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Abstract— This article compares the performance of three
feedback control methodologies for high performance nanopo-
sitioning applications. Integral resonance damping control is
a new approach for controlling mechanical systems. In this
approach, the system resonances are actively damped rather
than inverted which maximizes the closed-loop bandwidth and
provides robustness to changes in the resonance frequencies.
This technique is comprehensively compared to the standard
methods of PI and inversion control in a practical environment.
A five times improvement in the settling-time and bandwidth
is demonstrated.

I. INTRODUCTION

High performance nanopositioning stages are required in

applications such as: large-range surface inspection [1], [2],

scanning probe microscopy [3]–[5], nanofabrication [6]–[9],

and imaging of fast biological and physical processes [10]–

[13]. To eliminate or reduce the positioning errors arising

from resonance excitation, guiding errors, hysteresis, and

drift, nanopositioning systems require a feedback and/or

feedforward control system.

The most common method for control of nanopositioning

system is a combination of PI control and inversion filters

[14]. Such techniques can provide excellent closed-loop

bandwidth, up to or greater than the resonance frequency

[15]. However, to achieve high performance, an extremely

accurate system model is required.

Damping control is an alternative method for reducing

the bandwidth limitations imposed by mechanical resonance.

Damping control uses a feedback loop to artificially increase

the damping ratio of a system. An increase in the damping

ratio (ζ) allows a proportional increase in the feedback gain

and closed-loop bandwidth when using an integral controller.

A number of techniques for damping control have been

demonstrated successfully in the literature, these include

Positive Position Feedback (PPF) [16], polynomial based

control [17], shunt control [18]–[20], resonant control [21],

Force Feedback [22], [23], and Integral Resonance Control

(IRC) [24], [25]. Among these techniques, PPF controllers,

velocity feedback controllers, force feedback controllers, and

IRC controllers have been shown to guarantee stability when

the plant is strictly negative imaginary [26].

Optimal controllers with automatic synthesis have also

been successfully applied to nanopositioning applications.
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Fig. 1. A two-axis serial-kinematic nanopositioning platform with a range
of 30 µm.

Examples include robust H∞ controllers [27], [28] and LMI

based controllers [29].

Due to their simplicity and robustness, integral resonance

controllers have the potential to address the requirements of

industrial nanopositioning systems. This article describes the

design process for an IRC damping and tracking controller

and compares the performance to a PI controller and inverse

controller.

II. EXPERIMENTAL SETUP

To compare the controller characteristics, each technique

will be applied to the two-axis serial-kinematic nanoposi-

tioning stage pictured in Figure 1. Each axis contains a 12-

mm long piezoelectric stack actuator (Noliac NAC2003-H12)

with a free displacement of 12 µm at 200 V. The flexure

design includes a mechanical amplifier to provide a total

range of 30 µm. The flexures also mitigate cross-coupling so

that each axis can be controlled independently. The position

of the moving platform is measured by a Microsense 6810

capacitive sensor and 6504-01 probe, which has a sensitivity

of 2.5 µm/V. The stage is driven by two PiezoDrive PDL200

voltage amplifiers with a gain of 20.

The x-axis, which translates from left to right in Figure 1,

has a resonance frequency of 513 Hz. The y-axis contains

less mass so the resonance frequency is higher at 727 Hz.

Since the x-axis imposes a greater limitation on performance,

the comparison will be performed on this axis. However, the

design process for the other axis is identical.

The frequency response for a nominal load is plotted

in Figure 2(a). With the maximum payload, the resonance

frequency reduces to 415 Hz as shown in Figure 2(b). It

can be observed that payload mass significantly modifies the

higher frequency dynamics.

For the purpose of control design, a second-order model

is procured using the frequency domain least-squares tech-
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(a) FRF of System and Model
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Fig. 2. The open-loop frequency response measured from the voltage
amplifier input to the sensor output, scaled to µm/V. In (a) the nominal
response is compared to the identified model. In (b) the frequency response
of the system with maximum load is compared to the nominal response.

niques. The model transfer function is:

G(s) =
2.025× 107

s2 + 48.63s+ 1.042× 107
. (1)

The frequency response of the model is compared to the

experimental data in Figure 2(a). The model closely approx-

imates the first resonance mode which is sufficient for control

design.

