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Abstract: This paper presents a new sensor arrangement and feedback controller for hysteresis,
creep and vibration in piezoelectric actuators. A force and strain sensor is combined to provide
both extremely low noise and high stability. The proposed technique is demonstrated on a
nanopositioning platform with a range of 10 µm and a resonance frequency of 2.4 kHz. In
closed-loop, the controller damps the resonance by 33 dB and provides a tracking bandwidth
of 1.8 kHz. Excellent tracking of a 130 Hz triangular reference and reduction of hysteresis to
0.46% at 10 Hz is also demonstrated. Closed-loop positioning noise was approximately 0.67 nm
peak-to-peak, or 0.0067% of the 10 µm range.
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1. INTRODUCTION

Due to their high stiffness, compact size and effectively
infinite resolution, piezoelectric actuators are universally
employed in a wide range of scientific and industrial
applications. However, piezoelectric actuators also exhibit
a significant amount of hysteresis over large ranges and
creep at low-frequencies [Adriaens et al. (2000); Devasia
et al. (2007)]. These effects can cause tracking error in
excess of 20%. As a result, many applications require
some form of feedback or feedforward control to reduce or
eliminate non-linearity [Leang and Devasia (2007); Croft
et al. (2001)].

A common technique for control of piezoelectric actuated
systems is sensor-based feedback control with an integral
or proportional-integral controller. This approach is sim-
ple, robust to modeling error, and effectively reduces non-
linearity at low-frequencies. However, the bandwidth of
such systems is severely limited by low gain-margin [Leang
and Devasia (2007)]. It can be shown that the maximum
closed-loop bandwidth with a basic integral controller is
equal to the product of twice the damping ratio ξ and
natural frequency ωn [Fleming (2010)], that is,

max. closed-loop bandwidth < 2ωnξ. (1)

This is a severe limitation as the damping ratio is usu-
ally on the order of 0.01, so the maximum closed-loop
bandwidth is less than 2% of the resonance frequency.
Techniques aimed at improving the closed-loop bandwidth
are based on either inversion of resonant dynamics using
a notch filter[Abramovitch et al. (2008)] or a damping
controller [Fleming and Moheimani (2006); Aphale et al.
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(2008); Fleming et al. (2010); Sebastian et al. (2008)].
Damping controllers are less sensitive to variations in res-
onance frequency than inversion based controllers but an
integral tracking loop is still required. This inevitably re-
sults in low stability margin and instability if the resonance
frequency is sufficiently reduced. In addition, the greater
bandwidth of damping and inversion based controllers
increases the amount of positioning noise.

In this work, a new technique is presented for control of
hysteresis, creep and vibration in piezoelectric actuated
systems. The proposed technique utilizes a resistive strain
gage and piezoelectric force sensor to estimate displace-
ment. The piezoelectric force sensor exhibits extremely
low noise at frequencies in the Hz range and above but
cannot measure static displacement and is prone to drift.
To eliminate these low-frequency errors, the strain gage
signal is substituted at low frequencies. In contrast to
standard capacitive, inductive and optical displacement
sensors, the proposed scheme can be integrated into the
actuator which minimizes parts count and overall system
cost.

In the following Section a nanopositioning system is de-
scribed for demonstration of the proposed technique. This
is followed by an introduction to strain and piezoelectric
force sensors in Sections 3 and 4. Section 4 also contains
the derivation of an electromechanical model and a review
of the recently introduced technique of force-feedback po-
sition control [Fleming (2010)]. This technique is extended
in Section 5 for use with complementary strain and force
sensors. Due to the system properties, a simple integral
controller can provide excellent tracking and damping
performance with guaranteed stability. This technique is
demonstrated in Section 6. Conclusions are drawn in Sec-
tion 7.
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Fig. 1. High-speed nanopositioning platform with strain
and force sensors fitted to the y-axis actuator.

