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ABSTRACT
By attaching an electromagnetic transducer to a mechanical isolation system and shunting the terminals of the
transducer with electrical impedance, we can provide improved isolation performance while eliminating the need
for an additional sensor. Simulated and experimental results on a simple electro-mechanical isolation system
show that the proposed controller is capable of peak damping and high frequency attenuation.

1. INTRODUCTION
An isolation system1–3 attempts to mitigate the mass displacement x resulting from a base disturbance y. A low-
frequency mass-spring-damper is often employed as a mechanical filter. Additional attenuation and control of the
mechanical resonance can be achieved with a force generated by an electromagnetic transducer. A common ap-
plication of an isolation system is an automobile suspension system.4 Most suspension systems are active3, 5–10 ,
that is, they sense using an accelerometer, or a force transducer, and actuate using an electromagnetic transducer.

Electromagnetic transducers can be used as sensors, actuators or both.11–16 A simple technique for both sens-
ing and actuating of mechanical vibration control is known as electromagnetic shunt damping .17 By connecting
an electrical impedance to the terminals of an electromagnetic coil, the relative mechanical velocity between the
coil and magnet can be reduced. Electromagnetic shunt damping belongs to a broad field of research commonly
referred to as electromagnetic shunt control.

For electromagnetic shunt control both the sensor and actuator are combined together as self-sensing.17 From
a theoretical viewpoint, the control scheme is considered perfectly collocated ,18 which improves the stability and
robustness of the closed-loop system.

In this paper, we apply electromagnetic shunt control to a simple isolation system. The effect of the electro-
magnetic shunt control is studied theoretically and then validated experimentally on a simple electro-mechanical
isolation system. This technique will be referred to as electromagnetic shunt isolation.

This paper consists of six sections. After this introduction, Section 2 will introduce background analysis
for a simple mechanical isolation system. In Section 3, we discuss a method for modeling the presence of an
electromagnetic shunt on a simple electro-mechanical isolation system. Section 4, proposes a passive control
algorithm which consists of a series capacitor-resistor impedance. Then in Section 5, experimental results for a
simple electromagnetic isolation apparatus are presented. Conclusions will be discussed in Section 6.

2. BACKGROUND
The concepts of damping and isolation of vibration are sometime confused. In a few words, damping is defined
as the reduction of amplitude of the system within a limited bandwidth near the resonance frequency. While
isolation is defined as supporting a static load within a particular bandwidth ωc, and attenuation (or filtered)
of high frequency components above ωc, as shown in Figure 1.

Vibration isolation can be divided into two different categories. The two cases are: (1) isolated mass may
contain a disturbance (normally a force) which propagates into the base structure, and (2) a disturbance generated
by the base structure propagating into the isolated mass. The second case is found more commonly in the
engineering environment, therefore, we will focus all our attention to this particular case.
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Figure 1. Principle of an isolation system and isolation objectives.
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Figure 2. Simple mass spring damper isolation system: (a) unforced and (b) forced systems.
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Figure 3. Normalized transmissibility ratio of a passive damper for various values of damping ratio ζ.
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Consider the simple isolation system shown in Figure 2 (a). The isolation system consists of a linear spring in
parallel with a passive damper, where m is the mass, k and d are the stiffness and damping coefficient respectively.
The equation of motion is defined as

mẍ(t) + dẋ(t) + kx(t) = dẏ(t) + ky(t), (1)

where (··) and (·) denote the acceleration and velocity of x(t) and y(t). The resonance or cut-off frequency of the

mechanical system is ωn =
√

k
m and the amount of damping is defined by the damping ratio ζ where d

m = 2ζωn.
The transfer function in Laplace domain, between the disturbance displacement y and the mass displacement x
is given by

T (s) � Gyx(s) =
x(s)
y(s)

=
ds + k

ms2 + ds + k
=

2ζs
ωn

+ 1
s2

ω2
n

+ 2ζs
ωn

+ 1
. (2)

Figure 3 shows a general plot for the transmissibility ratio T (s) of Equation (2), where the ratio between the
disturbing frequency and the resonant frequency ωn. Many interesting observations can be learned from this
transfer function:

1. When the disturbing frequency coincides with the natural frequency of the system, an overshoot appears
showing that the system vibrates at this frequency with high amplitudes.

