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Abstract: In this article, the resolution of a nanopositioning system is defined as the smallest
distance between two non-overlapping points. Techniques are then described for estimating the
closed-loop resolution from time-domain recordings of the contributing noise sources. Practical
guidelines are also discussed to ensure statistically valid estimates. Experimental results show
that the resolution of a piezoelectric tube nanopositioner is 2.1 nm with a closed-loop bandwidth
of 100 Hz. This figure is identical to previous resolution estimates obtained using more involved
frequency-domain measurements.

Keywords: Micro-/Nanosystems; Motion Control; Actuator and Sensor Systems;
Nanopositioning.

1. INTRODUCTION

Nanopositioning systems are found in a variety of applica-
tions that require positioning with nanometer scale reso-
lution (Devasia et al. (2007)), for example: scanning probe
microscopy (Salapaka and Salapaka (2008)), nanofabrica-
tion (Mishra et al. (2007); Tseng et al. (2008)), data stor-
age (Sebastian et al. (2008)), cell surgery, beam pointing,
and precision optical alignment.

A key performance specification of a nanopositioner, or
indeed many other controlled systems, is the resolution.
The resolution is essentially the amount of random varia-
tion that remains at the output, even when the system is
at rest. The resolution is critical for defining the smallest
possible dimensions in a manufacturing processes or the
smallest measurable features in an imaging application. In
the hard drive industry, the standard performance metric
for resolution is the track pitch and the standard deviation
of the measurement as discussed in Al Mamun and Ge
(2005) and Abramovitch and Franklin (2002). However,
the main sources of error in a disk drive are due to
aeroelastic effects and track eccentricities which are not
present in a nanopositioning system.

When defining resolution, it is also important to distin-
guish between resolution and trueness. While the resolu-
tion is a measure of noise and random variation, the true-
ness defines the position accuracy which includes errors
such as sensor non-linearity, abbe error and cosine error.
A discussion of nanopositioner accuracy and trueness is
contained in Hicks et al. (1997).

In the academic literature, the practices for reporting
noise and resolution vary. The most common approach
is to predict the closed-loop noise from measurements
of the sensor noise, for example Sebastian et al. (2008);
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Aphale et al. (2008); Fleming (2010); Fleming et al.
(2010). However, this approach can underestimate the true
noise since the influence of the high-voltage amplifier is
neglected.

In Fleming (2012) the resolution of a nanopositioning
system was defined as the minimum distance between two
non-overlapping points. This definition is described briefly
in Section 2.

Although frequency domain approaches for resolution esti-
mation can be effective, they also require a dynamic signal
analyzer and time-consuming averaging processes. In this
paper, time-domain techniques are described that allow
statistically valid estimates of resolution to be predicted
from recordings of the amplifier and sensor noise. This
approach is experimentally demonstrated to yield results
identical to frequency domain techniques when the closed-
loop bandwidth is greater than 10 Hz. For accurate predic-
tions below this frequency, the required recording lengths
may become prohibitive long (>100s).

2. RESOLUTION AND NOISE

When a nanopositioner has settled to a commanded loca-
tion, a small amount of random motion remains due to
sensor noise, amplifier noise, and external disturbances.
The residual random motion means that two adjacent
commanded locations may actually overlap, which can
cause manufacturing faults or imaging artifacts. To avoid
these eventualities, it is critical to know the minimum
distance between two adjacent points that can be uniquely
identified.

