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Abstract— Mechanical and electrical noise in nanopositioning
systems is unavoidable and dictates the maximum positioning
resolution. The proper specification of resolution is critical for
defining the smallest possible dimensions in a manufacturing
processes or the smallest measurable features in an imaging
application. This article defines a standard for the reporting
of resolution and demonstrates how this parameter can be
measured and predicted from frequency domain data.

I. INTRODUCTION

A nanopositioning system is an electromechanical de-
vice for maneuvering an object in three or more degrees
of freedom. A typical nanopositioner consists of base, a
moving platform, actuators, position sensors, and a control
system [1]. These devices are commonly used in scanning
probe microscopes [2] to develop displacements of between
one and one-hundred micrometers with a resolution on
the order of one nanometer or less. Other applications of
nanopositioning systems include nanofabrication [3], data
storage [4], cell surgery, beam pointing, and precision optical
alignment.

A key performance specification of a nanopositioner, or
indeed many other controlled systems, is the resolution. The
resolution is essentially the amount of random variation that
remains at the output, even when the system is at rest.
The resolution is critical for defining the smallest possible
dimensions in a manufacturing processes or the smallest
measurable features in an imaging application.

Although the resolution is a key performance criteria in
many applications, there is unfortunately no strict definition
available in the literature. There are also no published
industrial standards for the measurement or reporting of posi-
tioning resolution. Predictably, this has led to a wide variety
of fragmented techniques used throughout both academia and
industry. As a result, it is extremely difficult to compare
the performance of different control strategies or commercial
products.

The most reliable method for the measurement of resolu-
tion is to utilize an auxiliary sensor that is not involved in
the feedback loop. However, this requires a sensor with less
additive noise and greater bandwidth than the displacement
to be measured. Due to these strict requirements, the direct
measurement approach is often impractical or impossible.
Instead, the closed-loop positioning noise is usually predicted
from measurements of known noise sources such as the
sensor noise.

In industrial and commercial applications, the methods
used to measure and report closed-loop resolution are widely
varied. Unfortunately, many of these techniques do not
provide complete information and may even be misleading.
For example, the RMS noise and resolution is commonly

reported without mention of the closed-loop or measurement
bandwidth. In the academic literature, the practices for
reporting noise and resolution also vary. The most common
approach is to predict the closed-loop noise from measure-
ments of the sensor noise [4], [5]. However, this approach
can underestimate the true noise since the influence of the
high-voltage amplifier is neglected. In the hard drive industry,
the standard performance metric for resolution is the track
pitch and the standard deviation of the measurement [6], [7].
However, the main sources of error in a disk drive are due
to aeroelastic effects and track eccentricities which are not
present in a nanopositioning system.

In this article, the resolution is defined as the minimum
distance between two points that can be uniquely identified.
Although the focus is on nanopositioning applications, the
background theory and measurement techniques are applica-
ble to any control system where resolution is a factor.

II. RESOLUTION AND NOISE

When a nanopositioner has settled to a commanded loca-
tion, a small amount of random motion remains due to sensor
noise, amplifier noise, and external disturbances. The residual
random motion means that two adjacent commanded loca-
tions may actually overlap, which can cause manufacturing
faults or imaging artefacts. To avoid these eventualities, it is
critical to know the minimum distance between two adjacent
points that can be uniquely identified.

Since the noise sources that contribute to random position
errors can have a potentially large dispersion, it is imprac-
tically conservative to specify a resolution where adjacent
points never overlap. Instead, it is preferable to state the prob-
ability that the actual position is within a certain error bound.
Consider the example of random positioning errors plotted
in Figure 1(a). Observe that the peak-to-peak amplitude of
random motion is bounded by δx and δy , however this range
is occasionally exceeded. If the random position variation is
assumed to be Gaussian distributed, the probability density
functions of three adjacent points, spaced by δx, are plotted
in Figure 1(b). In this example, δx is equal to ±3σx or 6σx

which means that 99.7% of the samples fall within the range
specified by δx. Restated, there is a 0.3% chance that the
position is exceeding δx and straying into a neighboring area,
this probability is shaded in grey.

For many applications, a 99.7% probability that the posi-
tion falls within δx = 6σx is an appropriate definition for the
resolution. To be precise, this definition should be referred
to as the 6σ-resolution and specifies the minimum spacing
between two adjacent points that do not overlap 99.7% of the
time. Although there is no international standard for the mea-
surement or reporting of resolution in a positioning system,
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Fig. 1. The random motion of a two-dimensional nanopositioner. The
random motion in the x and y-axis is bounded by δx and δy . In the x-
axis, the standard deviation and mean are σx and mx respectively. The
shaded areas represent the probability of the position being outside the
range specified by δx.

the ISO 5725 Standard on Accuracy (Trueness and Precision)
of Measurement Methods and Results [8] defines precision
as the standard deviation (RMS Value) of a measurement.
Thus, the 6σ-resolution is equivalent to six times the ISO
definition for precision.

