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ABSTRACT

A new multi-mode semi-active shunt technique for controlling vibration in piezoelectric laminated structures is
proposed in this paper. The effect of the “negative capacitor” controller is studied theoretically and then validated
experimentally on a piezoelectric laminated simply-supported beam. The negative capacitor controller is similar
in nature to passive shunt damping techniques, as a single piezoelectric transducer is used to dampen multiple
modes. While achieving comparable performance to that of the purely piezoelectric passive shunt schemes, the
negative capacitor controller has a number of advantages. It is simpler to implement, less sensitive to environmental
variations, and can act as a multiple mode and broadband vibration controller.

Experimental resonant amplitudes for the piezoelectric laminated simply-supported beam 1st, 2nd, 3rd, 4th and 5th
modes were successfully reduced by 6.1, 16.3, 15.2, 11.7 and 10.2dB.
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1. INTRODUCTION

A passive vibration shunt damper acts to minimize structural vibration at a particular frequency, associated
with a lightly damped structural vibration mode. These frequencies are rarely stationary in real applications, i.e.
changes in climactic conditions may shift resonant frequencies. Some damping is usually added to ensure effectiveness
over a range of frequencies. Maximum amplitude reduction, is achieved only if the shunt absorber is lightly damped
and precisely tuned to the required frequency of concern. Thus, a semi-active (passive-active) vibration absorber
should perform better than a passive shunt damper, and could be made much simpler.

1,2,3,4

There are many different types of semi-active vibration controller schemes. One of these schemes involves modify-
ing the effective stiffness of the piezoelectric element, by switch damping® 6789 | Switch damping involves switching
the piezoelectric actuator element between high (open-circuit) and low (short-circuit) stiffness states. These tech-
niques are broadband and passive, but the amplitude reduction performance is limited.

Another type of semi-active vibration controller is the active-passive hybrid piezoelectric network (APPN), which
involves using a passive shunt damping network conjunction with an appropriate broadband active controller (e.g. a
simple R — L passive shunt with a LQG active controller!?-11:12 ) This method is claimed to be more effective than
a system with separated active and passive control schemes!'® 1112

This paper will attempt to develop a new technique for semi-active (passive-active) control. The “negative capacitor”
controller is studied theoretically and then validated experimentally. The negative capacitor controller is similar in
nature to passive shunt damping techniques; a single piezoelectric transducer is used, but is capable of damping
multiple modes.

2. PIEZOELECTRIC MODEL

Piezoelectric devices have shown promising applications in active, semi-active, and passive vibration control. Piezo-
electric materials convert mechanical strains into electrical energy and vice versa. This characteristic can be exploited,
allowing them to be used as both sensors and actuators.

Piezoelectric crystals have a three-dimensional structure, i.e. crystal deformation occurs in 3 dimensions. Practical
mechanical uses only require the effect in one or two dimensions, this can be approximated by manufacturing
piezoelectric patches with large length and width to thickness ratios.
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Figure 1. (a) Series equivalent model for piezoelectric shunt layer; and (b) schematic of piezoelectric shunting layer
with a shunting impedance Z present.

Piezoelectric transducers behave electrically like a capacitor C,, and mechanically like a stiff spring!® . It is common
practice to model the piezoelectric element as a capacitor C,, in series with a strain dependent voltage source V), 14,15
as shown in Figure 1 (a).

3. MODELING THE COMPOUND SYSTEM

In this section we will sketch how the dynamics of a simply-supported piezoelectric laminate beam as illustrated in
Figure 2 can be derived. Two piezoelectric patches are bonded to the structure using a strong adhesive material.
One piezoelectric patch will be used as an actuator to generate a disturbance and the other as a shunting layer. The
subscripts “a”, “b” and “s” correspond respectively to the actuating piezoelectric layer, the beam, and the shunting
piezoelectric layer.

3.1. Structural Dynamics of a Simply Supported Beam

When modeling the dynamics of a structure, it is common practice to derive the transfer function between the
displacement at any point along the beam and the actuator voltage, i.e., Y (z, s)/V,(s), and also the transfer function
between the shunting piezoelectric voltage and the actuator voltage Vi(s)/Va(s).