III. PI CONTROL

A popular technique for control of commercial nanopo-

sitioning systems is sensor-based feedback using integral or

proportional-integral control [30]. The transfer function of a

PID controller is

CPI(s) = β/s+ kp + kds, (2)

However, the derivative term is rarely used due to the

increased noise sensitivity and stability problems associated

10
1

10
2

10
3

−60

−40

−20

0

M
a

g
 (

d
B

)

 

 

Nominal

Max Load

10
1

10
2

10
3

−500

−400

−300

−200

−100

0

θ

Frequency (Hz)

Fig. 3. The loop-gain of the nanopositioner and inversion based controller
during nominal and maximum load CNotch(s)G(s).

with high frequency resonance modes. On the other hand,

PI controllers are simple to tune and effectively reduce

piezoelectric non-linearity at low-frequencies. However, the

bandwidth of PI tracking controllers is severely limited by

the presence of highly resonant modes. The factor limit-

ing the feedback gain and closed-loop bandwidth is gain-

margin [22], [23], [31].

For the nanopositioner under consideration, the maximum

permissible gain is 15.5 which is limited by the gain-margin

of 6 dB. The closed-loop bandwidth for this controller is only

13 Hz or 2.5% of the resonance frequency. The experimental

closed-loop frequency and step responses are plotted in

Section VI.

IV. PI CONTROL WITH NOTCH FILTERS

Inversion techniques are popular as they are simple to

implement and can provide a high closed-loop bandwidth if

they are accurately tuned and the resonance frequency does

not vary [14], [15]. The transfer function of a typical inverse

controller is

CNotch(s) =
β

s

s2 + 2ζzs+ ω2
w

ω2
z

(3)

where ζz and ωz are the damping ratio and first resonance

frequency of the nanopositioner. Depending on the imple-

mentation method, an additional pole may be required above

the bandwidth of interest.

A major consideration with inversion based control is the

possibility of modeling error. In particular, if the resonance

frequency drops below the frequency of the notch filter, the

phase lag will cause instability [14]. Therefore, a notch filter

must be tuned to the lowest resonance frequency that will

occur during service. For example, the example nanoposi-

tioner has a nominal resonance frequency of 513 Hz and a

minimum resonance frequency 410 Hz. Thus, the notch filter

is tuned to 410 Hz with an estimated damping of ζz = 0.01.
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Fig. 4. Integral resonance control scheme [24]

To maintain a gain-margin of 6 dB the maximum integral

gain is β = 44. The loop-gain during nominal and maximum

load conditions is plotted in Figure 3. During nominal

conditions, the phase-lag does not exceed 180 degrees until

the second resonance mode; however, the first resonance

mode remains dominant in the response and can be excited

by high-frequency components of the input or disturbances.

This behavior is evident in the closed-loop frequency and

step responses plotted in Section VI. Since the notch filter is

tuned to the lowest resonance frequency, the system actually

performs better with the maximum payload. The loop-gain

in Figure 3 shows that the first resonance-mode is almost

inverted during this condition.

Due to the sensitivity of inversion based controllers to

variations in the resonance frequency, they are most suited

to applications where the resonance frequency is stable, or

where the feedback controller can be continually recali-

brated [15].

V. STRUCTURED PI CONTROL WITH IRC DAMPING

Integral Resonance Control (IRC) was first reported as a

means for augmenting the structural damping of resonant

systems with collocated sensors and actuators [24]. A di-

agram of an IRC loop is shown in Figure 4. It consists

of the collocated system Gyu, an artificial feedthrough Df

and a controller C. The input disturbance w represents

environmental disturbances.

The first step in designing an IRC controller is to select,

and add, an artificial feedthrough term Df to the original

plant Gyu. The new system is referred to as Gyu + Df .

It has been shown that a sufficiently large and negative

feedthrough term will introduce a pair of zeros below the

first resonance mode and also guarantee zero-pole interlacing

for higher frequency modes [24]. Smaller feedthrough terms

permit greater maximum damping. Although it is straight-

forward to manually select a suitable feedthrough term, it

can also be computed from Theorem 2 in [24].