Fig. 2. A piezoelectric actuator with integrated strain and
force sensors. The strain sensors are bonded to the
front and back surface while the force sensor is a small
piezoelectric stack placed between the actuator and
load ball. The load half-ball is used to eliminate the
transmission of torsion and bending moments to the
force sensor and moving platform.

2. EXPERIMENTAL SYSTEM

Although the technique of strain and force feedback is
applicable to a wide range of mechatronic systems, in this
work, the proposed controller is applied to the nanopo-
sitioning platform pictured in Figure 1. This platform is
designed for high-bandwidth applications such as video-
speed scanning probe microscopy [Ando et al. (2005);
Schitter et al. (2007); Humphris et al. (2005); Rost et al.
(2005)]. The platform develops approximately 10 µm of
travel in the lateral scan axes and 4 µm travel in the
vertical direction. As the vertical and x-axes are physically
small with low mass, the resonance frequencies are greater
than 10 kHz. However, due to the large y-axis mass, the
resonance frequency in this direction is only 2.4 kHz. As
this axis is required to follow triangular trajectories of up
to 100 Hz, compensation is required to eliminate oscilla-
tion and reduce non-linearity. The technique of strain and
force feedback will be applied to achieve high-performance
tracking with simplicity, low-cost and high robustness.

The actuator used to drive the y-axis is pictured in Fig-
ure 2. It comprises of a 10 mm Noliac SCMAP07 actuator
connected serially to a 2 mm Noliac CMAP06 stack force
sensor. The ceramic spacers provide a robust bonding
surface between the two stacks and minimize the measure-
ment error due to Poisson coupling. This error is caused
by contraction of the stack body during elongation. If the
sensor bonded directly on to the actuator, this contraction

is erroneously measured and produces an effect opposite
in polarity to the applied force. A further discussion of
Poisson coupling and methods to eliminate it can be found
in Fleming (2010). In addition to the force sensor, there
are also two resistive strain sensors attached to the top
and bottom surface of the actuator. A full description of
the strain gages, instrumentation, and force sensor are
provided in Sections 3 and 4. A Kaman inductive posi-
tion sensor (SMU9000-15N) was also used to measure the
frequency and time domain displacement of the system.
These open-loop responses are plotted in Section 6.

The actuator was driven with a Piezodrive PDL200 linear
amplifier. With the 330 nF actuator capacitance, the
PDL200 provides a bandwidth of approximately 22 kHz.

3. RESISTIVE STRAIN FEEDBACK

Resistive strain gages are a low-cost sensor option for con-
trol of piezoelectric actuators. They are often integrated
into actuators by the manufacturer for position feedback.
Strain sensors can also be retrofitted to other actuators
by bonding the sensor to the actuator surface. Two other
nanopositioning applications that utilize resistive strain
feedback can be found in Schitter et al. (2008) and Dong
et al. (2007).

Resistive strain gages are constructed from a thin layer of
conducting foil laminated between two insulating layers.
With a zig-zag conductor pattern, strain gages can be
designed for high sensitivity in only one direction, e.g.
elongation. As a strain gage is elongated, the resistance
increases proportionally. The change in resistance per unit
strain is known as the gage factor GF defined by

GF =
∆R/RG

ǫ
, (2)

where ∆R is the change in resistance from the nominal
value RG for a strain ǫ. As the gage factor is typically
in the order of 1 or 2, the change is resistance is similar
in magnitude to the percentage of strain. For a piezoelec-
tric transducer with a maximum strain of approximately
0.1%, the change in resistance will also be around 0.1%.
This small variation requires a bridge circuit for accurate
measurement.

In Figure 2, the piezoelectric actuator described in Sec-
tion 2 is pictured with a strain gage bonded to each of the
two non-electrode sides. The strain gages are Omega SGD-
3/350-LY13 gages, with a nominal resistance of 350 Ω and
package dimensions of 7×4 mm.