The elastic deflection of a simply supported beam is described by the one dimensional Bernoulli-Euler beam equation
which has been modified!® as shown below:
9? 0?y(x,t)
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where FEp, I, Ap and p, represent the Young’s modulus, moment of inertia, cross-sectional area and linear mass
density of the beam respectively. The additional term is due to the moment applied to the neutral axis of the
beam by the actuator piezoelectric layer, i.e., M, = C,v,(z,t) where C, is a constant dependent on the actuator
properties!” . It is assumed that each piezoelectric patch is very thin and that the beam deflects only in the y axis.

Simply supported boundary conditions imply y(0,¢) = y(L,t) = 0 and Eﬂb% = Eb-’b% =0.

— Cava(,t)| + pAs =0 (1)

By using the modal analysis technique'® the position function y(z,t), can be expanded as an infinite series of the

form y(x,t) = Y o0, ¢:(x)qi(t), where ¢;(x) are the normalized mode shapes given by ¢;(z) = , /Mﬁ sin (22)18
and ¢;(t) are the modal displacements!6 .

To formulate the dynamical response of the system, the Lagrange equations'®

corresponding to each mode.

are used to find the differential equation

Gi(t) +wiai(t) = Calgi(21) — ¢i(2)]va(t) 2)
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Figure 2. (a) Cross-section of the beam with piezoelectric laminates present; and (b) the piezoelectric laminated
simply-supported beam.

T4

The piezoelectric shunt sensor voltage can be described by vs(t) = Cs %ﬁ—tl where Cs is the piezoelectric con-
3

stant'® . In the sequel we will use the notation (e)’, (8) to represent the derivatives with respect to the spatial

. . . . . )
variable z, and time t, respectively. The resonant frequencies w; are given by w; = (%) %.
b<1b

The dynamic response is found by taking the Laplace transform of the above equation and substituting Y;(z, s) =

$i()qi(s)-

A Y(z,s >, Cldh (1) — Pl(xa)] by (@

The above equation describes the elastic deflection of the entire flexible beam due to a voltage applied to the
piezoelectric actuator. Note that the additional terms 2¢,w;s, are added to compensate for structural damping and are
usually found experimentally. The shunting layer voltage can be expressed as vs(t) = Cs > oo qi(t)(d;(z3) — Pi(24)).
By taking the Laplace transform, the transfer function from the actuator to shunt voltage is found to be'7 |

A Vals) S CCaldl(x1) — (2)][¢h(x3) — H(za
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3.2. Experimental tested: Simply Supported Beam

The experimental beam is a uniform aluminum bar with rectangular cross section and experimentally pinned bound-
ary conditions at both ends. A pair of piezoelectric ceramic patches (PIC151) are attached symmetrically to either
side of the beam surface. One patch is used as an actuator and the other as a shunting layer. Experimental beam
and piezoelectric parameters are summarized in Table 1.

The displacement and voltage frequency responses are measured using a Polytec Laser Scanning Vibrometer (PSV-
300) and a Hewlett Packard spectrum analyzer (35670A). In both cases a swept sine excitation is applied to the
actuator piezoelectric patch. The frequency response of the experimental system and identified model is shown in
Figure 3. It is observed that the identified model is a good representation of the true system over the bandwidth of
interest.



PIC151 Parameters
Beam Parameters Length 0'070_717;
Tength, L 06 Charge Constant, ds; —210 x 10 m/V
Widih 7w 0 '05 - Voltage Constant, gs; —11.5 x 1073 Vm/N
Thickr;e’ss bh 5 '003 p” Coupling Coefficient, k3; 0.340
s P . -
Youngs Modulus, Ep, | 65 x 107 N/m? C&})iz?[ll‘:ar;ce;ﬂCp 06100255/:5
. 2 /ALy S a '
Desity, py 2650 kg/m Thickness, hs hy 025 x 10 3 m
Youngs Modulus, Es E, 63 x 10° N/m?

