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Abstract— The speed and accuracy of nanopositioning sys-
tems is heavily influenced by the presence of lightly damped
mechanical resonances. In this work, an electrical impedance is
connected in series with the driving piezoelectric stack actuator
to damp the first mechanical resonance. The electrical shunt
is shown to act equivalently to an output feedback controller
except that no sensor is required. A simple inductor-resistor
shunt circuit is demonstrated to damp the first mechanical
resonance of a high-speed nanopositioner by 19.6 dB. The
technique of shunt damping is low-cost, simple, guaranteed to
be stable, and significantly improves the system response.

I. INTRODUCTION
Nanopositioning devices generate fine mechanical dis-

placement with resolution down to atomic scale [1]. Applica-
tions include the alignment of optical fibers [2], optical beam
pointing [3], positioning in Scanning Probe Microscopes
(SPMs) [1], [4], and nanofabrication [5].

Due to their effectively infinite resolution, piezoelectric ac-
tuators are universally employed in nanopositioning devices.
Unfortunately the accuracy of nanopositioning platforms
is significantly degraded by creep and hysteresis exhibited
by most piezoelectric materials. In addition, low-frequency
mechanical resonances cause oscillation and degrade the
performance of controllers designed to reduce nonlinearity
[1].

To avoid excitation of the mechanical resonance in open-
loop, the frequency of driving signals is limited to between
1% and 10% of the resonance frequency (depending on the
signal). In the case of scanning motion the driving signal
is typically a triangle wave, comprised of odd harmonics of
the fundamental frequency. If these harmonics excite one
or more resonant modes, the resulting displacement can
become highly oscillatory. This is a major limitation for
applications that require high-speed positioning such as video
speed microscopy [6]–[9].

The transient response of nanopositioners can be drasti-
cally improved by damping the first mechanical resonance.
A number of techniques for damping control have been
demonstrated successfully in the literature, these include
Positive Position Feedback (PPF) [10], polynomial based
control [11], shunt control [12], [13], resonant control [14]
and Integral Resonant Control (IRC) [15]–[17].

In this paper we describe a new technique for damping
mechanical resonances in stack actuated nanopositioners. By
connecting an electrical impedance in series with the stack
actuator, the impedance can be designed to damp a single, or
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Fig. 1. High-speed nanopositioning platform described in [18].

multiple mechanical modes. This technique, known as shunt
damping [13], was first applied to piezoelectric tube scanners
in reference [12]. In that work, the shunt was implemented
electronically and placed in parallel with the stack actuator
and a driving charge source. In this work, it is demonstrated
that a standard voltage amplifier in series with an inductor
and resistor can be used to achieve the same result.

In the following section, an electromechanical model of
a nanopositioning platform is developed. The shunt circuit
is then shown to act equivalently to an output feedback
controller. That is, it is possible to convert any output feed-
back controller to a shunt circuit and vice-versa. However,
this may not be desirable as there is no gaurantee that the
resulting controller, or shunt circuit, will be causal or stable.
The shunt circuit used in this work is a simple inductor and
resistor, this acts analogously to a tuned mechanical absorber.
In Section III the shunt circuit is applied experimentally. Re-
sults demonstrate an excellent agreement between theoretical
and experimental responses. The first mechanical resonance
is reduced by 19.6 dB which significantly improves the
nanopositioner’s transient response with negligible increases
in cost, complexity, and noise.

II. MODELING

A. Description of the experimental system

In [18] a high-bandwidth lateral nanopositioning platform
was designed for video speed scanning probe microscopy.
This device, pictured in Fig. 1, is a serial kinematic device
with two moving platforms both suspended by leaf flexures
and driven directly by 10 mm Noliac SCMAP07 stack
actuators. The displacement was measured using an ADE
Tech 4810 gage with an ADE Tech 2805 probe (10 µm/V).
The actuator was driven with a Piezodrive PDL200 linear
voltage amplifier. Only the axis with the lowest resonance
frequency was used in this work.
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B. Stack actuator blocking force

The actuator used is a piezoelectric stack. It consists of
multiple layers of piezoelectric ceramic material. The stack
is designed so that applied electric field is in parallel to the
poling direction of the ceramic. This causes the developed
force to work on the attached mechanical structure in the
same direction.