The two strain gages are wired into a full bridge circuit
completed by two dummy 350 Ω wire wound resistors and
excited by a 5 Volt DC source. The differential bridge
voltage (V + − V −) is acquired and amplified by a Vishay
Micro-Measurements 2120B strain gage amplifier. As the
circuit is a half-bridge, the measured voltage is

Vs =
AvVb

2

(
∆R

RG +∆R/2

)
, (3)

where Av=2000 is the differential gain and Vb=5V is
the excitation voltage. By substituting (2) into (3) and
neglecting the small bridge non-linearity, the measured
voltage is proportional to the strain ǫ and displacement
d by
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Fig. 3. The noise density of the inductive, resistive strain,
and piezoelectric force sensor, all scaled to nm/

√
Hz.

The simulated noise of the piezoelectric force sensor
is also plotted as a dashed line.

Vs = GF
1

2
AvVbǫ (4)

Vs = GF
1

2L
AvVbd, (5)

where L is the actuator length. With a gage factor of 1, the
position sensitivity of the strain sensor will be 0.5 V/µm
which implies a full scale voltage of 5 V for the maximum
strain of 10 µm.

By calibrating the strain gage output with the induc-
tive sensor, the experimental sensitivity was found to be
0.3633 V/µm.

The noise density of the strain signal (scaled to nm) is
plotted in Figure 3. The sensor exhibits a constant noise
density of approximately 20 pm/

√
Hz and a 1/f noise

corner frequency of around 10 Hz. This is comparable
to the inductive sensor which has a range of 200 µm.
However, for an inductive or capacitive sensor with a
range of 10 µm, the expected noise density would be
only 1 pm/

√
Hz, which is an order of magnitude less

than the resistive strain gage. Hence, strain gages are
rarely used in systems designed for high resolution. If they
are utilized in such systems, the closed-loop bandwidth
must be severely restrained. For example, with a noise
density of 20 pm/

√
Hz, the closed-loop bandwidth must

be less than 22 Hz to achieve a peak-to-peak noise of
1 nm (assuming a Gaussian distribution and first-order
response). To overcome this difficultly, an ultra-low noise
force sensor is described in the following section.

4. FORCE FEEDBACK

Force feedback was recently proposed in Fleming (2010)
as a new technique for vibration control and linearization
of nanopositioning systems. Rather than using a direct
position sensor, this technique uses a measurement of the
actuator load force illustrated in Figure 4(a). Since the
displacement of the load system is proportional to applied
force at low-frequencies, the load force can be used to
indirectly control position.

Force sensor

Actuator

Load system

(a)

kl c

Md

ka Fa

Fs

(b)

Fig. 4. A piezoelectric actuator driving a load system
(a). The mechanical equivalent diagram with a single-
degree-of-freedom load system (b).

Although the load force Fs can be measured in a number
of ways, in this application it is desirable to minimize
the additional mass and compliance associated with the
sensor. In such scenarios, piezoelectric transducers are
an excellent choice. They provide high sensitivity and
bandwidth with low-noise at high frequencies. In Figure 2,
a small Noliac CMAP06 stack actuator is glued to the
end of the main actuator for use as a force sensor. Other
types of piezoelectric force sensor include discrete plate
sensors and integrated stack sensors [Fleming (2010)]. The
sensitivity and characteristics of piezoelectric force sensors
are discussed in the following two subsections.

4.1 Piezoelectric actuator and sensor modeling

It has been shown previously that a piezoelectric actu-
ator can be modeled as a force generator Fa and stiff-
ness ka [Fleming (2010)]. This representation is shown in
Figure 4(b). The generated force and associated spring
constant are

Fa = d33nkaVa, ka =
cEA

L
, (6)

where d33 is the piezoelectric charge constant, n is the
number of layers, Va is the applied voltage, cE is Young’s
modulus of elasticity, A is the cross-sectional area, and L is
the actuator length. The ratio of developed force to applied
voltage is d33nka Newtons per Volt. In the following, this
constant will be denoted ga where

Fa = gaVa and, ga = d33nka.