III. SOURCES OF NANOPOSITIONING NOISE

The three major sources of noise in a nanopositioning
systems are the sensor noise, external noise, and the amplifier
output voltage noise. The power spectral density of each
source is derived in the following to allow the estimation
of closed-loop position noise.

A. Sensor noise

The noise characteristics of a position sensor depend
mainly on the physical method used for detection. Although
there are a vast range of sensing techniques available, for
the purpose of noise analysis, these can be grouped into two
categories: baseband sensors, and modulated sensors.

Baseband sensors involve a direct measurement of position
from a physical variable that is sensitive to displacement.
Examples include resistive strain sensors, piezoelectric strain
sensors and optical triangulation sensors [9], [10]. The
power spectral density of a baseband sensor is typically
described by the sum of white noise and 1/f noise, where
1/f noise has a power spectral density that is inversely
proportional to frequency [11], [12]. 1/f noise is used to

1/f

As

Sns
(f)

f
fnc

Fig. 2. Power spectral density of a baseband sensor (solid line) and a
modulated sensor (dashed line). As is the noise density and fnc is the 1/f
noise corner frequency.

approximate the power spectrum of physical processes such
as flicker noise in resistors and current noise in transistor
junctions. The power spectral density of a baseband sensor
Sns

(f) can be written

Sns
(f) = As

fnc

|f | +As, (1)

where As is the mid-band density, expressed in units2/Hz
and fnc is the 1/f corner frequency. This function is plotted
in Figure 2.

In contrast to baseband sensors, modulated sensors use
a high-frequency excitation to detect position. Examples
include capacitive sensors, eddy-current sensors, and Linear
Variable Displacement Transformers (LVDTs) [9]. Although
these sensors require a demodulation process that inevitably
adds noise, this disadvantage is usually outweighed by the
removal of 1/f noise. The power spectral density Sns

(f) of
a modulated sensor can generally be approximated by

Sns
(f) = As, (2)

where As is the noise density, expressed in units2/Hz. The
power spectral density of a modulated sensor is compared to
a baseband sensor in Figure 2.

In nanopositioning applications, modulated sensors can be
preferable to baseband sensors as they do not exhibit 1/f
noise. Thus, in the following, the focus is on modulated sen-
sors with an approximately constant noise spectral density.

B. External noise

The external force noise exerted on a nanopositioner is
highly dependent on the ambient environmental conditions
and can not be generalized. Typically, the power spectral
density consists of broad spectrum background vibration with
a number of narrow band spikes at harmonic frequencies of
the mains power source and any local rotating machinery.
Although the external force noise must be measured in-situ,
for the purposes of simulation, it is useful to assume a white
power spectral density Aw, that is

Sw(f) = Aw. (3)

Clearly a white power spectral density does not provide
an accurate estimate of externally induced position noise.
However, it does illustrate the response of the control system
to noise from this source. That is, it reveals whether the
control system attenuates or amplifies external noise and over
what frequency regions. A constant power spectral density
of Aw is used for this purpose in the following sections.
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Fig. 3. The simplified schematic of a voltage amplifier and its equivalent
noise circuit. The noise sources Vn and In represent the equivalent input
voltage noise and current noise of the amplifier. VR1 and VR2 are the
thermal noise of the feedback resistors.
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Fig. 4. Power spectral density of the input and output voltage noise of a
high-voltage amplifier. fnc is the noise corner frequency.

C. Amplifier noise

The high-voltage amplifier is a key component of any
piezoelectric actuated system. It amplifies the control signal
from a few volts up to the hundreds of volts required to
obtain full stroke from the actuator. For the purpose of
noise analysis, the simplified schematic diagram of a non-
inverting amplifier in shown in Figure 3(a). This model is
sufficient to represent the characteristics of interest. The
opamp represents the differential gain stage and output
stage of the amplifier. As high-voltage amplifiers are often
stabilized by a dominant pole, the open-loop dynamics can be
approximated by a high-gain integrator C(s) = αol/s, where
αol is the open-loop DC gain. With this approximation, the
closed-loop transfer function is

Vo

Vin

=
1

β

αolβ

s+ αolβ
, (4)

where β is the feedback gain R1

R2+R1

. The closed-loop DC
gain and bandwidth are:

DC Gain =
1

β
=

R2 +R1

R1
, (5)

Bandwidth = αolβ = αol

R1

R2 +R1
rad/s.

