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ABSTRACT

Piezoelectric shunt damping systems reduce structural vibration by shunting an attached piezoelectric trans-
ducer with an electrical impedance. Current impedance designs result in a coupled electrical resonance at the
target modal frequencies. In practical situations, variation in structural load or environmental conditions can
result in significant changes in the structural resonance frequencies. This variation can severly reduce shunt
damping performance as the electrical impedance remains tuned to the nominal resonance frequencies. This
paper introduces a method for online adaption of the shunting impedance. A reconstructed estimate of the
RMS strain is minimized by varying the component values of a synthetic shunt damping circuit. The presented
techniques are applied in real time, to tune the component values of a randomly excited beam.

1. INTRODUCTION

Piezoelectric transducers (PZT’s) in conjunction with appropriate circuitry, can be used as a mechanical energy
dissipation device. If a simple resistor is placed across the terminals of the PZT, the PZT will act as a viscoelastic
damper! . If the network consists of a series inductor-resistor R — L circuit, the passive network combined with
the inherent capacitance of the PZT creates a damped electrical resonance. The resonance can be tuned so that
the PZT acts as a tuned vibrational energy absorber! . Wu? reports a method for damping multiple vibration
modes with a single PZT. The circuit requires as many R — L parallel branches as there are modes to be
controlled. Each branch also contains “current blocking” networks, each consisting of an inductor and capacitor
connected in parallel to isolate adjacent branches. Passive shunt damping is regarded as a simple, low cost,
light weight, and easy to implement method of controlling structural vibrations.

In practical situations, variation in structural load or environmental conditions can result in significant move-
ment of the structural resonance frequencies. Such variation can severely reduce shunt damping performance as
the electrical impedance remains tuned to the nominal resonance frequencies. This problem was first addressed
by Smith, Maly, and Johnson? , where a viscoelastic spring, with temperature dependant stiffness, was used as
a tuned mechanical absorber. Hollkamp? later proposed a similar methodology for piezoelectric shunt damping.
A mechanically driven resistor was used to vary the virtual inductance of a single mode shunt damping circuit.
The performance function, related to the RMS strain, was estimated using an additional piezoelectric patch.
In this paper we consider the effect of broadband disturbances on structures with multiple high profile modes.
Another approach based on capacitive shunting, considers tonal disturbances and structures with a single dom-
inant lightly damped mode® . In situations involving non-sinusoidal disturbances, such techniques are deemed
undesirable as the structural response is increased outside of the damped region.

Recently, a new method for implementing shunt damping circuits has been introduced. The synthetic
impedance®® | uses a voltage controlled current source and DSP system to implement the terminal impedance
of an arbitrary shunt network. It replaces physical circuits to provide effective structural damping avoiding the
problems encountered with direct circuit implementations. Because the desired impedance is now defined only
by a transfer function on the DSP system, the component values are easily modified online.

This paper introduces a technique for online adaptation of shunt network component values. A single
piezoelectric patch is used to simultaneously damp multiple modes of the mechanical system and to procure
an estimate of the performance function. Experimental results are presented for a randomly excited, simply
supported beam. The second and third modes of the beam are controlled with an attached piezoelectric
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Figure 1: Single mode shunt damping circuits.

transducer and adaptive shunt damping system. The algorithm is shown to regain optimal damping performance
after severely detuning the component values.

The paper is presented in six sections. We begin with a brief review of piezoelectric shunt circuit design and
a description of the synthetic impedance. In section three we will discuss the modelling of structural dynamics
and show how to model the presence of an electrical shunt impedance. The adaptive impedance is introduced
in section four. Experimental and theoretical results are presented in section five. We conclude with a review of
the initial goals, a summary of the results, and some future directions for research on adaptive shunt damping.

2. PIEZOELECTRIC SHUNT DAMPING

Shunt damping methodologies are often grouped into two broad categories: single mode and multi-mode. Single
mode shunt damping techniques are simple but damp only one structural mode for every PZT. Multiple mode
shunt damping techniques require more complicated shunt circuits but are capable of damping many modes.

2.1. Single Mode Shunt Damping

Single mode damping was introduced to decrease the magnitude of one structural mode® . Two examples of
single mode damping are shown in Figure 1, parallel and series shunt damping. The combination of an R — L
shunt circuit combined with the intrinsic capacitance of the PZT introduces an electrical resonance. This can be
tuned to one structural mode in a manner analogous to a mechanical vibration absorber. Single mode damping
can be applied to reduce several structural modes with the use of as many piezoelectric patches and damping
circuits.