Since the noise sources that contribute to random position
errors can have a potentially large dispersion, it is imprac-
tically conservative to specify a resolution where adjacent
points never overlap. Instead, it is preferable to state the
probability that the actual position is within a certain
error bound. Consider the example of random positioning
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Fig. 1. The random motion of a two-dimensional nanopo-
sitioner. The random motion in the x and y-axis is
bounded by δx and δy. In the x-axis, the standard
deviation and mean are σx and mx respectively. The
shaded areas represent the probability of the position
being outside the range specified by δx.

errors plotted in Figure 1(a). Observe that the peak-to-
peak amplitude of random motion is bounded by δx and δy,
however this range is occasionally exceeded. If the random
position variation is assumed to be Gaussian distributed,
the probability density functions of three adjacent points,
spaced by δx, are plotted in Figure 1(b). In this example,
δx is equal to ±3σx or 6σx which means that 99.7% of the
samples fall within the range specified by δx. Restated,
there is a 0.3% chance that the position is exceeding δx
and straying into a neighboring area, this probability is
shaded in grey.

For many applications, a 99.7% probability that the po-
sition falls within δx = 6σx is an appropriate definition
for the resolution. To be precise, this definition should be
referred to as the 6σ-resolution and specifies the minimum
spacing between two adjacent points that do not overlap
99.7% of the time. Although there is no international
standard for the measurement or reporting of resolution in
a positioning system, the ISO 5725 Standard on Accuracy
(Trueness and Precision) of Measurement Methods and
Results (ISO (1994)) defines precision as the standard
deviation (RMS Value) of a measurement. Thus, the 6σ-

C(s) P (s)
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w

r d
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Fig. 2. A single axis feedback control loop with a plant P
and controller C.

resolution is equivalent to six times the ISO definition for
precision.

3. NOISE SENSITIVITY FUNCTIONS

The foremost sources of noise in a nanopositioning appli-
cation are the amplifier noise, sensor noise and external
disturbances. To derive the closed-loop position noise, the
response of the closed-loop system to each noise source
must be considered. In particular, we need to specify the
location where each source enters the feedback loop. The
amplifier noise Vo appears at the plant input. In contrast,
the external noise w acts at the plant output, and the
sensor noise ns disturbs the measurement.

A single axis feedback loop with additive noise sources
is illustrated in Figure 2. For the sake of simplicity, the
voltage amplifier is considered to be part of the controller.
The transfer function from the amplifier voltage noise Vo

to the position d is the input sensitivity function,

d(s)

Vo(s)
=

P (s)

1 + C(s)P (s)
. (1)

Likewise, the transfer function from the external noise w
to the position d is the sensitivity function,

d(s)

w(s)
=

1

1 + C(s)P (s)
. (2)

Finally, the transfer function from the sensor noise ns to
the position d is the negated complementary sensitivity
function,

d(s)

ns(s)
=

−C(s)P (s)

1 + C(s)P (s)
(3)

4. TIME DOMAIN NOISE MEASUREMENTS

With knowledge of the sensitivity functions, the closed-
loop position noise can be estimated directly from time-
domain measurements. Compared to frequency-domain
techniques, the time-domain approach has a number of
benefits:

• Simplicity
• A spectrum analyzer is not required
• The distribution histogram can be plotted directly
• No assumptions about the distribution are required
to estimate the peak-to-peak value or 6σ-resolution

However, there are also a disadvantages:

• It may be difficult to record signals with 1/f noise
due to their high dynamic range

• To capture both low- and high-frequency noise, long
time records are required with high sampling rate

• There is less insight into the nature of the noise
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In summary, time-domain noise recordings are more
straight-forward, but lack some of the intuition provided
by frequency domain techniques. Time-domain noise mea-
surement techniques are discussed in the following, then
applied to a nanopositioning system.