For the model Gyu described in (1), a feedthrough term of

Df = −2.5 is sufficient to introduce a pair of zeros below

the first resonance mode. The frequency responses of the

open-loop system Gyu and the modified transfer function

Gyu +Df are plotted in Figure 5.

The key behind Integral Resonance Control is the phase

response of Gyu +Df , which now lies between -180 and 0
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Fig. 5. Frequency response of the open-loop system Gyu and with artificial
feedthrough Gyu+Df , where Df = -2.5. The 180 degree phase change of
Gyu+Df is due to the negative feedthrough which also makes the system
inverting.

degrees as shown in Figure 5. Due to the bounded phase of

Gyu +Df a simple negative integral controller,

C =
−k

s
, (4)

can be applied directly to the system. To examine the

stability of such a controller, we consider the loop-gain

C × (Gyu +Df ). For stability, the phase of the loop-gain

must be within ±180 degrees while the gain is greater

than zero. The phase of the loop-gain C × (Gyu +Df ) is

equal to the phase of Gyu + Df minus 180 degrees for

the negative controller gain and a further 90 degrees for

the single controller pole. The resulting phase response of

the loop-gain lies between +90 and -90 degrees. That is,

regardless of controller gain, the closed-loop system has a

phase margin of 90 degrees and an infinite gain-margin with

respect to Gyu +Df .

An optimal controller gain k that maximizes damping can

be found using the root-locus technique [24]. For the system

under consideration, the root-locus in Figure 6 produces a

gain of k = 1900 and a maximum damping ratio of 0.57.

In order to facilitate a tracking control loop, the feedback

diagram must be rearranged in a form where the input does

not appear as a disturbance. This can be achieved by finding

an equivalent regulator that provides the same loop gain [32].

The equivalent regulator C2 is [32]

C2 =
C

1 + CDf

. (5)

When C = −k
s

the equivalent regulator is

C2 =
−k

s− kDf

. (6)

The closed-loop transfer function of the damping loop is,

Gyf =
GyuC2

1 +GyuC2

. (7)
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Fig. 6. The root-locus of the damped system Gyf . The asterisks mark
the optimal pole locations. Note that the closed-loop system contains an
additional pole on the real axis.
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Fig. 7. The open- and closed-loop frequency responses of the system with
Integral Resonance control.

With Df = −2.5 and k = 1900, the frequency responses of

the open-loop and damped systems are plotted in Figure 7.

To achieve integral tracking action, the IRC loop can be

enclosed in an outer tracking loop as shown in Figure 8.

In previous work, an integral controller has been used for

tracking control [32]. However, from the pole-zero map in

Figure 6, it can be observed that the damped system contains

the resonance poles, plus an additional real axis pole due to

the controller. This additional pole unnecessarily increases

the system order and reduces the achievable tracking band-

width. The location of the additional pole can be found by

examining the characteristic equation of the damped system,

that is

1 +GyuC2 = 0. (8)

If Gyu has the second-order structure described in equa-

tion (1), the characteristic equation can be written

(

s2 + 2ζωns+ w2
n

)

(s− kDf )− ω2
nk = 0. (9)

n

w

GyuC2C3r
f g u

y

Fig. 8. Tracking control system with the damping controller in regulator
form C2(s) and the tracking controller C3(s). The signal w is the
disturbance input and n is the sensor noise.

For the system under consideration, the roots of equation (9)

contain a complex pair and a pole on the real axis. The

location of the real pole is most easily found numerically,

for example, from the root-locus in Figure 6. In this case,

the additional pole is located at s = −2240.

To eliminate the additional pole from the tracking loop,

the controller can be parameterized so that it contains a zero

at the same frequency. A controller that achieves this is

C3 =
−ki(s+ ωz)

sωz

, (10)

where ωz is the frequency of the additional pole identified

from equation (9), i.e. ωz = 2240, and ki is the integral

gain chosen in the normal way to provide the desired

stability margins or bandwidth. The form of C3 is identical

to a PI controller except that the zero location is fixed.

This is advantageous since the controller has only one free

parameter. Note that C3 is inverting to cancel the inverting

nature of Gyf .

For the system under comparison, an integral gain of ki =
245 results in a phase margin of 60 degrees. The closed-loop

response and performance is examined in Section VI.

