproduced at the plant output y. A

diagram representing a feedforward control scheme is shown

in Figure 2. In this diagram, the controller F is not static but

its parameters are free to vary with time. The tracking error e

is also available to the controller so that the parameters may

be adjusted in a way that minimizes tracking error. Such a

scheme is known as adaptive inverse control [20].

The starting point of any feedforward control scheme is to

select a model structure for F that has sufficient complexity

to represent the inverse P−1. For linear systems, this choice

can be straight-forward as F requires only equal or greater

order than P−1. However, if the system contains some form
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(a) A triangular signal r being distorted by the plant P
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Fig. 3. The frequency and time domain representation of a triangular scanning signal r being distorted by the dynamics and non-linearity of the plant P .

of non-linearity, the choice of inverse model immediately be-

comes more difficult. For piezoelectric nanopositioning sys-

tems, where the foremost non-linearity is hysteresis, model

structures have included the inverse Preisach operator [21],

homogenized energy models [22], polynomial methods [23]

and many others [5]. Although good tracking performance

has been reported, such techniques are not generally known

to be accurate over a wide range of amplitudes, waveforms

and frequencies.

The foremost disadvantage of a structured inverse model

is its limitation to a specific type of non-linearity. A model

structure that can invert any type of non-linearity is more de-

sirable. Although this objective is in general, not possible, the

problem is simplified if the reference command is periodic.

If the output is also periodic and band-limited with the same

fundamental frequency as the reference, the complexity of P

and P−1 is bounded. It is this assumption of periodicity that

allows a simple model structure to be used in the following.

The choice of model structure is best motivated with a

frequency domain argument. Consider the triangular refer-

ence waveform r and plant output y plotted in Figure 3. The

samples of r are denoted rn where n ∈ {0, 1, 2, · · · , N − 1}
and N is the number of samples per period. In the illus-

tration, the sampling frequency Fs is equal to eight times

the fundamental frequency of r. Also plotted in Figure 3 is

the spectrum of r and y. As the signals are periodic, the

spectrum’s of r and y are both line spectra defined at N

frequencies between 0 and Fs, known as the harmonics [24].

Again due to periodicity, the spectral components or r and

y are defined by the discrete Fourier series Rk and Yk [24],

where the analysis function is

Rk =
1

N

N−1
∑

n=0

rn e−jn 2πk

N . (1)

The synthesis function which reproduces r from Rk is [24]

rn =
N−1
∑

k=0

Rk ejn 2πk

N , (2)

Due to periodicity, A key feature of the signals r and

y is that they are both completely described by N Fourier

coefficients. This is a strict limit on the complexity of each

signal and on the required complexity of F .

To achieve perfect inversion of P regardless of dynamics

and non-linearity, F requires an arbitrary frequency response

at the N harmonics of r between 0 and Fs. That is,

F (jωk) =
1

P (jωk)
where ωk ∈

2πFs

N
[0, 1, · · ·N − 1]

(3)

A filter that provides this required response is a Finite

Impulse Response (FIR) filter of length N . Hence, this is our

choice of model structure for F . Advantageously, FIR filters

are the simplest form of digital filter and are computationally

undemanding to implement.

The output zn of an FIR filter is given by

zn =

N−1
∑

i=0

bixn−i (4)

where bi are the filter coefficients and xn is the input. This

is shown diagrammatically in Figure 4.

IV. ADAPTIVE FILTERING

After finding a model structure in the previous section that

allows perfect inversion of the plant P , we now wish to find

a method for updating the filter parameters bi that minimizes

the tracking error en depicted in Figure 2. In this section,

the adaptive FIR filter is reviewed as a tool for reaching this

goal.

To simplify the presentation, vector notation will be used

for the delayed input signal and filter weights. Referring to

Figure 4, at time n, the vectors representing the delayed

bN-1b0 b1 b2 b3

zn

xn

xn-1 xn-2 xn-3 xn-(N-1)

z−1z−1z−1 z−1

Fig. 4. An FIR filter with input x, output z and filter coefficients b. This
filter contains N -1 unit sample delays z−1.
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(a) Adaptive identification
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Fig. 5. Results from an adaptive system identification experiment (a) with a 10-Hz 93-µm scan. The model output in (b), which has been offset for
clarity, closely matches the experimental system output with an RMS error of 0.1%. The convergence speed of the adaptive filter is shown in (c). When
the adaption rate µ is switched from 0 to 1 at time t=275 mS most of the error is immediately eliminated. The small amount of residual error slowly
decays after a few seconds.

samples of the input x and filter weights bi are

xn =
[

xn xn-1 xn-2 · · · xn-(N -1)

]T
(5)

bn =
[

b0 b1 b2 · · · bN -1

]T
.

With this notation the filter output is simply,

yn = x
T
nbn (6)

To update the filter coefficients b, the simplest and most

commonly applied technique is the Normalized Least Mean

Squares (nLMS) algorithm [25]. The new coefficients bn+1

are derived from the previous coefficients bn by

bn+1 = bn + 2µen

xn

‖xn‖
2 . (7)

where µ is the update rate and xn

‖xn‖2 is the vector xn,

normalized by the squared 2-norm. This incredibly simple

update rule is possible as the optimization associated with

adaptive FIR filters is convex [25]. However, a necessary

assumption is that the error en is equal to some desired

output dn minus the actual filter output zn, i.e.

en = dn − zn. (8)

This is a problem as it does not allow any filtering operation

to occur between the filter output z and the error e, which

clearly occurs in Figure 2. This precludes the direct use of

adaptive FIR filters for feedforward control.