4.1 Total integrated noise

In nanopositioning applications, a useful method for re-
porting time-domain noise is the total integrated noise,
which is the RMS value or standard deviation over a
particular measurement bandwidth. If a noise process
is assumed to have a constant spectral density of

√
A

(in nm/
√
Hz), the total integrated noise can be expressed

analytically as,

σ(fbw) =
√
A
√

fbw, (4)

where σ(fbw) is the RMS value over the measurement
bandwidth fbw. In practice, a white-noise source is filtered
by a low-pass system G(s). The total integrated noise is
now:

σ(fbw) =

√

∫ fbw

0

A |G(j2πf)|2 df. (5)

If G(s) is a first-order filter with cut-off frequency fc, the
total integrated noise is

σ(fbw) =
√
A

√

∫ fbw

0

f2
c

f2 + f2
c

df. (6)

Using the following integral pair from Poularikas (1999)
(45.3.6.1),

∫

1

a+ bf2
=

1√
ab

tan−1

(

f
√
ab

a

)

, (7)

equation (6) reduces to

σ(fbw) =
√
A
√

fc tan−1(fbwfc). (8)

Note that as the measurement bandwidth approaches ∞,
tan−1(fbwfc) → 1.57 and σ(fbw) approaches the standard
expression for the standard deviation of low-pass filtered
white noise.

The main benefit of total integrated noise is that it can be
measured directly using simple instruments. For example,
the plot in Figure 5 can be constructed with a variable
cut-off low-pass filter and RMS measuring instrument.
The filter order should generally be greater than three to
minimize errors resulting from the non-ideal response.

4.2 Estimating the position noise

In the time domain, the process of estimating position
noise is similar to frequency domain techniques. Two
possible techniques are discussed in the following.

Direct measurement with an ideal sensor The most
straight-forward and conclusive method for measuring
the positioning noise of a nanopositioning system is to
measure it directly. However, this approach is not often
possible as an additional sensor is required with lower noise
and a significantly higher bandwidth than the closed-loop
system.

To avoid low-pass filtering and underestimating the noise,
the sensor bandwidth must be at least five times greater
than the position noise bandwidth. Due to these demand-
ing requirements, direct measurement is rarely an option
since a suitable sensor may not be available. If such a
sensor is available, a major benefit is that the position
noise is not underestimated, which provides a high degree
of confidence in the measured noise and also the resolution.

Prediction based on measured noise In many cases it
is not possible to measure the position noise directly as
auxiliary sensors with suitable performance may not be
available. In such cases, the position noise can be predicted
from measurements of the amplifier and sensor noise. A
benefit of this approach is that the the closed-loop noise
can be predicted for a number of different bandwidths and
controllers, much like frequency domain techniques.

Referring to the feedback diagram in Figure 2, the signals
of interest are the amplifier noise Vo and the sensor noise
ns. As the position noise is calculated by superposition, the
amplifier noise should be measured with the input signal
grounded and the output connected to the nanopositioner.
Conversely, the sensor noise should be measured with
a dedicated test-rig to avoid the influence of external
disturbances. If the sensor noise must be measured in-situ,
all of the nanopositioner actuators should be disconnected
from their sources and short-circuited.

After the constituent noise sources have been recorded, the
position noise can be predicted by filtering the noise signals
by the sensitivity functions of the control-loop. That is, the
position noise is

d(t) = ns(t)
−C(s)P (s)

1 + C(s)P (s)
+ Vo(t)

P (s)

1 + C(s)P (s)
. (9)

The RMS value of the position noise can now be computed
and plotted for a range of different controller-gains and
closed-loop bandwidths.

Although the data sizes in time domain experiments must
be necessarily large to guarantee statistical validity, this
is not a serious impediment since a range of numerical
tools are readily available for extracting the required
information.

For example, in Matlab, the RMS value of a vector d can be
calculated using RMS=std(d) or RMS=sqrt(mean(y.^2)).
The 6σ-resolution can be found using the function
Res=2*quantile(abs(d),0.997). It is also informative to
plot the probability density function using ksdensity or
with the basic histogram function:

xi = linspace(-range,range,Ny);
dx = 2*range/Ny;
[y,x] = hist(d,xi);
plot(x,y/(length(d)*dx))

where -range and range encompass the minimum and
maximum values of d and Ny is the number of x-axis points
in the probability density.