The transfer function of the closed-loop system is

y

r
=

C3Gyf

1 + C3Gyf

, (11)

or alternatively,

y

r
=

C2C3Gyu

1 + C2(1 + C3)Gyu

. (12)

In addition to the closed-loop response, the transfer function

from disturbance to the regulated variable y is also of

importance,

y

w
=

Gyu

1 + C2(1 + C3)Gyu

. (13)

That is, the disturbance input is regulated by the equivalent

controller C2(1 + C3).

VI. PERFORMANCE COMPARISON

In Sections III to V, the controllers were designed to

maintain a gain and phase margin of at least 6 dB and 60

degrees. The controller parameters are summarized in Table I

and the simulated stability margins are listed in Table II. The

integral and inverse controller were limited by gain-margin

while the damping controller was limited by phase margin.
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PI C3 = 15.5
s

PI + Notch C3 = 44

s
s2+50.27s+6.317×10

6

6.317×106
2π103

s+2π103

PI + IRC C2 = −245

s
s+2240

2240
, C3 = −1900

s+4750

TABLE I

SUMMARY OF CONTROLLER PARAMETERS

Condition PI PI + Notch PI + IRC

Gain Margin

Nominal Load 6.1 dB 6.0 dB 14 dB

Full Load 7.0 dB 5.1 dB 10 dB

Phase Margin

Nominal Load inf 89◦ 69◦

Full Load 90◦ 89◦ 69◦

Bandwidth (45◦)

Nominal Load 5.0 Hz 13 Hz 50 Hz

Full Load 5.0 Hz 13 Hz 78 Hz

Settling Time (99%)

Nominal Load 164 ms 48 ms 9.7 ms

Full Load 165 ms 42 ms 7.6 ms

6σ-Resolution (Peak to Peak Noise)

Nominal Load 0.27 nm 0.21 nm 0.43 nm

TABLE II

CLOSED-LOOP PERFORMANCE COMPARISON OF THE INTEGRAL,

INVERSION, AND DAMPING CONTROLLERS.

The experimental closed-loop frequency responses are

plotted in Figure 9. The frequency where the phase-lag of

each control loop exceeds 45 degrees is compared in Table II.

In nanopositioning applications, the 45 degree bandwidth

is more informative than the 3 dB bandwidth since it is

more closely related to the settling time. Due to the higher

permissible servo gain, the PI+IRC controller provides the

highest bandwidth by a significant margin.

The experimental step responses are plotted in Figure 10

and summarized in Table II. The PI+IRC controller provides

the shortest step response by approximately a factor of five,

however the response exhibits some overshoot.

Out of the three controllers, the combination of PI control

and IRC provides the best closed-loop performance under

both nominal and full-load conditions. This is the key benefit

of damping control, it is more robust to changes in resonance

frequency than inverse control. If the variation in resonance

frequency were less, or if the resonance frequency was stable,

there would not be a significant difference between the

dynamic performance of an inverse controller and damping

controller. Since the damping controller requires more design

effort than an inverse controller, a damping controller is

preferable when variance in the resonance frequency is

expected, or if there are multiple low-frequency resonances

that are difficult to model.
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(b) Maximum Load, fr = 415 Hz

Fig. 9. The experimental closed-loop frequency response of each controller
under nominal and maximum load conditions.

VII. CONCLUSIONS

This article describes a new method for designing an

integral resonance damping controller with integral tracking

action. The performance of the new controller is compared to

a PI controller and inverse controller which are both common

industrial standards.

Although the PI controller was simplest to design and im-

plement, it provided the lowest closed-loop bandwidth. The

inverse controller or notch filter can provide much greater

bandwidth when the dynamics are well known. However, if

the resonance frequency is expected to vary by more than a

few percent, the controller must be designed conservatively

which limits the achievable performance.

The integral resonance controller damps the system res-

onance rather than inverting it. The foremost advantages

are simplicity, robustness, and insensitivity to variations in

the resonance frequencies. In the experimental comparison,
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Fig. 10. The experimental closed-loop step response of each controller
under nominal and maximum load conditions.

where the resonance frequency varied by 19%, the settling-

time of the IRC controller with one-fifth that of the inverse

controller.
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