Piezoelectric actuators can also be used as force sensors.
If the transducer electrodes are left open-circuit or con-
nected to a high impedance buffer, the generated charge
is deposited on the transducers internal capacitance. The
open-circuit voltage of a piezoelectric force sensor is

Vs =
nd33
C

Fs, (7)

where C is the transducer capacitance defined by
C=nǫTA/h and A, h and ǫT are the area, layer thickness
and dielectric permittivity under constant stress. The
scaling factor between force and measured voltage is nd33

C
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Volts per Newton. In the following, this sensor constant
will be denoted gs, where

Vs = gsFs, and gs =
nd33
C

. (8)

4.2 Force sensor characteristics and noise

The experimentally measured noise density of the piezo-
electric force sensor is plotted in Figure 3. The predicted
noise density based on the opamp current noise density and
capacitance is also plotted. The sensor has a capacitance is
30 nF, and the voltage buffer (OPA606) has a noise density

of 2 fA/
√
Hz.

In Figure 3 the superior noise performance of the piezo-
electric sensor is evident. The noise density is more than
2 orders of magnitude lesser than the strain and inductive
sensors at 100 Hz. The noise density also continues to
reduce at higher frequencies. However, at low-frequencies
the noise of the piezoelectric force sensor will eventually
surpass the other sensors. As the noise density is equivalent
to an integrator excited by white noise, the measured
voltage will drift around at low frequencies.

In addition to noise, piezoelectric force sensors are also
limited by dielectric leakage and finite buffer impedance
at low-frequencies. The induced voltage Vp is high-pass
filtered by the internal transducer capacitance C and the
leakage resistance R. The cut-off frequency is

fhp =
1

2πRC
Hz. (9)

The buffer circuit used in this work has an input
impedance of 100 MΩ, this results in a low-frequency cut-
off of 0.05 Hz. To avoid a phase lead of more than 6 degrees,
the piezoelectric force sensor cannot be used to measure
frequencies less than 0.5 Hz.

4.3 Mechanical dynamics

The simplified model of a single-degree-of-freedom posi-
tioning system is shown in Figure 4(b). The model contains
two components: the actuator, modeled as a force genera-
tor Fa and stiffness ka; and the load system, modeled as
a mass M and stiffness kl with damping c. The actuator
mass is assumed to be negligible. The displacement of the
load system d can be found by applying Newton’s second
law,

Md̈ = Fa − kad− kld− cḋ, (10)

As the actuator and load stiffness are mechanically in
parallel. The total stiffness k experienced by the load mass
is the sum of ka and kl. That is, k = ka+kl. The equation
of motion is then

Md̈+ kd+ cḋ = Fa, (11)

and the transfer function from actuator force Fa to plat-
form displacement d is

d

Fa

=
1

Ms2 + cs+ k
. (12)

Including the actuator gain, the transfer function from
applied voltage to displacement can be written

GdV a =
d

Va

=
ga

Ms2 + cs+ k
(13)

mag

phase

0

π

ωz ωp

f

f

kl

k

Fig. 5. Magnitude and phase response of Fs/Fa (15)

The load force Fs is also of interest, this can be related to
the actuator force Fa by summing the forces acting on the
force sensor,

Fa = kad− Fs. (14)

This results in the following transfer function between the
applied force Fa and measured force Fs,

Fs

Fa

= 1− ka
d

Fa

(15)

=
Ms2 + cs+ kl
Ms2 + cs+ k

. (16)

By including the actuator and sensor gains ga and gs,
the system transfer function from the applied voltage to
measured voltage can be found,

GV sV a =
Vs

Va

= gags
Ms2 + cs+ kl
Ms2 + cs+ k

. (17)

4.4 System poles and zeros

This transfer function GV sV a (17) consists of a pair of
resonant poles and zeros at frequencies ωz and ωp,

ωz =

√
kl
M

, ωp =

√
k

M
=

√
ka + kf

M
. (18)

The frequency of the system zeros will always be lower
than the poles. This characteristic is shown in the fre-
quency response of Fs/Fa in Figure 5. For systems with
multiple degrees-of-freedom, it can be shown that the zero-
pole pattern repeats for each resonance mode. This is
discussed in more detail in Section 5.1.