Although adaptive FIR filters cannot be directly employed

in feedforward control applications, they can be utilized for

tasks such as adaptive system identification. This scenario

and experimental results are shown in Figure 5. In this case,

the error e is directly related to the filter output z. After the

error has converged to zero, the filter F has exactly the same

response as the plant P . The input signal in this experiment

was shaped to reduce excitation of the mechanical resonance

[26]. With no oscillation, the ability of a linear filter to

exactly model hysteresis is more clearly displayed. This is

a unique characteristic and is only possible with periodic

inputs and the correct choice of filter length, as discussed in

Section III.

V. ADAPTIVE INVERSE CONTROL

As mentioned in the previous section, adaptive FIR filters

cannot be directly applied to the inverse control problem

depicted in Figure 2. The reason is due to the existence

of dynamics between the filter output and the error signal.

These dynamics are known as secondary path dynamics [25].

To eliminate the problems experienced with secondary path

dynamics, the so-called Filtered-x LMS (FXLMS) algorithm

was developed [25], [20].

The FXLMS algorithm, shown pictorially in Figure 6(a),

is similar to the LMS algorithm described in the previous

section. The only difference is the filtering of xn by P̂ , where

P̂ is an estimate of the plant dynamics. That is, the update

rule is now

bn+1 = bn + 2µen

x̂n

‖x̂n‖
2 . (9)

where x̂n is the delayed samples of xn filtered by P̂ .

If P̂ closely models the actual plant dynamics, it can be

proven that the beneficial properties of the LMS algorithm

also extend to the FXLMS algorithm, and perfect inverse

control is possible [25], [20].

The additional complexity with the FXLMS algorithm is

the requirement for a plant model P̂ . As a high degree of

model accuracy is not required [25], [20], many applica-

tions simply use an estimate for P̂ , obtained for example

by system identification. Another approach is to actively

identify P̂ and use this model in the FXLMS algorithm. This

approach is adopted here as no prior system information or

identification steps are required. In the previous section, an

adaptive system identification scheme was described. This

scheme is directly applied in Figure 6(a) to obtain a model

P̂ of the plant. The estimated model P̂ is then copied and

also used in the FXLMS algorithm. The main drawback to
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this technique is that two adaptive filters are required, one

for inverse control and another for system identification.

Experimental results from adaptive inverse control of the

nanopositioning system are presented in Figure 6. Two exper-

iments are reported, one with a 10-Hz large-range reference

trajectory that exhibits significant non-linearity, and another

with a 76-Hz reference that exhibits a large amount of scan-

induced vibration. In both cases, a control signal u was

found that reduces maximum RMS error to 0.23%. This is

an excellent result, far superior to what can be achieved with

standard feedback methods.

In both of the experiments reported, the number of samples

per period was 100. That is, the sampling frequency was 7.6

kHz during the 76 Hz scan. Using Simulink, the Real-Time

Workshop, and a dSpace ds1103 DSP, the execution time

required to implement the FXLMS algorithm and all data

recording functions was 36 µs. This indicates a maximum

sampling rate of around 27 kHz. As digital signal processors

are highly optimized for the implementation of FIR filters,

much faster sampling rates are possible for systems with ded-

icated program code and faster analog to digital converters.

VI. CONCLUSIONS

In this paper, the Filtered-x LMS algorithm (FXLMS) is

applied for adaptive inverse control of a nanopositioning sys-

tem. Advantageously, this technique can be implemented in

real-time and generates a coefficient update every sampling

instance. In experimental results, the maximum RMS error

during both large-range and high-speed scanning was 0.23%.

This is comparable to previously reported techniques that

operate in the frequency domain.

Future work will involve investigation of different adaption

rules and consideration of input signal magnitude. Although

the FXLMS algorithm can provide extremely fast conver-

gence with moderate accuracy, it requires some time to con-

verge to the optimal filter coefficients. This is a well known

characteristic of the LMS algorithm. Other adaption algo-

rithms utilizing a gradient estimate will be investigated. Over

short time scales, these will be slower to converge. However,

over longer time scales, such gradient based algorithms may

be quicker to arrive at the optimal coefficients. Furthermore,

unlike the LMS algorithm, gradient based algorithms do not

impose restrictions on the error signal. This may allow direct

adaptive inverse control, such as that shown in Figure 2,

without the additional complexity of FXLMS.

In this work, the goal was perfect plant inversion. No

consideration was given to the magnitude of control signals

required to do so. For systems that contain resonant zeros, a

mechanism is required to limit the control signal magnitude.

This may take the form of a penalty on control signal power

or a limit on the maximum amplitude of any harmonic.
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Fig. 6. The filtered-x LMS algorithm (a) employed for inverse feedforward control of the P-734 nanopositioning system. The response of the nanopositioner
in open-loop and with feedforward control, to a 10-Hz and 76-Hz scan are plotted in subfigures (c) and (d). In these plots, the measured displacement is
offset from the reference signal for the sake of clarity. The algorithm convergence characteristic during the 76 Hz scan is shown in Figure (b).
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