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ABSTRACT

This paper introduces electromagnetic shunt damping (EMSD) which is similar to piezoelectric shunt damping.
EMSD has four major advantages over piezoelectric shunt damping; simple transducer manufacturing, smaller
shunt voltages, long stroke and larger control forces. A novel single mode shunt control strategy is validated
through experimentation on a simple electromagnetic mass spring damper system. Theoretical results are also
presented.
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1. INTRODUCTION

Electromagnetic transducers™{® can be used as actuators, sensors or both. Piezoelectric transducers* exhibit
similar electromechanical properties to electromagnetic transducers, but have considerably dicerent physical
characteristics. Electromagnetic transducers have a much greater stroke, are physically more robust and can be
manufactured to either MEMS scale,® or as large as a 50kN electrodynamic shaker.® Electromagnetic trans-
ducers have been used in the ..eld of active vibration control of car suspension systems,” isolation platforms,®
magnetic levitation® ° and magnetic bearings.'?

Placing an electrical impedance across the terminals of a piezoelectric transducer, which is bonded to a mechani-
cal structure with the view to minimizing structural vibrations, is referred to as piezoelectric shunt damping.12¢16
This has been proven to be a reliable alternative to active piezoelectric vibration control techniques,* 1’ owzering
the bene..ts of stability and performance without the need of additional sensors. Most importantly, the inher-
ent robustness makes shunt control techniques very desirable. Another desirable characteristic is collocation,®
which also enhances the closed loop stability.

This paper presents a new shunt method for reducing structural vibration; electromagnetic shunt damping
(EMSD). By attaching an electromagnetic transducer to a mechanical structure and shunting the transducer
with an electrical impedance, similar to piezoelectric shunt damping,*?{16 mechanical energy can be dissipated.
As the mechanical structure deforms due to some type of external disturbance, an opposing electro-motive-force
(emf) is induced in the shunted transducer. Using an appropriately designed electrical shunt the electromagnetic
transducer is capable of signi..cantly reducing mechanical vibration. Compared to piezoelectric shunt damping,
EMSD oxers larger stroke, physical robustness, smaller shunt voltages, and can generate larger control forces.

The paper is organized as follows. Section 2 introduces a method for modeling an electromagnetic transducer
and a forced mass spring damper system. In Section 3, the composite structural dynamics are derived from
.rst principles, i.e. EMSD is modeled for a simple electromagnetic mass spring damper, while in Section 4, the
composite system is derived in transfer function form for an autonomous system. Section 5 develops a single
mode electromagnetic shunt impedance controller. Simulated and experimental results verify the presented
work in Section 6. The paper is then concluded in Section 7.
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2. BACKGROUND
2.1. Electromagnetic Transducer Model

When an electrical conductor, in the form of a coil, moves in a magnetic ..eld as shown in Figure 1 (a), a
voltage Ve proportional to the velocity X, is induced and appears across the terminals of the coil, i.e. Ve _ Xe.
Speci..cally,

— =Dl 1)
where D is the magnetic tux (in Teslas), | is the length of the conductor (in meters), and X, is the velocity of

the conductor relative to the magnetic ..eld (in m/s). A permanent magnet is usually the source of the magnetic
..eld.
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Figure 1. Electromagnetic transducer, (a) sensor and (b) actuator.

Equation (1) can ideally be rewritten as,?

Ve _ Fe

—=—=DI=C 2
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where F. denotes the force (in Newtons) acting on the coil whilst carrying a current I (in Amps), and Cp,
is the ideal electro-mechanical coupling coe€cient. As shown in Figure 1 (b), when the coil is employed as a
force actuator, Equation (2) relates the induced force to an applied current. Such designs form the basis for
electrodynamic shakers and acoustic actuators, such as a speaker coil.
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Figure 2: Electromagnetic transducer (a) mechanical model and (b) electrical model.

