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Abstract— In this work a new method for feedback control
of nanopositioning systems is proposed. A measurement of
the force applied to the moving platform by the actuator is
utilized as a feedback variable for both tracking and damping
control. Excellent tracking and damping performance can be
achieved with a simple integral controller. Other outstanding
characteristics include guaranteed stability and insensitivity to
changes in resonance frequency. Experimental results on a high-
speed nanopositioner demonstrate an increase in closed-loop
bandwidth from 210 Hz (with an integral controller) to 2.07 kHz
(with force feedback control). Gain-margin is simultaneously
improved from 5 dB to infinity.

I. INTRODUCTION

Nanopositioning stages are used to generate fine mechan-
ical displacements with resolution down to atomic scale [1].
Among other applications in nanotechnology [2], nanopo-
sitioning platforms are used widely in scanning probe mi-
croscopy [3], [4] and nanofabrication systems [5]. An exam-
ple of a single degree-of-freedom lateral positioning platform
is shown in Figure 1. In this device, a force developed by
a piezoelectric actuator displaces the central platform to the
left.

Although piezoelectric nanopositioning systems are de-
signed to provide the greatest possible positioning accuracy,
in practice, they exhibit a number of non-ideal character-
istics such as creep, hysteresis and mechanical resonance
that severely degrade performance [1]. As a result, all
nanopositioning systems require some form of feedback or
feedforward control to reduce or eliminate tracking error.

The most popular technique for control of commercial
nanopositioning systems is sensor-based feedback using in-
tegral or proportional-integral control [6]. Such controllers
are simple, robust to modeling error, and due to high
loop-gain at low-frequencies, effectively reduce piezoelectric
non-linearity. However, the bandwidth of integral tracking
controllers is severely limited by the presence of highly
resonant modes. It can be shown than the maximum closed-
loop bandwidth is equal to the product of damping ratio ξ
and natural frequency ωn [7], that is,

max. closed-loop bandwidth < 2ωnξ. (1)

This is a severe limitation as the damping ratio is usually in
the order of 0.01, so the maximum closed-loop bandwidth is
less than 2% of the resonance frequency. Techniques aimed
at improving the closed-loop bandwidth are based on either
inversion of resonant dynamics using a notch filter [8] or
damped resonant dynamics using a damping controller [9],
[10]. Inversion techniques are popular as they are simple to
implement and can provide excellent closed-loop bandwidth,
however, they also require an accurate system model and
are highly sensitive to variations in resonance frequency.
Damping control is more robust to changes in resonance
frequency but the system is still limited by low gain margin.
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Fig. 1. A single degree-of-freedom positioning stage

The wide bandwidth of a damping controller can introduce
a significant amount of sensor-induced positioning noise,
which cannot be reduced in the normal way by scaling back
the tracking controller gain.

In this work, a new method for feedback control of
nanopositioning systems is proposed. A measurement of the
force applied to the moving platform by the actuator is
utilized as a feedback variable for both tracking and damping
control. A major benefit of this arrangement is discussed
in Section II. The system exhibits a zero-pole ordering,
meaning that the resonant zeros of the system appear lower
in frequency than the resonant poles. In Section III a simple
integral controller is shown to provide damping performance
without any limitations on gain. The system is guaranteed to
be stable with a theoretically infinite gain-margin and 90
degrees phase-margin. In addition to damping control, the
controller described in Section III is extended to provide
tracking control without loss of performance or stability
margins. As the noise generated by a piezoelectric force
sensor is much lesser than a capacitive or inductive position
sensor, the closed-loop positioning noise is also substantially
reduced. The performance of the proposed techniques are
demonstrated experimentally in Section V.

II. MODELLING

In this section, a model is derived for the single degree-of-
freedom lateral positioning platform illustrated in Figure 1.
Although the model presented is simple, it adequately rep-
resents the dominant dynamics exhibited by many nanopo-
sitioning geometries.

A. Actuator dynamics

A typical multi-layer monolithic stack actuator is pictured
in Figure 2 (a). It can be shown that a piezoelectric stack
actuator can be represented as the force generator, stiffness
and mass illustrated in 2 (b). The developed force Fa and
stiffness ka are [7]

Fa = d33nkaVa ka =
cEA

L
, (2)

where d33 is the piezoelectric strain constant, n is the number
of layers, Va is the applied voltage, cE is Young’s elastic
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Fig. 2. (a) A Noliac monolithic stack actuator represented in (b) by a
voltage dependent force Fa, stiffness ka, effective mass Ma and damping
coefficient ca

modulus under constant electric field, A is the surface area
and L is the length. The ratio of developed force to applied
voltage is d33nka Newtons per Volt. In following sections,
this constant will be denoted ga where

Fa = gaVa and, ga = d33nka.