Problems may result if these piezoelectric patches are bonded to, or imbedded in the structure. First, the
structure may not have sufficient room to accommodate all of the patches. Second, the structure may be altered
or weakened when the piezoelectric patches are applied. In addition, a large number of patches can increase the
structural weight, making it unsuitable for applications such as aerospace.

2.2. Multiple Mode Shunt Damping

To alleviate the problems associated with single mode damping, multi-mode shunt damping has been intro-
duced; i.e. the use of one piezoelectric patch to damp several structural modes. Two multimode shunt damping
methodologies will be discussed: Current blocking techniques as presented in? '%7'2 | and current flowing tech-
niques as presented in'3: 1 .

2.2.1. Current Blocking Techniques

k21012 ip series with each

The principle of multi-mode shunt damping is to insert a current blocking networ
shunt branch. In Figure 2, the blocking circuit consists of a capacitor and inductor in parallel, Cs — Ls. The
number of antiresonant circuits in each R — L shunt branch increases with the number of structural modes to
be damped simultaneously. Each R — L shunt branch is designed to damp one structural mode. For example,
Ry — Ly in Figure 2 is tuned to resonate at wi, the resonance frequency of the first structural mode to be

damped. Ry — Lo is tuned to ws, the second structural mode to be damped, and so on.
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Figure 2: Parallel and series multimode shunt damping circuits.
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Figure 3: Current flowing piezoelectric shunt damping circuit.'*
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According to Wu? , the inductance values for the shunt circuits shown in Figure 2 can be calculated from
the following expressions. It is assumed that w; < ws.

1 | 1 - (L1E2+l~zzL3*LlLafnglizLaca)
L1 == Ly = =5 L3==5 L= (Ll—iz)(l—ngSCS) (1)

wiC, wiCs
where C), is the capacitance of the PZT, and (3 is an arbitrary capacitor used in the current blocking network.

2.2.2. Current Flowing Techniques

One problem with the previous technique is that the order of the shunt circuit increases quadratically as the
number of modes to be shunt damped increases. Current flowing circuits'# | such as that pictured in Figure
3, are easier to tune and increase in order only linearly as a greater number of modes are to be shunt damped
simultaneously.

At a specific frequency w;, the inductor capacitor network C; — fl allows current to flow through the rest
of the branch, at all other frequencies the network appears approximately as an open circuit. The damping
inductor and resistor L; — R; act like a single mode shunt circuit at the frequency w;. The circuit is simplified
by combining the series inductors.

2.3. The Synthetic Impedance

The synthetic impedance®? allows the implementation of complicated multimode shunt damping circuits using
only a few opamps, one resistor, and a digital signal processor (DSP).

The synthetic impedance is a two terminal device that establishes an arbitrary relationship between voltage
and current at its terminals” . The functionality is shown in Figure 4, where i.(t) = f(v.(¢)). This can be made
to synthesize any network of physical components by fixing ¢, to be the output of a linear transfer function with
input v,. i.e.

I.(s) = Y(s)Va(s) 2)

and Z(s) is the impedance to be seen from the terminals.

where Y (s) = Z(IS)
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Figure 4: Functionality of the synthetic impedance

3. MODELLING THE COMPOUND SYSTEM

For generality, we will enter the modelling process with knowledge a priori of the systems dynamics. As an
example we will consider a simply supported beam with two bonded piezoelectric patches, one to be used as
a source of disturbance, and the other for shunt damping. The transfer function G, (s) from applied actuator
voltage to sensor voltage can be derived analytically from the Euler-Bernouli beam equation'® , or obtained
experimentally through system identification'® . Using similar methods, we may obtain the transfer function
from applied actuator voltage to displacement at a point Gy, (z, s).

Following the modal analysis procedure!? | the resulting transfer functions have the familiar form.

Gpolrs) 2 120 5 T0i(E) Q

— 82 + 2¢ wis + w?

va(s) 2 VS(S) _ Z Q; (4)

— 82 4 2¢,w;s + w2’

where Y (z, s) is the measured displacement, V,(s) is the piezoelectric sensor voltage, and V,(s) is the voltage
applied to a collocated actuator. Fj;, and «; represent the lumped modal and piezoelectric constants applicable
to the 7" mode of vibration.