The blocking force of the actuator can be found by
assuming that the stack is clamped in the poling direction,
but free to expand in other directions. All forces are also
assumed to be working along the poling direction, as well
as the applied electric field. Under these conditions the stress
on one layer, or element, of the stack will be

σ3 =−d33
(
cE

33−2cE
13ν
)

E3, ν =
cE

13

cE
11 + cE

12
.

The poling direction is along the 3 axis. σ3 is the stress
[N/m2] in this direction, d33 is the piezoelectric strain con-
stant [m/V] for the material in this direction, cE

11, cE
12, cE

13,
and cE

33 are elastic stiffnesses [N/m2] for the material, and
E3 is the applied electric field [V/m].

The geometry of one stack element should be well approx-
imated by a rectangular cuboid, with length, or thickness, t,
and having a surface area of A for the faces normal to the
direction of the length. Any forces working on the attached
mechanical structure should be distributed over these faces,
and any voltage applied over electrodes on these faces, must
be distributed over the thickness. The stress on the element
due to a force Fa in the poling direction should therefore
be σ3 = Fa

A , and the electric field due to applied voltage Va
should be E3 = Va

t .
In a static configuration there should now be a balance of

stress in the element as

Fa

A
−d33

(
cE

33−2cE
13ν
)Va

t
= 0.

If the stack has n elements, the length of the stack is ` = nt.
The blocking force developed by the stack can now be found
to be

Fa = nd33k̃aVa, k̃a =

(
cE

33−2cE
13ν
)

A
`

, (1)

where k̃a can be recognized as the stiffness [N/m] of the
stack.

C. Mechanical model

Fig. 2 shows a simplified schematic of the flexure guided
positioning stage. The actuator develops a force that will
result in a displacement of the moving platform along the
direction indicated.

The mechanical structure is assumed equivalent to a mass-
spring-damper system, such as the one given in the mechan-
ical diagram for of Fig. 3. Newton’s second law for this
system is

(Mp +Ma) ẍ = Fa− k̃ax− k f x− caẋ− c f ẋ

which can be truncated to the form

Mẍ+ cẋ+ kx = Fa,

Flexures

Position
sensor

Actuator

Moving platform

Fixed base

x

Fig. 2. Simplified schematic of the single degree-of-freedom flexure guided
positioning stage.
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Fig. 3. Mechanical diagram for the positioning stage.

where

M = Mp +Ma, c = c f + ca, k = kp + k̃a.

Using (1), we find the transfer function from applied
voltage Va to displacement x to be

ĜxVa =
x̂

V̂a
=

nd33k̃a

Ms2 + cs+ k
. (2)

D. Generated charge

Allowing the stack to also move along the 3 axis, we can
find the stress σ3 on an element due to a strain ε3 in this
direction according to Hooke’s law as

σ3 =
(
cE

33−2cE
13ν
)

ε3, ν =
cE

13

cE
11 + cE

12
.

The strain of the element is defined as the ratio of the
increase in length, or displacement, x, of the element, and
the original length, t. That is, ε3 = x

t .
The generated charge density D3 on the surfaces of the

electrodes due to the stress σ3 and the electric field E3 is

D3 = d33σ3 +κ
σ
33E3.

The charge produced by an element should be q = AD3, thus
the charge produced by the stack due to a displacement and
an applied voltage should then be

q = nd33k̃ax+CpVa,

k̃a =

(
cE

33−2cE
13ν
)

A
`

, Cp =
n2κσ

33A
`

, (3)

where k̃a is the stack’s stiffness as before, and Cp is the
capacitance [F] of the stack.
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Fig. 5. Block diagram for the shunted system.

The displacement is given by (2), thus the transfer function
from applied voltage Va to generated charge q is

ĜqVa =
q̂

V̂a
= nd33k̃aĜxVa +Cp. (4)

E. Shunt

The piezoelectric stack is made from lead zirconate ti-
tanate, which is a material with a large dielectric constant.
The stack will therefore function as a capacitor. Adding an
inductor and a resistor in series with the piezoelectric stack,
a series LCR circuit is obtained. This arrangement is shown
in Fig. 4.