Equation (2) can be simpli..ed with the assumption that the electromagnetic transducer operates in its linear
region, i.e. undergoes only small displacements. As shown in Figure 2 (a), the coil can be modeled as series



connection of an inductor L, a resistor Re and a dependent voltage source Ve.2  If the transducer is attached to
a resonant mechanical system, the voltage source Ve, represents the induced emf that is dependent on relative
velocity Xe, and hence structural dynamics.

2.2. Forced Mass Spring Damper System

In many cases where vibration becomes an issue, the mechanical structure can be modeled as a simple mass
spring damper system, as shown in Figure 3 (a). The equivalent mass M (in Kg), spring constant K (in N/m)
and damping constant C (in Ns/m) for such a structure can be easily determined. The equation of motion for
this forced one degree of freedom system is given by:

MA(t) + Cx(t) + Kx(t) = Fq(t); ®

where %(t), x(t) and x(t) are the acceleration, velocity and displacement of the mass respectively. Note that
Fq(t) is the applied force disturbance. The dimensionless representation of equation (3) is

A(1) + 22, Lnx(t) + 12X (1) = Fa(); O
ag—
where 1, is the natural frequency of the system, and 3, is the damping ratio. Note that I, = % 3, = 194%=K
and fy(t) = Folo.,
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Figure 3: (a) Mass spring damper system and (b) electromagnetic shunted mass spring damper system.

3. STRUCTURAL DYNAMICS FROM FIRST PRINCIPLES

3.1. Model System

Consider Figure 3 (b), where an electromagnetic transducer (coil 1) is attached to a mass. If a current I4(t) is
applied to a linear electromagnetic transducer, a disturbance force Fq4(t) is induced such that, Fq(t) = Cqlq4(t),
where Cgq is the electromagnetic coupling coedcient relating the applied current to a resulting force in coil 1.
Using the equation of motion, the disturbed system has the following relationship, M#(t) + Cx(t) + Kx(t) =
Cala(V).

By taking the Laplace transform, the transfer functions relating the current 14(s) to displacement x(s), and the
current 14(s) to velocity sx(s) are,

. X(s) _ Cq ]
Cxi®) - e = ME+cs+K ®)
Gu(s) ., O Ces ®)

la(s) MsZ+Cs+K.



These equations are valid when coil 2, is held in open circuit, i.e. Z(s) = 1., as shown in Figure 3 (b).

3.2. Composite System

For an electromagnetic shunted composite system, as shown in Figure 3 (b), an impedance Z is attached to coil
2. we have the following relationship, MA(t) + Cx(t) + Kx(t) = Fq(t) i Fe(t), where F(t) is the opposing force
due to the impedance Z attached to the terminals of the electromagnetic transducer. In the Laplace domain,
we have the following relationship,

X(s)(Ms? + Cs + K) = Cql4(s) i Fe(s): ©)

where 14(s) is the input current applied to coil 1, as shown in Section 3.1.
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Figure 4: Simpli..ed model of the electromagnetic shunt.

To determine the opposing force F¢(s), we need to consider the simpli..ed electrical model of the electromagnetic
shunt, as shown in Figure 4. Ohm’s law states that

V,(S) = 1,(S)Z(s); ®)

where V;(s) is the voltage across the terminals of the shunt impedance Z(s), and 1,(s) is the corresponding
current. According to Kirchhoz'’s voltage law, we obtain the following relationship between V¢ (s) and V(s), as
V,(s) = Ve(s) i (Les + Re)l,(s) which implies

2(s) Ve(s): )

V =
2= Z e Ls+R,

As shown in equation (1), we have the following linear relationship
Ve(s) = Cesx(s); (10)

where Cg is the electromagnetic constant relating sxe(s) to Ve(s). Since the shunted electromagnetic transducer
is attached to the mass M, sxe(S) is equivalent to sx(s).