The transfer functions of the shunt damped system can be shown to be'® 19 :
~ Vs(s) Guu(s)
Gou(s) = = . 5
) = Y T TT G K(5) 5)
~ Y(x,s) Gyw(z,8)
Gyo S e . 6
w8 = P =TT G K ) (©)
where 2(5)
s
K(s) = 7
(S) Z(S) + Cis ( )

4. ADAPTIVE SHUNT DAMPING

Before service, shunt circuits are tuned to the structural resonance frequencies of interest. To maintain some
kind of optimal performance, we introduce a technique for online tuning of the component values. This technique
utilizes the synthetic impedance along with time varying transfer functions to alter the parameters of a shunt
circuit in real time.
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Figure 5: Admittance block diagram of a series two mode shunt damping circuit.

4.1. System Schematic
The damped system transfer function from applied actuator voltage to the measured output V, is derived in'®

Va(s) _  K(s)Guu(s) ®)
Va(s) 1+ K(5)Gyo(s)

Note the output V.(s) offers little information about the performance of the controller. Traditionally,
designers seek to minimize the output magnitude resulting from some disturbance profile. In this case the
controller is performing well when there is a lightly damped electrical resonance between the impedance and
the piezoelectric transducer at the resonance frequencies. Hence a large measured output can signify a large
reduction in structural vibration.

A wuseful performance signal is the displacement at a point or the equivalent sensor voltage V;. Both
of these quantities are dynamically related to the measured output V, but are parameterized in terms of
the impedance Z(s). This means, to implement an adaptive piezoelectric shunt damping system, we need
to synthesize the impedance Z(s) twice. Firstly to implement the shunt damping circuit, and secondly to
reconstruct the performance signal V.

4.2. Impedance Parameterization

Consider the current blocking multimode shunt circuit shown in Figure 2. This circuit can be parameterized in
terms of the branch resistances and resonance frequencies. Unfortunately each branch is not only parameterized
in terms of its own resonance frequency but also the resonance frequencies of other branches (due to the
current-blockers). The result is an overly complicated expression for each inductor in terms of the desired
branch frequencies and can be simplified by explicitly parameterizing the current blocking network and using
the results of 7 to generate an equivalent block diagram that can be implemented in real time. Figure 5 shows
Y (s) T, the admittance of a series configuration two mode shunt damping circuit, explicitly broken up into each
R — L branch resonance pair and L — C current blocker. The relationship between the parameter vector 6 and
the component values is shown in (1).

9:[601 Wy e wNw] (9)

Alternatively, if a current flowing configuration is to be employed, the components and admittance of each
branch can be easily parameterized in terms of the circuits target resonance frequencies' . In this case the
total admittance of the circuit is simply the sum of a number of second order admittances.

'Y (s) is the admittance used to implement Z(s) in the synthetic impedance. Refer to Section 2.3.



4.3. Performance Evaluation

Conventional adaptive feedback control architectures generally make use of a synthesized reference signal to
estimate the performance of the controller?® . An estimate of the nominal sensitivity function Dﬂ(—% is available,
where Y'(s) is the system output and D,(s) is the synthesized disturbance. Currently no such method for
obtaining an estimate of the disturbance is known. The difficulty is due to the parameterization of the secondary
path in the unknown plant we are trying to control. It may be possible to estimate the unknown dynamics of
the secondary path on-line (as in 2! ), but this is considered an impractical approach to the problem.

4.3.1. The Performance Function

Two performance functions will be presented: The RMS strain V57"(§), and the ratio of RMS strain to RMS
shunt voltage V"' (6). The former is the obvious choice but is prone to errors due to a dependance on the
power of the disturbance, the latter is an approximate method for minimizing the RMS strain, but achieves a
degree of isolation from the stochastic characteristics of the disturbance.

RMS Strain The objective will be to minimize E {V,(t)?} i.e. to minimize the RMS strain at the piezoelectric
transducer (V,(t) is dynamically proportional to the strain under the piezoelectric patch). The signal V,(t) can
by synthesized in real time from the shunt voltage.'®

" = arg min ystrain @) (10)
9ERN.

= E{V¥( 11

arg min E{V;(t)} (11)

The performance function V%" (9) is approximated by its discrete time equivalent

1 (E+1)N—-1
Vi) =~ S VAT (12
i=kN

where T}, is the sampling interval and N is the number of samples in each k! record interval.

The disturbance signal must be stationary so that the performance estimates
Vi(0), Viet1(0), ..., Vg (0) are consistent and unbiased. We refer to the term stationary as ‘wide-sense sta-
tionary’?? relative to N. e.g. stationary over the interval T} [ EN (k+M)N -1 ] .

If V, is stationary, V(@) can be shown to be a consistent and unbiased estimator over a single record interval.
The requirement for stationarity is extended to M such intervals so that there will be at least M consecutive
estimates of V() with similar disturbance. In practice, the encountered size of M will define the amount of
noise and bias in the gradient estimates.