The loop equation for the circuit in Fig. 4 is

Vs = VZ +Va,

and we can see that the voltage drop over the shunt is

V̂Z = sẐq,

where the impedance of the shunt Ẑ is

Ẑ = R+ sL,

where R is resistance [Ω] and L is inductance [H]. The block
diagram for the shunted piezoelectric stack can be seen in
Fig. 5. From (4) and Fig. 4 we can recognize that Vp must
be

Vp =−nd33k̃a

Cp
x =−αx, α =

nd33k̃a

Cp
.

From the block diagram we can find the transfer function
from the source voltage Vs to the applied voltage Va to be

ĜVaVs =
V̂a

V̂s
=

1
1+ sẐGqVa

=
F̂

1+ K̂ĜxVa

(5)

where
F̂ =

1
1+ sẐCp

(6)

GVa

q

K

Vw

xF
Vs

Fig. 6. Feedback control formulation.

and

K̂ =
sẐCpα

1+ sẐCp
. (7)

From (2) and (4) it is now straight forward to find the transfer
function to the displacement and charge as

ĜxVs =
x̂

V̂s
= ĜxVaĜVaVs (8)

and
ĜqVs =

q̂
V̂s

= ĜqVaĜVaVs . (9)

Shown in the block diagram is a disturbance voltage Vw,
which is added to the applied voltage. The transfer function
from disturbance Vw to applied voltage Va can be found to
be

ĜVaVw =
V̂a

V̂w
=

1
1+ K̂ĜxVa

, (10)

and the transfer function to the displacement x becomes

ĜxVw =
x̂

V̂w
=

ĜxVa

1+ K̂ĜxVa

. (11)

In the above development we have introduced the trans-
fer functions F̂ and K̂. With reference to Fig. 6 we can
understand these to be a filter and a feedback controller,
respectively. Comparing (5) and (10) we understand that F̂
will filter the source voltage Vs, such that any reference signal
should be filtered by F̂−1, that is V̂s = F̂−1r̂.

III. EXPERIMENTS
A series a experiments was performed in order to tune the

shunt circuit and observe the effectiveness of the proposed
technique.

A. Parameters
For the series LCR circuit, we know that the undamped

resonance frequency is given by

2π f0 =
1√
LCp

. (12)

Knowing the resonance frequency of the first vibrational
mode of the positioning stage and the capacitance of the
piezoelectric stack, the needed inductance necessary for
tuning the undamped resonance frequency of the LCR circuit
can be found from (12),

L =
1√

Cp(2π f0)2
. (13)

Obtaining experimental gain-phase data for the input Va to
the outputs x and q, it is possible to identify both f0 and Cp.

4965



−40

−30

−20

−10

0
μ

m
/V

 (d
b)

102 103
−270

−180

−90

0

90

θ 
(d

eg
)

f  (Hz)

Fig. 7. Measured frequency response from applied voltage Va to displace-
ment x, ĜxVa .
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Fig. 8. Measured frequency response from applied voltage Va to generated
charge q, ĜqVa , and the curve fit used to identify Cp and α . The frequency
response from applied voltage Va to charge q, ĜqVa , was generated using
the data from Fig. 7 and (4) and compared to the actual measured response.

This was done using a HP356708 Dynamic Signal Analyzer.
Inspecting Fig. 7, which displays the response from the
applied voltage to displacement, f0 is found to be 1.84 kHz.

Inspecting (4), it is apparent that the parameters Cp and
α = nd33 k̃a

Cp
can be identified, having obtained experimental

data for the transfer functions ĜxVa and ĜqVa , using e.g. a
curve fit. This is shown on Fig. 8. The obtained values are
presented in Tab. I1.

Now, an estimated value for the required inductance can be
found. Using equation (13) the required inductance is 20 mH,
which can easily be implemented with a physical inductor.
Since the system is not completely without damping, one
would expect that the optimal inductance would be slightly

1It might be noted that the value for Cp, using a Fluke 289 multimeter,
was found to be 411 nF. The discrepancy between the this value and the
value in Tab. I is due to the direct piezoelectric effect nd33k̃ax in (3). The
applied signal from the multimeter used to determine the capacitance will
cause the piezoelectric material to strain, and therefore a larger net charge
is measured on electrodes, thus the actual capacitance is overestimated.