By substituting, (10) into (9), we obtain

Z(s)
Z(s) +Les+Re

V(s) = Cesx(s): (1)

Alternatively, the current fowing through the shunt 1,(s), is

Va(s) _ 1

Z(S) _ Z(5) + Les + Ry -oX©): (12)

1.(s) =




and the opposing shunt force Fe(s) = Cel(S), assuming a linear electromagnetic transducer, we obtain

ce
Z(s) +Les+Re

Fe(s) = sx(s): (13)

Substituting (13) into (7), the composite system transfer function 14(s) to x(s), is

Xi > - cz
la(s)  Ms2+ C+m;3+—l% s+ K

Cd (Z(S) + LeS + RE) (14)
(MLg)s3+ (MZ(s) + MR + CLg)s?2 + (CZ(s) + CRe + C2+ KLg) s+ K (Z(s) + Re)’

or alternatively, the transfer function relating 14(s) to sx(s), is

E.(s) sx(s) _ 2 Cgs -
X1 » -
2 I [S C2
a®)  Ms2+ Cc+ o+ St K

Cas(Z(s) + Les + Re) i
(MLg)s3+ (MZ(s) + MR + CLg)s?2 + (CZ(s) + CRe + C2+ KLg) s+ K (Z(s) + Re)’

(15)

4. COMPOSITE SYSTEM IN TRANSFER FUNCTION FORM

By modeling the system in transfer function form, we gain a greater abstraction from the underlying system.
Such methods are particularly useful when dealing with higher order systems or when using models not obtained
directly through physical modeling, i.e., when using models obtained by means of system identi..cation.'®
Referring to Figure 5, the models required are: Gyg(s), the transfer function from an applied force to the
resulting velocity x; and G,i(s), the transfer function from an applied current to the induced emf.

Figure 5: Electrical equivalent model of a twin coil electromagnetic system.

Considering ..rst the case where two identical coils experience the same velocity. When an impedance Z(s) is
attached to coil 2, V,(S) = Ve(S) i (Les + Re)l(S),

209 |
Va(9) = S e Ve (16)
1(s) = L Ve(s): 17)

Les + Re + Z(S)



By considering the emf induced in both coils 1 and 2, and applying the principle of superposition,

Ve(s) = Gui()1a(s) i Gvi(s)1z(s): (18)
Substituting (17) yields,
Ve(®) = Gul@1al®) § GulO) oy s (19)
Hence, the composite transfer function relating 14(s) to Ve(s) is
Sul®) - 19 = 17 PSZ;Z)W(S); 0
where L
R(s) = (21)

Les+ Re + Z(S):
The reader will appreciate that the damped system transfer function Gy;(s) is in the form of a feedback system
where the impedance Z(s) parameterizes a controller K(s), as shown in Figure 6 (a).

The open loop transfer function Gyi(s) consists of both the structural dynamics and the electromagnetic cou-
pling,
Gi(s) = Ceri(S) = CgG)_(F (s): (22)

In a more general case, we wish to know the damped transfer function Gyg(s) from some disturbance force
F (s) to the resulting velocity sx(s). This is easily found,

SX(S) _ Ve(S)SX(S) _ ~ ,\SX(S) _  Gxils)

S 19 T 1@ e T T ONe T T REGE) @
Thus,
- G sx(s) _ sx(s) _ 1 Gur(S): 24
F) s Fie) T Gy G ox ) (24)
and,
— Gxi(s) Gxr (S) .
YO T k6u® O T T REG® )

as shown in Figure 6 (b). If coils are not identical, where G,;i(s) is transfer function from the current in coil 2
to the induced emf, and Gyi(s) is the transfer function from the current in coil 1 to the velocity.

5. SINGLE MODE ELECTROMAGNETIC SHUNT CONTROLLER

When a piezoelectric transducer is shunted by a passive electrical network, it acts as a medium for dissipating
mechanical energy of the attached structure. Hagood and von Flotow!? suggested that a series resistor-inductor
circuit attached across the conducting surfaces of a piezoelectric transducer can be tuned to dissipate mechanical
energy of a host structure. They demonstrated the ecectiveness of this technique by tuning the resulting resistor-
inductor and inherit capacitance of the piezoelectric transducer, to a speci..c resonance frequency of the host
structure.