RMS Ratio If the disturbance is not sufficiently stationary, the above performance function will not provide
a useful estimate of the damping performance. Consider the model of a disturbance shown in Figure 6, where
ny, is a white noise source, H,,(jw) is a noise filter, and « is a slowly time varying gain. Although the signal w(t)
is not stationary, if the gain « varies sufficiently slowly, the power spectral density of adjacent record intervals
will differ only by a constant gain a?. The aim is to define a performance function independent of

Consider the performance function (13).

Z(k+1)N 1 V2(iTy)
k+1)N—1

SN VAGT)

where Vp is the voltage across the shunting resistor. As both of the impedance structures, current blocking
and current flowing, approximate a series inductor and resistor around a specific resonance frequency, we can
estimate the signal Vg for each of the shunt branches by filtering the shunt voltage,

R
Ls+ R

(13)

Vkratio (9)

Vi(s) = Va(s) (14)
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Figure 6: Disturbance noise model.

where L is the inductor value currently being implemented. For multiple modes the performance function can be
decomposed into its modal components by appropriately pre-filtering V. Intuitively, by minimizing V;"%¥(9),
we are minimizing the RMS strain, and maximizing the voltage across the shunting resistance. Maximizing the
voltage across a shunt resistance will maximize the amount of dissipated energy. For any given disturbance,
both the numerator and denominator are linear in o?, hence, the performance function is independent of the
excitation level a.

4.3.2. Typical Performance Curves

Because of the analytic complexity of the performance functions, little is known of their properties. By simula-
tion, both are insensitive to reasonable changes in damping ratio, but as expected, are strong functions of the
branch resonance frequencies.

RMS Strain The surface is definitely not convex but appears to have a single global minima.The perfor-
mance function is plotted against the resonance frequency of the second mode in Figure 7 a). Over a certain
modal frequency range the contribution from adjacent modes is small, allowing the performance function to be
uncoupled into its modal components.

RMS Ratio The RMS ratio performance function is plotted in Figure 7 a). As with the previous case, the
function is non-convex but appears to have a single global minima. It should be noted that the minima of this

function does not occur exactly at the minimum of RMS strain (in our case the approximation is correct to
0.01 Hz).

Hollkamp? | suggests a performance function similar to (13) with the exceptions: Vj, is measured directly
from an additional piezoelectric patch, and the denominator is the RMS value of V,. Figures 7 c¢) and 7 d)
compare the RMS values of Vi and V.. It can be seen that maximizing the RMS value of Vg is much more
desirable than performing the same operation on V.. These simulations were performed using damping ratios of
¢ = 0.005 for each mode. As the damping ratios are increased, the approximation made by Hollkamp becomes
more accurate, i.e. argmaxgepn. E{VZ(t)} approaches arg maxgeqn. E {V;2(t)} as the structural damping
ratios are increased.

4.3.3. Convergence

For some desired variance in V}(0) it is desirable to estimate the required length of the averaging interval. A
large conservative N will result in a small variance but slow update rate. The opposite is true for an insufficiently
small N, fast update but large variance. A full discussion on the convergence of the performance functions is
provided in.!® Approximately 35 seconds of data is required to procure an estimate of the performance function
for the first three modes of a simply supported beam similar to that discribed in Section 5.1 and 8 .

4.4. Searching the Performance Surface

Given that an estimate of the performance function is available, the parameter vector § can be updated using
a gradient search algorithm. Newton’s method?! is selected for its fast convergence.

o VOO — 01 1)
STV =V (0k)

(15)
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Figure 7: The performance functions plotted against the resonance frequency of the structure in H z.

Length, L 0.6 m

Width, wy 0.05 m
Thickness, hy, 0.003 m
Youngs Modulus, E, | 65 x 107 N/m?
Density, p 2650 kg/m?

Table 1: Experimental Beam Parameters.

For practical reasons the step size is artificially limited. Although this slows convergence, it provides needed
robustness to gradient errors and numerical sensitivity at the minima. The real time implementation of the
limited Newton search algorithm also contains a small artificial bias to maintain the algorithm if 8, — 6,_1 ~ 0.

5. EXPERIMENTAL RESULTS
5.1. Experimental Setup

The experimental beam is a uniform aluminum bar with rectangular cross section and experimentally pinned
boundary conditions at both ends. A pair of piezoelectric ceramic patches (PIC151) are attached symmetrically
to either side of the beam surface. One patch is used as an actuator and the other as a shunting layer. Physical
parameters of the experimental beam and piezoelectric transducers are summarized in Tables 1 and 2. Note
that the location of the piezoelectric patch offers little control authority over the first mode. In this work, the
structure’s second and third modes are targeted for reduction.