The input voltage noise of a practical high-voltage am-
plifier can be approximated by the sum of a white noise

C(s) P (s)

Vo

Va

w

r d

ns

Fig. 5. A single axis feedback control loop with a plant P and controller
C.

process and 1/f noise, that is, the power spectral density
can be written

SVn
(f) = AV

fnc

|f | +AV . (6)

where fnc is the noise corner frequency and AV is the
mid-band density, expressed in V2/Hz. The power spectral
density of the amplifier output voltage is then approximately

SVo
(f) =

AV

β2

(

fnc

|f | + 1

)

f2
V

f2 + f2
V

, (7)

where fV = αolβ/2π is the closed-loop bandwidth of the
amplifier (in Hz) and 1/β is the DC gain. The power spectral
density of the output voltage noise is plotted in Figure 4(b).

IV. CLOSED-LOOP POSITION NOISE

A. Noise sensitivity functions

To derive the closed-loop position noise, the response
of the closed-loop system to each noise source must be
considered. In particular, we need to specify the location
where each source enters the feedback loop. The amplifier
noise Vo appears at the plant input. In contrast, the external
noise w acts at the plant output, and the sensor noise ns

disturbs the measurement.
A single axis feedback loop with additive noise sources

is illustrated in Figure 5. For the sake of simplicity, the
voltage amplifier is considered to be part of the controller.
The transfer function from the amplifier voltage noise Vo to
the position d is the input sensitivity function,

d(s)

Vo(s)
=

P (s)

1 + C(s)P (s)
. (8)

Likewise, the transfer function from the external noise w to
the position d is the sensitivity function,

d(s)

w(s)
=

1

1 + C(s)P (s)
. (9)

Finally, the transfer function from the sensor noise ns to the
position d is the negated complementary sensitivity function,

d(s)

ns(s)
=

−C(s)P (s)

1 + C(s)P (s)
(10)

B. Closed-loop position noise spectral density

With knowledge of the sensitivity functions and the noise
power spectral densities, the power spectral density of the
position noise due to each source can be derived. The
position noise power spectral density due to the amplifier
output voltage noise SdVo

(f) is

SdVo
(f) =

AV

β2

(

fnc

|f | + 1

)

f2
V

f2 + f2
V

∣

∣

∣

∣

d(j2πf)

Vo(j2πf)

∣

∣

∣

∣

2

. (11)

4788



Similarly, the position noise power spectral density due to
the external force noise Sdw(f) is

Sdw(f) = Aw

∣

∣

∣

∣

d(j2πf)

w(j2πf)

∣

∣

∣

∣

2

. (12)

Finally, the position noise power spectral density due to the
sensor noise Sdns

(f) is

Sdns
(f) = As.

∣

∣

∣

∣

d(j2πf)

ns(j2πf)

∣

∣

∣

∣

2

. (13)

The total position noise power spectral density Sd(f) is
the sum of the three individual sources,

Sd(f) = SdVo
(f) + Sdw(f) + Sdns

(f). (14)

The position noise variance can also be found from the
Wiener Khinchin relation

E
[

d2
]

=

∫

∞

0

Sd(f) df, (15)

which is best evaluated numerically. If the noise is assumed
to be Gaussian distributed, the 6σ-resolution of the nanopo-
sitioner is

6σ-resolution = 6
√

E [d2] (16)

C. Closed-loop noise approximations with integral control

If a simple integral controller is used, C(s) = α/s, the
transfer functions from the amplifier and external noise to
displacement can be approximated by

d(s)

Vo(s)
=

sP (0)

s+ αP (0)
,

d(s)

w(s)
=

s

s+ αP (0)
, (17)

where P (0) is the DC-Gain of the plant. Likewise, the
complimentary sensitivity function can be approximated by

d(s)

ns(s)
=

αP (0)

s+ αP (0)
. (18)

With the above approximations of the sensitivity functions,
the closed-loop position noise power spectral density can be
derived. From (11) and (17) the position noise density due
to the amplifier voltage noise SdVo

(f) is

SdVo
(f) ≈ AV P (0)2

β2

(

fnc

|f | + 1

)

f2
V

f2 + f2
V

f2

f2 + f2
cl

, (19)

where fcl =
αP (0)
2π is the closed-loop bandwidth. As illus-

trated in Figure 6(a), the position noise due to the amplifier
has a bandpass characteristic with a mid-band density of
AV P (0)2/β2.