B. Sensor dynamics

Although the load force Fs can be measured in a number
of ways, in this application it is desirable to minimize the
additional mass and compliance associated with the sensor.
In such scenarios, piezoelectric transducers are an excellent
choice. They provide high sensitivity and bandwidth with
low-noise at high frequencies. Piezoelectric force sensors can
be calibrated using either voltage or charge. The open-circuit
voltage Vs of a piezoelectric force sensor is

Vs =
nd33Fs

C
, (3)

where n is the number of layers, d33 is the piezoelectric
strain constant, Fs is the applied force, C is the transducer
capacitance C=nǫTA/h and A, h and ǫT are the area,
thickness and dielectric permittivity under constant stress.
The scaling factor between force and measured voltage is
nd33

C
Volts per Newton. In following sections, this sensor

constant will be denoted gs, i.e.

Vs = gsFs, and gs =
nd33
C

. (4)

C. Sensor Noise

Due to the high mechanical stiffness of piezoelectric force
sensors, thermal or Boltzmann noise is negligible compared
to the electrical noise arising from interface electronics. As
piezoelectric sensors have a capacitive source impedance, the
sensor noise density NV s(ω) is due primarily to current noise
in reacting with the capacitive source impedance, i.e.

NV s(ω) = in
1

Cω
, (5)

where NV s and in are the power spectral densities, measured

in Volts and Amps per
√

Hz respectively.

D. Mechanical dynamics

The mechanical diagram of a single axis positioner is
shown in Figure 3. The developed actuator force Fa results
in a load force Fs and platform displacement d. The stiffness
and damping coefficient of the flexures and actuator are
denoted kf , cf , and ka, ca respectively.

The dynamics of the suspended platform are governed by
Newton’s second law,

Md̈+ kd+ cḋ = Fa, (6)

kf cf

Mp

Ma

d

ka Fa ca

Fs

Fig. 3. Mechanical diagram of a single-degree-of-freedom positioning
stage. Fs is the measured force acting between the actuator and platform
mass in the vertical direction.

where M = Ma + Mp, k = ka + kf ,and c = ca + cf..
The transfer function from actuator force Fa to platform
displacement d is

d

Fa

=
1

Ms2 + cs+ k
. (7)

Including the actuator gain, the transfer function from ap-
plied voltage to displacement can be written

GdV a =
d

Va

=
ga

Ms2 + cs+ k
(8)

The load force Fs is also of interest, this can be related
to the actuator force Fa by applying Newton’s second law
to the actuator mass,

Mad̈ = Fa − kad− caḋ− Fs. (9)

This results in the following transfer function between the
applied force Fa and measured force Fs,

Fs

Fa

=
Mps

2 + cfs+ kf
Ms2 + cs+ k

. (10)

By including the actuator and sensor gains ga and gs,
the system transfer function from the applied voltage to
measured voltage can be found,

GV sV a =
Vs

Va

= gags
Mps

2 + cfs+ kf
Ms2 + cs+ k

. (11)

The two system transfer functions GdV a and GV sV a, will
be used in the following sections to simulate the performance
of feedback control systems. As both of these transfer
functions have the same input Va and poles, it is convenient
to define a single-input two-output system G that contains
both of these transfer functions,

G =

[
GdV a

GV sV a

]
(12)

E. System Properties

This transfer function GV sV a (11) consists of a pair of
resonant poles and zeros at frequencies ωz and ωp,

ωz =

√
kf
Mp

, ωp =

√
k

M
=

√
ka + kf
Ma +Mp

.

In general, the resonance frequency of the zeros will
appear below the poles. The condition for this to occur is
Makf < kaMp. As the actuator mass Ma and flexural
stiffness kf are significantly lesser than the actuator stiffness
ka and platform mass Mp, the resonant zeros will always
occur below the resonance frequency of the poles.
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Fig. 4. A nanopositioning system GV sV a, with input and output voltages
Va and Vs proportional to applied and measured force, controlled by an
Integral Force Feedback (IFF) damping controller Cd(s)

III. DAMPING CONTROL

The technique of Integral Force Feedback (IFF) has been
widely applied for augmenting the damping of flexible struc-
tures [11], [12]. The feedback law is simple to implement and
under common circumstances, provides excellent damping
performance with guaranteed stability [11]. In the following,
IFF is applied to augment the damping of nanopositioning
systems.