The displacement and voltage frequency responses are measured using a Polytec laser vibrometer (PSV-300)
and a HP spectrum analyzer (35670A).

The current source and buffer/amplifiers required for the synthetic impedance are constructed from Burr
Brown OPA445 opamps. These opamps have a supply voltage limit of +45 v. If necessary, the circuit can be
constructed from high voltage opamps with supplies of greater than +400 V.

5.2. Damping Performance

To verify the function of the adaptive impedance a poorly tuned shunt circuit is applied to the experimental
beam, this is equivalent to a large step change in the resonance frequencies of the structure. It is expected that



Length 0.070 m

Charge Constant, d3; —210 x 1072 m/V
Voltage Constant, gs; —11.5 x 1073 Vm/N
Coupling Coefficient, k3; | 0.340

Capacitance, C), 0.105 pnF

Width, w, w, 0.025 m

Thickness, hg h, 0.25 x 1073 m
Youngs Modulus, E; E, | 63 x 10° N/m?
Distance from Beam End | 0.05 m

Table 2: Piezoelectric Transducer Properties.
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Figure 8. RMS Strain. Experimental evolution of the second and third mode branch frequencies and modal performance
components.

the update algorithm will iteratively retune the parameters to minimize (12). In order to perform simulations,
a frequency domain subspace algorithm?3:24 is employed to obtain a 10* order model for the two open loop
system transfer functions Gy, (s)] and Guy(s). The excitation is a pseudo-random signal with fourth
order low pass cutoff at 400 Hz.

z=0.1Tm

5.2.1. Performance function: RMS Strain

A parameterized current blocking shunt circuit is applied to the beam. The evolution of the frequency tuned
parameters and the RMS displacement for each mode is shown in Figure 8.

5.2.2. Performance Function: RMS Ratio

A parameterized current flowing shunt circuit is applied to the beam. The evolution of the frequency tuned
parameters and the performance component of each mode is shown below in Figure 9.

Because of the low gradients around the minima of this performance function, the resonance frequencies
tend to drift slightly after adjustment. The low gradients cause the differences in consecutive updates of the
performance function to be small over an attributable range of frequencies around the minima, see Figure 9.
Figure 10 shows the initial, adapted, and misadjusted displacement frequency responses of the beam. The
frequency response c) corresponds to the instance of peak misadjustment in the second mode branch frequency.
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b) At the minima, ¢) Peak misadjustment.



6. CONCLUSIONS

The performance of finely tuned piezoelectric shunt damping systems is extremely sensitive to the resonance
frequencies of the host structure. The adaptive impedance allows us to retain the desirable characteristics of
shunt damping systems e.g. robustness, while automating the process of component tuning. The presented
technique requires only a single patch. An understanding of the underlying feedback structure has allowed us to
synthesize additional signals required for adaption. Previously these signals have been obtained from additional
patches or accelerometers.

Two performance functions have been proposed:

e The RMS Strain. By synthesizing the piezoelectric sensor voltage, it is possible to estimate the RMS
strain under the piezoelectric transducer. This performance function provides reliable tuning only if the
disturbance is wide sense stationary. By simulation, the performance function appears to have a single
global minima and can be minimized using the Newton search algorithm.

e The RMS Ratio. Minimizing this performance function has the effect of minimizing the synthesized
piezoelectric sensor voltage and maximizing the synthesized voltage across the shunting resistances. By
simulation, it has a single global minima very close to the minima of the RMS strain. This function is
independent of slow variations in the disturbance magnitude.

Experimental results show reliable estimation of the performance functions, optimal tuning of the circuit
parameters, and satisfactory misadjustment. The synthetic impedance provides a near ideal means for imple-
menting the shunt circuits, the second and third modes are reduced in magnitude by up to 22 and 19 dB.
Although both shunt circuit configurations (current blocking and current flowing) provide similar performance,
the current flowing technique requires a lower order admittance transfer function, and is easily parameterized in
terms of the branch resonance frequencies. These reasons make the current flowing technique an ideal candidate
for damping a large number of modes, as performed in '# .

Future work on the proposed adaptive scheme may involve a full analysis of the convergence properties. An
attempt could also be made to estimate the disturbance, this appears difficult as the secondary path is a strong
function of the parameter vector 6. It may also be possible, using small samples of open loop operation, to
estimate the resonance frequencies and damping ratios of each mode. If so, the optimal circuit parameters may
be estimated in a single update period.
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