From (12) and (18) the position noise density due to the
external noise Sdw(f) is

Sdw(f) ≈ Aw

f2

f2 + f2
cl

, (20)

which has a high-pass characteristic as illustrated in Fig-
ure 6(b) with a corner frequency equal to the closed-loop
bandwidth.

The closed-loop position noise due to the sensor Sdns
(f)

can be derived from (13) and (18), and is

Sdns
(f) ≈ As

f2
cl

f2 + f2
cl

, (21)

AV P (0)2

β2

SdVo
(f)

f
fnc fVfcl

(a) The position noise power spectral
density due to amplifier voltage noise
SdVo

(f)

Aw

Sdw(f)

f
fcl

(b) The position noise power spectral
density due to external noise Sdw(f)

As

Sdns
(f)

f
fcl

(c) The position noise power spectral
density due to sensor noise Sdns

(f)

Fig. 6. The position noise power spectral density due to the amplifier
voltage noise (a), external disturbance (b) and sensor noise (c).

which has a low-pass characteristic with a density of As and
a corner frequency equal to the closed-loop bandwidth, as
illustrated in Figure 6(c).

Although the expression for variance (15) is generally
evaluated numerically, in some cases it is straightforward
and useful to derive analytic expressions. One such case is
the position noise variance due to sensor noise (E

[

d2
]

due
to ns) when integral control is applied. As demonstrated in
the forthcoming examples, sensor noise is typically the dom-
inant noise process in a feedback controlled nanopositioning
system. As a result, other noise sources can sometimes by
neglected.

As the sensor noise density is approximately constant and
the sensitivity function (18) is approximately first-order, the
resulting position noise can be determined from

√

E [d2] due to ns =
√

As

√

1.57fcl, (22)

The corresponding 6σ-resolution is

6σ-resolution = 6
√

As

√

1.57fcl. (23)

This expression can be used to determine the minimum
resolution of a nanopositioning system given only the sensor
noise density and closed-loop bandwidth. It can also be
rearranged to reveal the maximum closed-loop bandwidth
achievable given the sensor noise density and the required
resolution.

maximum bandwidth (Hz) =

(

6σ-resolution

7.51
√
As

)2

. (24)

For example, consider a nanopositioner with integral feed-
back control and a capacitive sensor with a noise density of

30 pm/
√

Hz. The maximum bandwidth with a resolution of
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Parameter Value

Closed-loop bandwidth fcl 50 Hz

Controller gain α 314

Amplifier bandwidth fV 2 kHz

Amplifier gain 1/β 50

Amplifier input voltage noise AV 100 nV/
√

Hz

Amplifier output voltage noise 5 µV/
√

Hz

Amplifier noise corner frequency fnc 100 Hz

Sensor noise As 20 pm/
√

Hz

Position range 100 µm

Sensitivity P (0) 500 nm/V

Resonance frequency ωr 2π × 103 r/s

Damping ratio ζr 0.05

TABLE I

SPECIFICATIONS OF AN EXAMPLE NANOPOSITIONING SYSTEM

1 nm is

maximum bandwidth =

(

1× 10−9

7.51× 30× 10−12

)2

= 11 Hz

V. SIMULATION EXAMPLES

A. Integral controller noise simulation

In this section an example nanopositioner is considered
with a range of 100 µm at 200 V and a resonance frequency
of 1 kHz. The system model is

P (s) = 500
nm

V
× ω2

r

s2 + 2ωrζrs+ ω2
r

, (25)

where ωr = 2π1000 and ζr = 0.05. The system includes
a capacitive position sensor and voltage amplifier with the
following specifications. The capacitive position sensor has

a noise density of 20 pm/
√

Hz. The voltage amplifier has
a gain of 20, a bandwidth of 2 kHz, an input voltage noise

density of 100 nV/
√

Hz, and a noise corner frequency of
100 Hz.

The feedback controller in this example is a simple integral
controller with compensation for the sensitivity of the plant,
that is

C(s) =
1

500 nm/V

α

s
, (26)

where α is the gain of the controller and also the approximate
bandwidth (in rad/s) of the closed-loop system. All of the
system parameters are summarized in Table I.

The total density of the position noise can now be calcu-
lated from equation (14). The total spectral density and its
components are plotted in Figure 7(a). Clearly, the sensor
noise is the dominant noise process. This is the case in most
nanopositioning systems with closed-loop position feedback.

The variance of the position noise can be determined by
solving the integral for variance numerically,

σ2 = E
[

d2
]

=

∫

∞

0

Sd(f) df (27)

The result is

σ2 = 0.24 nm2, or σ = 0.49 nm,

which implies a 6σ-resolution of 2.9 nm.
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Fig. 7. The spectral density of the total position noise
√

Sd(f) and its

two components, the amplifier output voltage noise
√

SdVo
(f) and sensor

noise
√

Sdns
(f) (all in pm/

√
Hz).