4.5 Integral Force Feedback (IFF)

The feedback diagram of an integral force feedback con-
troller is shown in Figure 6. The loop consists of the plant
GV sV a and an integral controller

C(s) =
α

s
. (19)

A key property of the system GV sV a is that the phase
response lies between 0 and 180 degrees. This is a general
feature of flexible structures with a collocated actuator and
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Va GdV a

GV sV a

d

Vs

r α
s

Fig. 6. The system GV sV a controlled by an Integral Force
Feedback (IFF) controller C(s)=α

s

Va GdV a

GV sV a

d

Vs
r

FH

FL

α
s

Fig. 7. Dual sensor feedback loop that utilizes a strain gage
measurement below 10 Hz and the piezoelectric force
measurement above 10 Hz.

force measurement [Preumont (2006)]. Another unique
property of such systems is that integral control can be
applied directly. This is due to the phase characteristics
of the loop-gain. As the integral controller has a con-
stant phase lag of 90 degrees, the total loop-gain phase
(∠C(jω)GV sV a(jω)) lies between -90 and 90 degrees. This
implies that the closed-loop system has an infinite gain-
margin and phase-margin of 90 degrees. The robustness
and simplicity are two outstanding properties of systems
with integral force feedback.

A solution for the optimal feedback gain α for maximum
damping has already been derived in Preumont (2006).
These results were adapted for the system considered
here in reference [Fleming (2010)]. Assuming the system
damping is small, the optimal feedback gain α⋆ is

α⋆ =
ωp

√
ωp/ωz

gsga
. (20)

Additional expressions for the maximum closed-loop
damping and pole locations can be found in Fleming
(2010). In practice, where only an identified model may
be available, the optimal gain α⋆ can be found numerically
from the root-locus. This approach is taken in Section 6.

The closed-loop transfer functions from the reference volt-

age to the displacement and measured force, Ĝdr and ĜVsr,
are

Ĝdr =
CGdV a

1 + CGV sV a

. (21)

ĜVsr =
CGV sV a

1 + CGV sV a

. (22)

With integral force feedback the position is regulated
indirectly by controlling the load force Fs. The closed-
loop position sensitivity can be determined from (21) to
be 1/gskl meters per Volt.

5. STRAIN AND FORCE FEEDBACK

In Section 3 resistive strain gages were discussed as a
method for position control of piezoelectric actuators. It
was concluded that strain gages are too noisy for high-
bandwidth positioning applications. In contrast, piezo-
electric force sensors have excellent noise performance at
frequencies in the Hz range and above. In addition, the
use of a force sensor results in a system that can be easily
controlled with excellent bandwidth and stability margins.

To overcome the noise and phase-lead exhibited by the
piezoelectric sensor at low frequencies the strain gage can
be utilized as a complementary sensor. Such an arrange-
ment is illustrated in Figure 7. This control loop is similar
to Figure 6 except for the additional complementary filters
FH and FL. These complementary filters substitute the
displacement measurement d for Vs at frequencies below
the crossover frequency fc. As the force measurement
contains a parasitic high-pass filter at 0.05 Hz, fc is chosen
to be 10 Hz. At this frequency the phase error of the
force sensor is less than 0.5 degrees. The simplest choice
of complementary filters are

FH = gH
s

s+ 2πfc
, and FL = gL

2πfc
s+ 2πfc

. (23)

where gH and gL are gains used to equate the sensitivity
of d and Vs. In practice, it is convenient to choose gH and
gL so that the sensitivity from Va to each sensor signal is
unity. This approach is taken in the experimental results.

If the gains gH and gL are included in GV sV a and GdV a

respectively, the closed-loop response Ĝdr is

Ĝdr =
GdV aC

1 + CGV sV a

. (24)

As this control loop is unconditionally stable, there is no
restriction on the controller gain. However, α was chosen
in the previous section to provide optimal damping per-
formance, this value should be retained. Further increases
in α are not productive as the disturbance rejection at the
resonance frequency will degrade.