The feedback diagram of an IFF damping controller is
shown in Figure 4.

A key observation of the system GV sV a is that its phase
response lies between 0 and 180 degrees. This is a general
feature of flexible structures with inputs and outputs propor-
tional to applied and measured force [11]. A unique property
of such systems is that integral control can be directly applied
to achieve damping, i.e.

Cd(s) =
α

s
(13)

where α is the controller gain. As the integral controller has
a constant phase lag of 90 degrees, the loop-gain phase lies
between -90 and 90 degrees. That is, the closed-loop system
has an infinite gain-margin and phase-margin of 90 degrees.
Simplicity and robustness are two outstanding properties of
systems with integral force feedback.

A solution for the optimal feedback gain α⋆ has already
been derived in reference [11]. This results can be adapted
for the system considered in this work. Neglecting the damp-
ing, and assuming that the actuator mass Ma is negligible
compared to the platform mass Mp, the optimal feedback
gain α⋆ is

α⋆ =
ωp

√
ωp/ωz

gsga
. (14)

The optimal gain can also be found numerically from the
root-locus diagram of a particular system, this can be useful
if the model parameters are unknown, i.e., if the system
GV sV a was procured directly from experimental data by
system identification. This approach is taken in Section V.

IV. TRACKING CONTROL

After studying the relationship between force and displace-
ment in the following subsection, three different tracking
controller architectures will be discussed.

A. Relationship between force and displacement

The relationship between measured force and displace-
ment can be found by applying Newton’s second law to
the platform mass. The measured voltage Vs is related to
displacement by

d

Vs

=
1/gs

Mps2 + cfs+ kf
(15)

(a) Basic Integral Control
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Fig. 5. The feedback diagram of a basic integral controller and three types
of force-feedback controller

From this transfer function, it can be observed that displace-
ment is proportional to force up until the frequency of the

system zeros, ωz =
√
kf/Mp. The scaling factor is gcl =

1/gskf meters per Volt. As Vs is directly proportional to
displacement at frequencies below ωz , it makes an excellent
feedback variable when trajectory tracking is required.

B. Integral displacement feedback

The most straight-forward technique for achieving dis-
placement tracking is to simply enclose the system in an
integral feedback loop, as pictured in Figure 5 (a). The
tracking controller Ct is simply

Ct =
β

s
. (16)

In this strategy, the displacement d must be obtained with a
physical displacement sensor such as a capacitive, inductive
or optical sensor [13]. As discussed in the Introduction, the
foremost limitation of integral tracking controllers is the
bandwidth due to low gain-margin.

C. Direct tracking control

The low bandwidth of integral tracking controllers can be
significantly improved by adding an internal force feedback
loop as shown in Figure 5 (b). As the damping controller
eliminates the lightly damped resonance, gain-margin is
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drastically increased, allowing a proportional increase in
tracking bandwidth.

To find the closed-loop transfer function, it is first conve-
nient to find the transfer function of the internal loop. That

is, the transfer function Ĝdu from u to d, this is

Ĝdu =
GdV aCd

1 + CdGV sV a

. (17)

The closed-loop response Ĝdr from r to d is then

Ĝdr =
CtĜdu

1 + CtĜdu

, (18)

Although this schemer provides a significant bandwidth
improvement, the gain-margin is still sensitive to changes in
resonance frequency. In practice, the controller needs to be
conservatively designed for stability with the lowest possible
resonance frequency.

D. Dual sensor feedback

In the Section IV-A it was found that measured force is
proportional to displacement at frequencies below the system
zeros. A logical progression is to simply apply a reference
input r to the force feedback loop and expect displacement
tracking at frequencies from DC to ωz . Unfortunately this is
not possible due to the high-pass filter formed by the piezo-
electric capacitance and finite input impedance of charge
amplifiers and voltage buffers.