4.3 Practical considerations

Many of the considerations for frequency domain noise
measurements are also valid for time domain measure-
ments (Fleming (2012)). Of particular importance is the
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Record length 100 s

Amplifier bandwidth fV

Anti-aliasing filter cut-off frequency 7.5× fV

Sampling rate 15× fV

Table 1. Recommended parameters for time
domain noise recordings

need for preamplification and the removal of offset volt-
ages. After a suitable preamplification scheme has been
implemented, the position noise can be estimated from
recordings of the sensor and amplifier noise. This requires
a choice of the recording length and sampling rate. The
length of each recording is defined by the lowest spectral
component under consideration. With a lower frequency
limit of 0.1 Hz, a record length of at least ten times the
minimum period is required to obtain a statistically mean-
ingful estimate of the RMS value, which implies a mini-
mum recording length of approximately 100 s. A longer
record length is preferable, but may not be practical.

A more rigorous method for selecting the record length is
to calculate the estimation variance as a function of the
record length. This relationship was described in Fleming
and Moheimani (2003), however, assumptions are required
about the autocorrelation or power spectral density. In
most cases, the simple rule-of-thumb discussed above is
sufficient.

When selecting the sampling rate, the highest signifi-
cant frequency that influences position noise should be
considered. Since the sensor noise is low-pass filtered by
the closed-loop response of the control loop, the high-
est significant frequency is usually the bandwidth of the
voltage amplifier. An appropriate choice of sampling rate
is fifteen times the amplifier bandwidth. This allows a
non-ideal anti-aliasing filter to be utilized with a cut-off
frequency of five times the amplifier bandwidth. Since the
noise power of a first-order amplifier drops to 3.8% at five
times the bandwidth, this technique captures the majority
of noise power. The recommended parameters for time-
domain noise recordings are summarized in Table 1.

5. EXPERIMENTAL DEMONSTRATION

5.1 Experimental setup

In this section, a time-domain noise analysis is performed
on the piezoelectric tube scanner described in Figure 3 and
Maess et al. (2008). The frequency response is plotted in
Figure 4. The goal is to quantify the achievable resolution
as a function of closed-loop bandwidth.

The voltage amplifier used to drive the tube is a Nanonis
HVA4 high-voltage amplifier with a gain of 40. To measure
the noise, the amplifier input was grounded and the output
was amplified by 1000 using an SR560 preamplifier. To
remove DC offset, the input of the preamplifier was AC-
coupled with a 0.03 Hz cut-off frequency.

The sensor under consideration is an ADE Tech 4810 Gag-
ing Module with 2804 capacitive sensor with a full range of
±100 µm and a sensitivity of 0.1 V/µm. To measure the
noise, the sensor is mounted inside an Aluminum block

(a) Piezotube

47

2.8

63.5

0.66

9.52 OD

(b) Dimensions (mm)

Fig. 3. A piezoelectric tube scanner. The tube tip deflects
laterally when an electrode is driven by a voltage
source. The sensitivity is 171 nm/V which implies
a range of approximately 68 µm with a ±200 V
excitation.
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Fig. 4. The lateral frequency response (in µm/V) of the
piezoelectric tube scanner pictured in Figure 3. The
response was measured from the applied actuator
voltage to the resulting displacement.

with a flat-bottomed hole and grub screws to secure the
probe and minimize any movement.

5.2 Measurements

Since the bandwidth of the high-voltage amplifier is 2 kHz,
the sampling rate is chosen to be 30 kHz. To remove the
DC offset, the high-pass cut-off of the preamplifier was set
to 0.03 Hz. The preamplifier is also used for anti-aliasing
with a cut-off frequency of 10 kHz as recommended in
Table 1. With a record length of 100 s, the data contains
3× 106 samples.