Table 1. Parameters of the simply-supported piezoelectric laminated beam.
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4. MODELING THE COMPOSITE SYSTEM IN TRANSFER FUNCTION FORM

Consider Figures 1 (b) and 2, where a piezoelectric patch is shunted by an impedance Z. Hence, the current-voltage
relationship of the impedance can be represented in Laplace domain as

Va(s) = L.(s) Z(s) ()

where V, is the voltage across the impedance and I, is the current flowing through the impedance Z. Using Kirchhoff’s
voltage law the circuit shown in Figure 1 (b), we obtain V,(s) as

V.(s) = Vp(s) — éus) (©)

where V), is the voltage induced from the electromechanical coupling effect'® and C), represents capacitance of the
shunting layer. Using (5) and (6) we obtain



Va(s) = Vi(s) (7)
cis + Z(s) g
or equivalently
Va(s) CpsZ(s)

T 1+ CpsZ(s) b(s)-

When the piezoelectric transducer is shunted with a finite impedance Z, we may write

Vi(8) = Guu(8)Vin(s) = Guu(8)Vz(5)- (®)

By substituting (7) into the above equation, and simple algebra the transfer function relating V,(s) to Vin(s), is
found to be

Gl 2 P2 ~ TG Y
where
K(s) = % (10
Also, it can be shown that,
@yv(:r,s) a Y(x,8) Gyu(s) . (11)

Vi (5) N 1+va(s)K(8)

From equations (9) - (11), it can be observed that shunt damping of piezoelectric transducer is in fact a feedback
control problem. Therefore, it should be possible to use feedback control techniques to determine an appropriate
impedance.

5. DEVELOPING THE NEGATIVE CAPACITANCE CONTROLLER

This section will develop the fundamental concept of the new broadband semi-active controller. Consider, the two
following relationships, as in previous section,

A Gop(9)

va(S) = m (12)
with
__Z(s)

where Gy (s) is the undamped response of the structure, C,, is the piezoelectric capacitance, and Z(s) is the impedance
of the shunt network. After straightforward manipulation, we obtain the following relationship for Gy, (s), i.e. the
transfer function of a shunt damped mechanical structure, as

: Gon(s) (CpZ(s)s + 1)

Gools) = & s (Lt G + 1 (14)
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Figure 4. Negative capacitance controller with appropriate damping resistance.

The damped structural transfer function (14) can be minimized by equating the numerator to 0, i.e. by selecting
Z(s) = %CS, where C = C,. This is not a realizable network as it creates an undamped electrical resonance. A
compromise between damping performance and practicality (i.e. the node voltages and currents) can be achieved
by introducing a series resistor R. The electrical model of the shunt piezoelectric with attached negative capacitor
and resistor is shown in Figure 4. It should be noted that this control scheme is virtually immune to variations in
structural dynamics since it is not tuned into specific frequencies, unlike passive shunt damping, networks that are
extremely sensitive to variations in the resonant frequencies of the underlying structure.

If Z(s) is chosen to be —&= + R then Z(s) will have the following transfer function:

_ RCs—1

Z(s) roF

(15)

Substituting (15) in (13), K(s) becomes

1
RC (16)
s—i—% (c% - 1)

The shunt damped system will be stable if the capacitance of the controller K(s), is greater than or equal to the
capacitance of the piezoelectric patch i.e. if C > C,29 . In practice the equivalent electrical model of the piezoelectric
element does not fully describe the piezoelectric dynamics, in particular the piezoelectric capacitance tends to be
frequency dependent. To deal with this uncertainty C is chosen conservatively i.e. C > Cp(f) Vf € R. For our case
C was chosen to be 115nF', since the nominated piezoelectric capacitance is C}, = 105nF.

s —

K(s) =

6. OPTIMAL CHOICE FOR R

In order to find the appropriate value for resistor R, an optimization approach is proposed, such that the Hs norm
of the combined system Gy (z,s) is minimized for the first 5 structural modes. We have the following constrained
optimization problem;

R* = arg min B tr(éf’CT) (17)
s.t. A(R)TP+PA(R)+BB =0
R>0
where Gy, (0.170, 5) = C(sI — A(R))"'B.

Using a line search algorithm, a local minimum was found at R* = 1309.99Q). Figure 5, shows the Ha norm cost
surface which contains a minima at R*.
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Figure 5. G,,(0.170,s) Hy norm plotted against resistance R (£2), for 5 modes.
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Figure 6. Simulated response: |Gy,(0.170,s)| undamped (---) and |G, (0.170, s)| damped system (—).

7. SIMULATED RESULTS

Using C' = 115nF and R* = 1309.92, simulations of G,,,(0.170, s) and G, (0.170, s) show that the structural modes
of the beam have been considerably dampened, as shown in Figure 6. From Figure 7, we can observe that the poles of
the compound system have been pushed further to the left. By shifting the poles to the left we have added damping
to the compound system, therefore effectively minimizing vibration of the structure. From Figure 7, we can foresee
that the controller has a localized effect on the controlled poles.
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Figure 8. Example of a negative impedance converter.