As the piezoelectric sensor noise is negligible compared to
the strain gage, and the crossover frequency fc is signifi-
cantly less than the closed-loop bandwidth, the closed-loop
position noise density of the dual sensor controller can be
approximated by

N̂d(ω) = |FL(jω)|Nd(ω), (25)

where N̂d is the closed-loop noise density and Nd(ω) is
the noise density of the strain gage scaled to meters.
Advantageously, the strain signal is filtered by FL which
has a much lower bandwidth than the complimentary
sensitivity function, hence a large saving in position noise
is realized.

If we assume that Nd(ω) is a constant Nd, the standard
deviation σ (RMS value) of the positioning noise is

σ = Nd

√
3.14fc, (26)

where the factor 3.14 is the effective noise bandwidth for
a first order system. For the strain gages discussed in
Section 3, the noise density is approximately 20 pm/

√
Hz,

this implies a positioning noise of 0.11 nm RMS, and a 6σ
peak-to-peak noise of approximately 0.67 nm.
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5.1 Higher-order modes

So far, only a single-degree-of-freedom system has been
considered. Although this is appropriate for modeling the
first resonance mode, it does not capture the higher-
order modes that occur in distributed mechanical systems.
However, such higher order modes are not problematic as
they do not disturb the zero-pole ordering of the transfer
function from applied actuator voltage to the measured
force.

In Preumont et al. (2007) it is shown that the transfer
function of a generalized mechanical system with a dis-
crete piezoelectric transducer and collocated force sensor
is guaranteed to exhibit zero-pole ordering. That is, the
transfer function GV sV a will always exhibit zero-pole or-
dering. As the zero-pole ordering of the system is guaran-
teed, it follows that the controller discussed in Section 4.5
will also guarantee the stability of systems with multiple
modes. The zero-pole ordering of an experimental system
with multiple modes, and its successful control using inte-
gral force feedback was reported in Fleming (2010).

6. EXPERIMENTAL RESULTS

As the integral force feedback controller has only one
parameter, an approximately optimal gain can be found
from only frequency response data. However, to plot the
closed-loop pole locations and find a numerically optimal
gain, a model is required. For this purpose, a second-
order single-input two-output model was procured using
the frequency domain subspace techniqueThe open-loop
data used to procure the model is plotted in Figure 8.

Using the root-locus, the optimal feedback gain was found
to be α=7700. With this gain, the controller was imple-
mented on an electronics board designed to implement all
of the functions required by a force feedback system . This
includes a high-impedance buffer for the force sensor, the
complementary filters, and the controller transfer function.

The experimental closed-loop frequency responses are
plotted in Figure 8. The closed-loop responses exhibit
excellent damping performance (-33 dB) and a closed-loop
positioning bandwidth of 1.8 kHz. This is exceptional con-
sidering that the open-loop resonance frequency is 2.4 kHz.
Also plotted are the simulated closed-loop frequency re-
sponses which closely agree with experimental results.

In Figure 10 the time domain performance of the force
feedback controller is demonstrated by comparing the
open- and closed-loop response to a 130 Hz triangle wave.
The controller effectively eliminates oscillation and reduces
the tracking error from 45 nm in open-loop to 6.7 nm
in closed-loop. Due to the integral tracking action and
wide feedback bandwidth, the controller is also effective
at reducing dynamic hysteresis. In Figure 11, the 8.5%
error due to hysteresis in open-loop is reduced to 0.46%
in closed-loop. It is also of interest to examine the closed-
loop response to creep non-linearity. As the control-loop
gain at frequencies where creep occurs is extremely large,
the open-loop error of 9.7% after 50 seconds is no longer
measurable in closed-loop.
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Fig. 8. The experimental open- and closed-loop frequency
response (dashed and solid line) from the applied volt-
age to the resulting displacement and sensor voltage.
The simulated closed-loop response is also plotted
(dotted line).