The distribution and total integrated noise of the voltage
amplifier and sensor are plotted in Figure 5. The RMS
value of the amplifier noise is 0.14 mV over the 0.1 Hz
to 10 kHz measurement bandwidth which corresponds to
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Fig. 5. The distribution and total integrated noise of
the voltage amplifier and capacitive sensor. Both
of the sensors exhibit an approximately Gaussian
distribution.

a predicted 6σ-resolution of 0.84 mV. The measured 6σ-
resolution was 0.86 mV which supports the assumption of
approximate Gaussian distribution.

The RMS noise and 6σ-resolution of the capacitive sensor
was measured to be 3.6 nm and 20 nm respectively. The
capacitive sensor also exhibits an approximately Gaussian
distribution, albeit with a slightly greater dispersion than
the voltage amplifier.

5.3 Closed-loop position noise

To allow the estimation of closed-loop noise, a system
model was identified from the frequency response in Fig-
ure 4, the parameters are:

P (s) =
0.01151s2 + 116s+ 2.541× 106

s2 + 66.73s+ 2.658× 107
µm/V. (10)

For the sake of demonstration, a controller is chosen that
represents the characteristics of a wide variety of model-
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Fig. 6. The 6σ-resolution versus closed-loop bandwidth
derived from time-domain measurements. This plot
closely matches the frequency-domain result in Flem-
ing (2012) except when the closed-loop bandwidth
is less than 10 Hz. For greater accuracy when the
closed-loop bandwidth is less than 10 Hz, a longer
data recording is required.

based and ad-hoc control schemes. The transfer function is
an integrator combined with an inverse model of the plant,

C(s) =
α

s

1

P (s)
. (11)

The resulting loop-gain C(s)P (s) is approximately an
integrator, so stability is guaranteed and the closed-loop
bandwidth is α rad/s. With such a controller it is now
possible to examine the noise performance of feedback
systems over a wide bandwidth.

The position noise can now be simulated using the noise
recordings and equation (9). At low closed-loop band-
width, the transient response time of the system is signifi-
cant. For this reason, only the second half of the simulated
output is used to calculate the resolution. For the same
reason, it is not practical to simulate a closed-loop band-
width less than 1 Hz. This is an additional disadvantage
of time-domain approaches.

The predicted resolution is plotted against closed-loop
bandwidth in Figure 6. This plot closely resembles a sim-
ilar plot acquired from frequency domain data in Flem-
ing (2012). The time-domain results are compared to the
frequency domain results in Table 2. With a closed-loop
bandwidth of 100 Hz, the predictions are identical, how-
ever, at low closed-loop bandwidth, some discrepancy ex-
ists. This is due to the long transient response which tends
to underestimate the positioning noise at very low closed-
loop bandwidths. If necessary, a more accurate result
can be achieved by significantly increasing the recording
length, however this is not usually desirable or practical.

Bandwidth Frequency Domain Time Domain

100 Hz 2.2 nm 2.1 nm

10 Hz 0.92 nm 0.78 nm

1 Hz 0.55 nm 0.36 nm

Table 2. The predicted closed-loop resolution
using frequency and time-domain measure-

ments.
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6. CONCLUSIONS

In nanopositioning applications, an appropriate definition
for resolution is the bound that encloses 99.7% of position
observations. This is equivalent to the minimum distance
between two non-overlapping points. If the contributing
noise sources are Gaussian random processes, the peak-to-
peak variation is equal to six times the standard deviation,
which is referred to as the 6σ-resolution.

In this article, the closed-loop position noise was predicted
from time-domain measurements of the amplifier and sen-
sor noise. This approach eliminates the need for a spectrum
analyzer and time consuming averaging processes.

To obtain valid time-domain resolution estimates, the key
data requirements are a sampling frequency at least fifteen
times the amplifier bandwidth and a recording length
of at least 100s. These parameters were experimentally
demonstrated to provide similar predictions to frequency
domain techniques when the closed-loop bandwidth is
greater than 10 Hz. If accurate predictions below 10 Hz
are required, frequency domain approaches may be more
suitable.
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