The diagram of a dual sensor control loop is contained in
Figure 5 (c). This tracking control loop is similar to Figure
4 except for the additional complementary filters FH and
FL. These complementary filters substitute the displacement
measurement d for Vs at frequencies below the crossover
frequency ωc, which in this study is 10 Hz. The simplest
choice of complementary filters are

FH =
s

s+ ωc

, and FL =
ωc

s+ ωc

. (19)

As the measured displacement signal d will have a differ-
ent sensitivity than Vs, it must be scaled by an equalizing
constant λ, as shown in the diagram. The value of λ should
be

λ =
GV sV a(0)

GdV a(0)
(20)

If λ is chosen correctly, the closed-loop response Ĝdr is

Ĝdr =
GdV aCd

1 + CdGV sV a

. (21)

As this control loop is unconditionally stable, there is no
restriction on the gain of Cd. However, Cd was chosen in the
previous section to provide optimal damping performance,
this value should be retained. Further increases in Cd are
not productive as the disturbance rejection at the resonance
frequency will degrade.

E. Low frequency bypass

If a physical displacement sensor is not available, or the
system does not require a high level of DC accuracy, the
low frequency displacement can be estimated from the input
voltage Va as shown in Figure 5 (d). This scheme can be
viewed as a simple first-order observer that estimates DC
position. The signal Va requires the same sensitivity as Vs

so the scaling constant is λ = GV sV a(0).If λ is chosen cor-
rectly, the closed-loop response and stability characteristics
are the same as that discussed in the previous subsection..

Fig. 6. High-speed nanopositioning platform described in [15]

(a) Plate sensor (b) Discrete (c) Integrated

Fig. 7. Three types of piezoelectric force sensor, (a) a plate force sensor,
(b) a stack actuator with discrete force sensor, and (c) a stack actuator with
integrated force sensor.

F. Feedforward inputs

The feedforward inputs uff shown in Figure 5 can be
used to improve the closed-loop response of the system [14].
Inversion based feedforward provides the best performance
but the additional complexity is undesirable for the analog
implementation considered in this work. A basic but effective
form of feedforward compensation is to simply use the
inverse DC gain of the system as a feedforward injection
filter, i.e.uff = kffr.This is easily implemented and can
provide a reduction in tracking lag.

G. Higher-order modes

So far, only a single-degree-of-freedom system has been
considered. Although this is appropriate for modelling the
first resonance mode, it does not capture the higher-order
modes that occur in distributed mechanical systems. How-
ever, such higher order modes are not problematic as they
do not disturb the zero-pole ordering of the transfer function
from applied actuator voltage to the measured force.

In reference [12] it is shown that the transfer function
of a generalized mechanical system with a discrete piezo-
electric transducer and collocated force sensor is guaranteed
to exhibit zero-pole ordering. That is, the transfer function
GV sV a will always exhibit zero-pole ordering. As the zero-
pole ordering of the system is guaranteed, it follows that
the controller discussed in Section III will also guarantee
the stability of systems with multiple modes. The zero-pole
ordering of an experimental system with multiple modes,
and its successful control using the proposed technique, is
reported in the following section.

V. EXPERIMENTAL RESULTS

A. Experimental nanopositioner

In reference [15] a high-bandwidth lateral nanopositioning
platform was designed by Dr. Kam K. Leang (University of
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Nevada, Reno) for video speed scanning probe microscopy.
This device, pictured in Figure 6, is a serial kinematic
device with two moving platforms both suspended by leaf
flexures and driven directly by 10-mm stack actuators. The
displacement is measured with an ADE Tech 2804 capacitive
sensor.

The small stage in the center, designed for scan-rates up
to 5 kHz, is sufficiently fast with a resonance frequency of
29 kHz [15]. However, the larger stage which provides mo-
tion in the adjacent axis is limited by a resonance frequency
of 1.5 kHz. As this stage is required to operate with triangular
trajectories up to 100 Hz, active control is required.

The main application for this nanopositioning device is
high speed scanning probe microscopy. In this application,
high-resolution and wide bandwidth are the most desir-
able characteristics. The force-feedback technique with low-
frequency bypass, as discussed in Section IV-E, is the most
suitable technique and will be applied here.

The platform under consideration is mechanically similar
to the system in Figure 1. The major difference is the exis-
tence of higher frequency modes beyond the first resonance
frequency. These can be observed in the open-loop frequency
response plotted in Figure 8 (a). Although only a single mode
system was previously discussed, the existence of higher
order modes is not problematic. The zero-pole ordering and
stability properties hold regardless of system order. This topic
was discussed in detail in Section IV-G

B. Actuators and force sensors

As discussed in Section II-B, both piezoelectric plate and
stack sensors can be used to measure force. A piezoelectric
plate sensor is pictured in Figure 7 (a). Also shown in Figure
7 (b) is a 10 mm Noliac SCMAP07 actuator connected to a
2 mm Nolian CMAP06 stack force sensor. The metal half-
ball is used to eliminate the transmission of torsion and
bending moments to the force sensor and moving platform.