For electromagnetic shunt damping, we can apply the same methodology as suggested above. For this particular
system, though, we need to apply resistor-capacitor circuit to the terminal of the electromagnetic transducer.

That is, Z(s) = C:ps + R, where Cyp = ,%Le Therefore, the shunted electromagnetic transducer sx(s) is
related to Fe via
CZ
L ©) (26)
Fe(s) = R T—SX(8):
S PRl o

It should be noted that the controller has a resonant structure, as shown in (26), where Ry = (Re + R) determines
the controller damping and !, is the resonance frequency of the mechanical structure to be damped.
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Figure 6: Electromagnetic shunt damping feedback structure: (a) Equation (20) and (b) Equation (25).

The closed loop composite transfer function between current-to-velocity Gxi(s), is

Gald) + g = (27)
Ms2+ C+ m s+ K
or alternatively,
Gu(®) » 2 = _ald) (28)
) la(s) 1+ K(s)Gui(s)

1
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where K(s) = == .
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Figure 7: An external photograph of the experimental electromagnetic apparatus.

6. EXPERIMENTAL VERIFICATION OF ELECTROMAGNETIC SHUNT
DAMPING CONCEPT

6.1. Electromagnetic Transducer Design

In support of the preceding sections, the technique of electromagnetic shunt damping was applied to an ex-
perimental assembly at the Laboratory for Dynamics and Control of Smart Structures in The University of
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Figure 8: Side section of the experimental electromagnetic apparatus. (All dimensions in mm)

Newcastle, Australia ®. A photograph of the electromagnetic transducer apparatus, showing the rigid external
support, fexible end supports, mounting plate, coils and winding cables is provided in Figure 7. As shown
in Figure 8, the assembly is essentially a translational solenoid with two identical ..xed coils and a magnetic
plunger supported at either end by texible supports. This system is mechanically equivalent to the mass spring
damper shown in Figure 3. Together with an attached electrical impedance Z(s) = C:ps + R, coil 2 is employed
to damp translational vibrations resulting from an applied disturbance current l4 to coil 1.

In practice, the magnetic ..eld strength, as well as being a function of the magnetic material, is limited by the
maximum allowable dimensions and weight of the magnets. In these experiments, three rare earth magnets
(Neodymium Iron Boron), are arranged to form the magnetic plunger, as shown in Figure 8. At the two points
where opposing poles meet (at the center of each winding), a strong magnetic ..eld exits at right angles to the
plunger. When the plunger is in motion, the strong parallel ..eld Fowing through the coil results in a high fux
density and corresponding large induced force.

Each coil is wound from 0:25 mm diameter enamel coated copper wire and has an electrical impedance of 3:3 —
and 1 mH. Non-magnetic materials, such as aluminum and copper, were used in the construction of the rigid
external support, fexible end supports and the mounting plate. Non-magnetic materials were utilized so as to
prevent the magnetic disturbance.

Parameter Value
Spring constant K 56 kNmi1l
Damping coeCcient C 2:667 Nsmil
Plunger mass M 0:150 kg

Electromagnetic Coupling Cq4 | 3:65
Electromagnetic Coupling C¢ | 3:4
Coil Inductance Le 1 mH
Coil Resistance Re 3.3 -

Table 1: Electromechanical system parameters.

6.2. Determining Optimal Damping Resistance

The electromechanical model Gyi(s) was ..rst determined by measuring the resonance frequency and plunger
weight M, and subsequently determine the spring constant K. The remaining parameter !,, together with
the electromagnetic coupling coe@cients Cq4 and C,, were determined experimentally. A summary of the model
parameters is provided in Table 1. The frequency response from an applied current to the resulting plunger

“http://rumi.newcastle.edu.au/lab
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Figure 9. The open loop frequency response from an applied actuator current to plunger velocity, i.e. Gyi(s), model
(-) and measured results (- -).

velocity Gyi(s); is shown in Figure 9. It is observed that the model is an accurate representation of the physical
system.