In systems with lower closed-loop bandwidth, the 1/f
noise of the amplifier can become dominant. For example,
if the closed-loop bandwidth of the previous example is
reduced to 1 Hz, the new power spectral density, plotted
Figure 7(b), differs significantly. The resulting variance and
standard deviation are

σ2 = 0.093 nm2, or σ = 0.30 nm,

which implies a 6σ-resolution of 1.8 nm. Not a significant
reduction considering that the closed-loop bandwidth has
been reduced to 2% of its previous value. More generally,
the resolution can be plotted against a range of closed-loop
bandwidths to reveal the trend. In Figure 8, the 6σ-resolution
is plotted against a range of closed-loop bandwidths from
100 mHz to 60 Hz. The curve has a minima of 1.8 nm at
0.4 Hz. Below this frequency, amplifier noise is the major
contributor, while at higher frequencies, sensor noise is more
significant.

B. Noise simulation with inverse model controller

In the previous example, the integral controller does not
permit a closed-loop bandwidth greater than 100 Hz. Many
other model-based controllers can achieve much better per-
formance. One simple controller that demonstrates the noise
characteristics of a model based controller is the combination
of an integrator and notch filter, or direct inverse controller.

4790



10
−1

10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

14

16

Inverse 
Control

Integral
Control

R
es

o
lu

ti
o

n
(n

m
)

Closed-loop Bandwidth (Hz)

Fig. 8. Resolution of the example nanopositioning system with integral
control (solid line) and inverse control (dashed).

The transfer function is an integrator combined with an
inverse model of the plant,

C(s) =
α

s

1

500 nm/V

s2 + 2ωrζrs+ ω2
r

ωr

. (28)

The resulting loop-gain C(s)P (s) is an integrator, so stabil-
ity is guaranteed and the closed-loop bandwidth is α rad/s.
With such a controller it is now possible to examine the noise
performance of feedback systems with wide bandwidth.

Aside from improved bandwidth, the inverse controller
also eliminates the resonance peak in the sensor induced
noise spectrum. This benefit also occurs with controllers
designed to damp the resonance peak [13]. After following
the same procedure described in the previous section, the
resulting variance for a closed-loop bandwidth of 500 Hz is

σ2 = 0.37 nm2, or σ = 0.61 nm,

which implies a 6σ-resolution of 3.7 nm. This is not signif-
icantly greater than the 50 Hz controller bandwidth in the
previous example, which resulted in a 2.9 nm resolution.
When the closed-loop bandwidth of the inverse controller is
reduced to 50 Hz, the resolution is 2.1 nm, which is slightly
better than the previous example. The difference is due to the
absence of the resonance peak in the sensor induced noise.

The resolution of the inverse controller is plotted for
a wide range of bandwidths in Figure 8. The minimum
resolution is 1.8 nm at 1 Hz. After approximately 100 Hz, the
position noise is due predominantly to the sensor-noise which
is proportional to the square-root of closed-loop bandwidth,
as described in equation (23).

C. Feedback versus feedforward control

A commonly discussed advantage of feedforward control
systems is the absence of sensor induced noise. However, this
view does not take into account the presence of 1/f amplifier
noise that can result in significant peak-to-peak amplitude.

It is not necessary to derive equations for the noise
performance of feedforward systems as this is a special case
of the feedback examples already discussed. The positioning
noise of a feedforward control system is equivalent to a
feedback control system when C(s) = 0 or equivalently,

when the closed-loop bandwidth is zero. Thus, the plots of
resolution versus bandwidth in Figure 8 are also valid for
feedforward control. The feedforward controller resolution
is the DC resolution of these plots, which in both cases is
2.60 nm.

It is interesting to note that both the integral and inverse
controller can achieve slightly less positioning noise than a
feedforward control system when the closed-loop bandwidth
is very low. This is because the amplifier noise density is
greater than the sensor noise density at low frequencies.
In the examples considered, the optimal noise performance
could be achieved with a feedback controller of around
1-Hz bandwidth. To increase the positioning bandwidth, a
feedforward input would be required [14].

VI. CONCLUSIONS

In this article, a frequency domain approach was used to
quantify noise sources and predict the closed-loop resolution
of a nanopositioning system. The foremost noise sources
were identified as the amplifier voltage noise and the dis-
placement sensor noise. Simulation examples demonstrate
that the minimum positioning noise usually occurs in open-
loop or with very low closed-loop bandwidth. This implies
that combined feedback and feedforward control can achieve
the best positioning resolution.
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