TABLE I
IDENTIFIED PARAMETERS.

f0 1.84 kHz
Cp 368 nF
α 3.78 MV/m
R 57.8 Ω

L 19.0 mH
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Fig. 9. Computed frequency response of the input filter F̂ using values
from Tab. I.

less than the value found using (13).
By minimizing the `2 norm for the expression in (11),

using the obtained data for ĜxVa , Cp and α , with respect
to R and L, we should find the values for R and L that
will minimize the energy of the system. Optimization was
performed using fminsearch in MATLAB. The obtained
values for R and L can be found in Tab. I. The value for the
the inductance is slightly lower than the one found assuming
no damping.

B. Implementation
The value for the needed inductance suggested that a

physically realizable inductor could be used in the shunt. An
inductor was constructed using a closed ferrite core and 40
turns of copper wire. A potentiometer was used to implement
the required resistance. The inductor and resistor were tuned
to their required values using an Agilent LCR Meter E49808.
Due to the mechanical limitation in precision, the inductance
was set to be 19.5 mH and the resistance set to 58.0 Ω.

The triangle wave scanning signal and the inverse filter
F−1 was implemented on a dSPACE DS1103 using MAT-
LAB and the Real Time Workshop. The actuator was driven
by a PiezoDrive PDL200 amplifier. The displacement was
measured using a ADE Tech 4810 gage with a ADE Tech
2805 probe. The charge was measured using a 116 µF
capacitor in series with the shunt and stack. A Tektronix
TDS3024B oscilloscope was used to capture the time re-
sponses of the positioning stage.

C. Damping
Adding the shunt Ẑ to the system, using the obtained val-

ues for the inductance and the resistance, one would expect
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Fig. 10. Measured frequency response from source voltage Vs to displace-
ment x, ĜxVs .
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Fig. 11. Measured frequency response from source voltage Vs to generated
charge q, ĜqVs .

the shunt to attenuate a peak in the transfer function from
the supplied voltage Vs to displacement x. The calculated re-
sponse from source voltage to displacement, using data from
Fig. 7 and equation (8), is compared to the actual response in
Fig. 10. Similarly, the expected response from source voltage
Vs to generated charge q was found using data from Fig.
7, values from Tab. I and equation (9). The simulated and
measured response are compared in Fig. 11. The agreement
between the simulated and measured responses supports the
modeling technique presented in Section II.

Using the response data for the transfer functions ĜxVa

and ĜxVs , the response for (11) can be calculated, and
when compared to the experimental data for (2), the actual
damping due to the shunt can be estimated. The result
is presented in Fig. 12. Inspecting Fig. 12 the obtained
damping can be determined to be 19.6 dB, or equivalently,
an attenuation by a factor of 9.55.

D. Scanning
Since the source voltage Vs will be filtered by F̂ , any

reference signal applied from the source should compensate
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Fig. 12. Estimate of obtained damping. The measured response of ĜxVa is
compared to the computed response of ĜxVw , obtained using the measured
response of ĜxVs and the inverse of the transfer function F̂ . The difference
in maximal magnitude can be seen to be 19.6 dB.
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Fig. 13. Triangle wave reference signal, and the signal filtered by F−1.
The signals are offset ± 0.1 for readability.

for the filter dynamics such that the voltage applied Va will
be the actual desired reference. The desired input for Va and
the signal with inverted dynamics Vs are shown in Fig. 13.

To demonstrate the improvement in scanning performance,
two time-series were recorded for two different reference
signals. The recorded time-series for the two cases are shown
in Figs. 14 and 15. The first time-series in each case shows
the open loop response, and the second time-series shows
the response when the shunt is present.

We can see from the figures that the shunt circuit sig-
nificantly reduces unwanted vibrations. It is also apparent
that the induced vibrations are larger and the damping
more noticeable at a higher fundamental frequency. Some
hysteresis can also be observed. The capacitive sensor used
is susceptible to some drift, i.e. there is a bias component
present in the measurement that vary slowly with time. We
have therefore subtracted the mean value in the presented
data.
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IV. CONCLUSIONS
Shunt damping, as implemented in this work, has proved

to be a simple and effective technique for damping the
first mechanical resonance of a piezoelectric stack actuated
nanopositioner. The shunt circuit comprised of an inductor
and resistor which was straight-forward to implement with
passive components. The optimal component values were
found using frequency response data and a simple optimiza-
tion. Experimental results on a high-speed nanopositioner
demonstrate a 19.6 dB reduction in the first mechanical
resonance. This significantly improves the transient response
of the nanopositioner with negligible additional cost or
complexity.
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