8. EXPERIMENTAL RESULTS
8.1. Creating the Negative Capacitance

If our semi-active shunt circuit requires a negative capacitance element, how do we create such an element? To
answer this question we begin with the following circuit given in Figure 8. If we use nodal analysis, at node 1 the
Kirchhoff’s current law implies

L+——=0 (18)

and at node 2,

VoW1 _~_(0*V1)
Ry Zr,

—0. (19)

Eliminating V5 from Equations (18) and (19) from these two equations, imply

_ ViR
~LRy - =2 =0. (20)
L
Solving for the ratlo , we obtain the following
Vi R1
Zi =L = _ly 21
I~ R (21)

From these equations we can see that the circuit, shown in Figure 8, creates a negative impedance and also scales
the value by the ratios of the resistors i.e. a transconductance gain. Thus if Z;, = 1/Cs, then Z;, = —1/Cs. The
circuit shown is one of a general class of circuits known as a negative impedance converter (NIC).

We can now use this circuit for reducing the amplitudes of the resonant peaks of the structure. When considering
this type of circuit we need to be aware that the impedance Z has become a semi-active shunt circuit. Therefore,
stability issues need to be addressed when constructing the experimental circuit, e.g. bias currents due to operational
amplifiers.

8.2. Test Example: Negative Capacitance Controller

A test circuit was constructed, as in Figure 9, with the appropriate components, tabulated in Table 2. Construction
of the test circuit incorporated Burr-Brown OPA445 high voltage operational amplifiers. The frequency response was
measured between the source voltage Vm, and the voltage across the semi-active controller Vout, as shown Figure 9.
The simulated magnitude and phase response are plotted against the experimental responses, as illustrated in Figure
10. From experimental results we can see that the predicted theoretical results agree closely, therefore, verifying that
the semi-active shunt controller is working correctly.

Circuit Component | Value
R 102

R 33MQ

C=C, 100nF

C 115nF

R 1.3kQ

Table 2. Parameters of negative capacitance test circuit.
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Figure 9. Test circuit with negative capacitance present.
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Figure 10. Frequency response f/out(s) / f/m(s) of the test circuit: ideal (---) and experimental results (—).

8.3. Negative Capacitor Controller

Using the tested circuit from above, the semi-active negative controller is now applied to the piezoelectric laminated
simply-supported beam. The displacement and actuator voltage frequency responses are measured using a Polytec
Laser Scanning Vibrometer (PSV-300) and the Hewlett Packard function generator (33120A). A swept sine excitation
is amplified then applied to the piezoelectric actuator.

The experimental resonant amplitudes for the 1st, 2nd, 3rd, 4th and 5th modes were successfully reduced as shown
in Figure 11. Resonant amplitudes were reduced by 6.1, 16.3, 15.2, 11.7 and 10.2dB. From theoretical simulations
the resonant amplitudes 1st, 2nd, 3rd, 4th and 5th modes were 7.3, 22.4, 18.6, 13.4 and 11.8dB respectively. The
analytical and experimental results show encouraging developments, as summarized in Table 3.



Negative Capacitance Amplitude Reduction
Mode | Simulations (dB) Experimental (dB)

1 7.3 6.1

2 22.4 16.3

3 18.6 15.2

4 13.4 11.7

5 11.8 10.2

Table 3. Amplitude reduction: simulations and experimental results.
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Figure 11. Experimental response: |Gy, (0.170, s)| undamped (- --) and |Gy,(0.170, s)| damped system (—).

9. CONCLUSION

The negative capacitor piezoelectric shunt circuit has been introduced as an alternate method of reducing structural
vibrations. While achieving comparable performance, the negative capacitor has a number of advantages over current
passive shunt damping systems: simplicity - it is non-model based (i.e. not dependent on resonant frequencies) and
requires only a single operational amplifier for implementation; and robustness - the negative capacitor depends only
on the dynamics of the piezoceramic device. A method has been presented for synthesizing a semi-active controller
that alleviates some of the problems associated with passive control schemes with promising results. Resonant
magnitudes have been reduced up to 16dB for multiple modes.
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