Since we wish to damp the fundamental frequency of the mass spring damper system, i.e. 1, = 97:3 Hz, the
required shunt capacitance value is Cyp = 2:6 mF.

In order to determine an appropriate value for the total shunt resistance R¢, an optimization approach was
used to minimize the H, norm of the closed loop system Gyi(s). This required a solution to the following
optimization problem to be found; o o

Rt =arg min °Gyi(s)°: (29)

Using the proposed optimization strategy the required optimal shunt resistance Ry = 0:29 —, and alternatively
R{ can be found by plotting H, norm against Ry, as shown in Figure 10.

0 01 02 03 04 05 06
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o o

Figure 10: °Gyi(s)° against Re (-).
2

6.3. Impedance Implementation

To implement the proposed arbitrary shunt impedance Z(s), a current controlled voltage source was utilized,
as shown in Figure 11. The controlled voltage v, was set to be a function of the measured current iz, i.e.,
vz (t) = F(iz(t)), as shown in Figure 11 (a). If the function f(i,(t)), is a linear transfer function Z(s) whose



input impedance is the measured current 1,(s), i.e., Vz(s) = Z(s)1(s), then the terminal impedance Z(s) is
equal to Z(s), as shown in Figure 11 (b). For a more detailed description of the impedance apparatus, the
reader is referred to Fleming et. al..?%2!
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Figure 11: (a) ldeal current controlled voltage source, and (b) experimental current controlled voltage source.

6.4. Simulated vs Experimental Results

With the aim of damping the system, a total series resistance (Re + R) of 0:35 — and a capacitance 27 mF were
applied to the second winding using the synthetic impedance appartus explained in Section 6.3. The measured
open loop, theoretically predicted damped, and measured damped frequency responses are shown in Figure 12.
A signi..cant reduction of 21:8 dB in the magnitude of the electromechanical system is observed. The exect of
such reduction greatly decreases the settling time of the system. Figure 13 shows the undamped response of

the system to a 1 A low pass ..Itered step in actuator current. In comparison, the damped response shown in
Figure 14 settles in less than one tenth of the time taken by the undamped system.

50 100 150 200 250
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Figure 12. The open loop (t¢¢), theoretically predicted damped (=), and measured damped (- -) frequency responses
from an applied current to the resulting plunger velocity.

A summary of simulated and experimental parameters are tabulated in Table 2. Simulated and experimental
results closely agree, therefore validating the proposed electromagnetic shunt damping.
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Figure 13. Velocity response of the system to a 1 A low pass ..Itered step in actuator current. (a) theoretically predicted,

and (b) experimental.
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Figure 14. Damped response of the system to a 1 A low pass ..Itered step in actuator current. (a) theoretically predicted,

and (b) experimental.

7. CONCLUSIONS

In this paper we have introduced a new type of vibration control, electromagnetic shunt damping (EMSD).
The proposed technique is similar to piezoelectric shunt damping, as a shunt impedance is attached to the
terminals of an electromagnetic transducer. Electromagnetic shunt damping has many advantages, compared
to piezoelectric shunt damping; it is physically robust, has a greater stroke and can damp much larger structures.
The proposed technique was experimentally validated on a simple electromagnetic mass spring damper system.

0 01 02

03 04
t(s)

05 06

Parameter Simulated | Experimental
Total Resistance Rt (-) 0:29 0:35
Capacitance Cqp (MF) 2:6 2:7

Amplitude reduction (dB) | 21:8 21:8

Time Decaly 1=10 1=10

Table 2: Shunt impedance parameters.




A 21:8 dB peak amplitude reduction was achieved via simulation and experimentation.
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