7. CONCLUSIONS

This paper presents a new low-cost sensing and feedback
scheme for reduction of creep, hysteresis and vibration in
piezoelectric actuated systems. The technique of strain and
force feedback utilizes a resistive strain gage and piezo-
electric force sensor to measure displacement. A benefit
of piezoelectric sensors is that they exhibit extremely low
noise at frequencies in the Hz range and above. However,
below 1 Hz, dielectric leakage introduces phase-lead, and
current noise results in slow random drift. To eliminate
these low-frequency errors, the strain gage signal is substi-
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Fig. 9. A two channel controller board containing high-
impedance buffers, complementary filters, and two
force feedback controllers
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Fig. 10. The open- and closed-loop response to a 600 nm
peak-to-peak 130 Hz triangle wave. The RMS de-
viation from linear over a half period was 10 nm
RMS in open-loop and 1.9 nm RMS in closed-loop.
The maximum peak-to-peak error over 90% of a half
period was 45 nm in open-loop and 6.7 nm in closed-
loop.

tuted at low frequencies. The strain gage and piezoelectric
sensor signals are combined into a displacement estimate
with a pair of first-order complementary filters. The result-
ing signal exhibits the low noise of a piezoelectric sensor
and the stability of a resistive strain gage.
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Fig. 11. The open- and closed-loop response of the system
to a 10 Hz sine-wave ramped from 0 V to 150 V
peak-to-peak. The maximum error due to hysteresis
is reduced from 460 nm (8.5%) in open-loop to 25 nm
(0.46%) in closed-loop.

In addition to low noise, another benefit of the piezoelec-
tric force sensor is the zero-pole ordering of the transfer
function from applied actuator voltage to measured force.
This allows a simple integral controller to provide excel-
lent tracking and damping performance with guaranteed
stability.

The proposed technique of strain and force feedback was
demonstrated on a high-speed nanopositioning platform.
Due to simplicity, the controller was easily implemented
with an analog circuit. The closed-loop frequency response
demonstrated a 33 dB damping of the resonance peak and
a closed-loop bandwidth of 1.8 kHz which is close to the
open-loop resonance frequency of 2.4 kHz. In the time
domain, excellent tracking of a 130 Hz triangle wave was
achieved and hysteresis was reduced from 8.5% to 0.46% at
10 Hz. Although the strain gage contributes the majority
of closed-loop positioning noise, the bandwidth of this
signal is only 10 Hz. This resulted in a closed-loop noise
of approximately 0.67 nm peak-to-peak which is 0.0067%
of the 10 µm range.

Due to the low-cost of strain gages and piezoelectric
sensors, and the simplicity of implementation, these results
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Fig. 12. The creep behavior exhibited by the actuator in
open-loop (dashed line) and closed-loop (solid line).
The input was a 196 V square with a period of 100 s.
In open-loop, the error due to creep was 560 nm peak-
to-peak or 9.7% of the peak-to-peak displacement.
Due to the high control gain at low-frequencies, creep
was not detectable in closed-loop.

were achieved at a fractional cost of a traditional inductive
or capacitive displacement sensor. Future work involves
the inclusion of a feedforward controller to extend the
bandwidth beyond the first resonance frequency.
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Schitter, G., Åström, K.J., DeMartini, B.E., Thurner,
P.J., Turner, K.L., and Hansma, P.K. (2007). Design
and modeling of a high-speed AFM-scanner. IEEE
Transactions on Control Systems Technology, 15(5),
906–915.

Schitter, G., Thurner, P.J., and Hansma, P.K. (2008).
Design and input-shaping control of a novel scanner for
high-speed atomic force microscopy. Mechatronics, 18(5-
6), 282–288.

Sebastian, A., Pantazi, A., Moheimani, S.O.R., Pozidis,
H., and Eleftheriou, E. (2008). A self servo writing
scheme for a MEMS storage device with sub-nanometer
precision. In Proc. IFAC World Congress, 9241–9247.
Seoul, Korea.

Mechatronics'10
Cambridge, MA, USA, September 13-15, 2010

124 Copyright © 2010 IFAC