For high-speed nanopositioning applications, the force
sensor can also be integrated into the actuator. Such an
arrangement is pictured in Figure 7 (c). The actuator is a
standard 10 mm Noliac SCMAP07 stack actuator with one
of the four internal actuators wired independently for use as
a sensor.

Although integrated sensors are convenient and provide
the highest mechanical stiffness, they also have an associated
disadvantage. In addition to measuring the applied load force,
an integrated sensor also detects contraction of the actuator
due to Poisson Coupling as the actuator elongates. This
contraction is coupled to the sensor and results in a small
additive voltage opposite in polarity to the voltage induced
by the load force. This error is small in systems where the
flexural stiffness is appropriately matched to the stiffness of
the actuator. In positioners with poorly matched actuators,
i.e. where the flexural stiffness is much lesser than the
actuator stiffness, the error due to Poisson Coupling can be
significant. In such cases however, the error can be eliminated
using the arrangement shown in Figure 7 (b).

In the following experiments, the actuator with integrated
sensor is utilized. The integrated sensor simplifies the stage
assembly and provides the highest mechanical stiffness.

The actuator was driven with a Piezodrive PDL200 linear
amplifier. With the 250 nF load capacitance the PDL200
provides a bandwidth of approximately 30 kHz.

C. Control design

To facilitate analysis of the control loop, a model was
procured using the frequency domain subspace technique1

[16]. In Figure 8 (a) the response of a 7th order, single-
input, two-output identified model can be verified to closely
match the system response.

The optimal control gain was determined using the root-
locus technique as β=7800. Together with the 1-Hz corner
frequency complementary filters, the controller was imple-
mented with an analog circuit. Due to the simplicity of
the control loop, analog implementation is straight-forward
and has the benefits of avoiding the quantization noise,
finite resolution and sampling delay associated with digital
controllers.

The closed-loop frequency response is plotted in Figure
8 and reveals significant damping of the first three modes
by 24, 9 and 4 dB. In addition to experimental data, the
simulated response is also overlain which shows a close
correlation. The tracking bandwidth of the closed-loop sys-
tem is 2.07 kHz, which is higher than the open-loop reso-
nance frequency and significantly greater than the bandwidth
achievable with a direct tracking controller, predicted to be
210 Hz with a 5-dB gain-margin.

In Figure 8 (c) the linearity of the system at 100 Hz is
plotted. The large ellipse in the open-loop response is due
solely to hysteresis as the system phase response at 100 Hz is
negligible. Due to the high loop-gain of the force feedback
controller, hysteresis is effectively eliminated, even at 100
Hz.

The time domain response of the closed-loop system to
an 80 Hz triangular input is plotted in Figure 8 (d). Due to
the high loop-gain and resonance damping, the closed-loop
response exhibits negligible induced vibration and minimal
tracking lag.

VI. CONCLUSIONS

In this work a force sensor is added to a nanopositioning
stage. The resulting transfer function from applied voltage to
measured force exhibits a zero-pole ordering which greatly
simplifies the design and implementation of a damping
controller.

In addition to damping control, the force sensor can also be
used to estimate the platform displacement. This allows the
damping controller to be adapted into an exceptionally high-
performance tracking controller without sacrificing stability
margins.

As with all piezoelectric sensors, the force sensor exhibits
a high-pass characteristic at low-frequencies. This problem
is solved by replacing the low-frequency force signal with a
physical displacement measurement or displacement estimate
based on the open-loop system dynamics.

Simulations on a nanopositioner model demonstrate the ef-
fectiveness of the proposed tracking and damping controller.
The dual-sensor integral force feedback controller provides a
closed-loop bandwidth approaching the open-loop resonance
frequency while maintaining an infinite gain-margin and 90
degrees phase-margin. By comparison, a standard integral
displacement feedback controller achieves only 5% of the
bandwidth with a gain-margin of only 1 dB.

Future work involves the construction of a two-axis po-
sitioner with force-feedback for video-speed atomic force
microscopy.

1A Matlab implementation of this algorithm is freely available by
contacting the author.
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Fig. 8. The open- (a) and closed-loop (b) frequency responses of the nanopositioning system. Also plotted are the open- and closed-loop linearity (c) and
response to an 80-Hz triangle wave (d). For the sake of clarity, the displacement curves in Figure (d) have been offset from each other by 100 nm.
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