2. The frequency where the curve crosses over the 0 dB line is reached when the disturbing frequency is equal
to ωc =

√
2ωn. This critical frequency is the point where the influence of vibration isolation begins.

3. At low frequencies, below the resonance of the system, the displacement of the sensitive payload follows
faithfully the displacement of the disturbance source as if the isolator were infinitely rigid. However,
at higher frequencies, greater than the resonance frequency of the system, the curve rolls-off and the
displacement of the payload decreases gradually while the disturbance is constant.

4. When we increase the damping ratio ζ, the overshoot that appears at the natural frequency decreases but,
unfortunately, the sharpness of the roll-off at high frequency decreases too.

5. To maintain the sharp roll-off at high frequency while decreasing the overshoot at the resonance, a control
algorithm is needed.

For Figure 3, we can see that when ζ = 0, the high frequency roll-off is 1/s2 (−40 dB/decade) while very
large amplitude is seen near the natural frequency ωn. On the other hand, when the damping ratio ζ is increased
we reduce the overshoot at the resonance but we reduce also the roll-off to 1/s (−20 dB/decade). As a result,
the design of a mechanical passive damper involves a trade-off between the resonance amplification and the high
frequency attenuation.

3. MODELLING
3.1. Forced Isolation Problem
Consider a simple isolation system, as shown in Figure 2 (a), by taking the Laplace of Equation (1), we obtain
the following transfer function relating the applied base velocity w(s) and isolated mass velocity v(s), that is

T (s) � Gwv(s) =
v(s)
w(s)

=
ds + k

ms2 + ds + k
. (3)

where w(s) = s y(s) and v(s) = s x(s). It should be noted, that Gwv(s) is equivalent to the transmissibility
ratio T (s).

For the forced isolation problem, as shown in Figure 2 (b), a control force fe(t) is place between the mass
and the base. For this system, the equation of motion is

mẍ(t) + dẋ(t) + kx(t) + fe(t) = dẏ(t) + ky(t). (4)

By taking the Laplace of Equation (4), we obtain

v(s) =
ds + k

ms2 + ds + k
w(s) − s

ms2 + ds + k
fe(s), (5)

where w(s) and fe(s) are the inputs to the system.
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3.2. Developing the Electromagnetic Shunt Isolation System
Consider, a shunted electromagnetic transducer, as shown in Figure 4. To determine the opposing force fe(s),
we need to consider the simplified electrical model of the shunted electromagnetic transducer. Ohm’s law states
that

Vz(s) = Iz(s)Z(s), (6)

where Vz(s) is the voltage across the terminals of the shunt impedance Z(s), and Iz(s) is the corresponding
current. According to Kirchhoff’s voltage law, we obtain the following relationship between Ve(s) and Vz(s), as
Vz(s) = Ve(s) − (Les + Re)Vz(s) which implies

Vz(s) =
Z(s)

Z(s) + Les + Re
Ve(s). (7)

For an ideal electromagnetic transducer, the voltage Ve is proportional to the relative velocity,17, 19 that is

Ve(s) = cvv (v(s) − w(s)) , (8)

where cvv is the electro-mechanical coefficient relating relative velocity to voltage. By substituting, (8) into (7),
we obtain

Vz(s) =
Z(s)

Z(s) + Les + Re
cvv (v(s) − w(s)) . (9)

Alternatively, the current flowing through the shunt Iz(s), that is,

Iz(s) =
Vz(s)
Z(s)

=
cvv

Z(s) + Les + Re
(v(s) − w(s)) , (10)

and the opposing shunt force fe(s) = cifIz(s), assuming an ideal transducer, is

fe(s) =
cvvcif

Les + Re + Z(s)
(v(s) − w(s)) . (11)

Substituting (11) into (5), the electromagnetic shunt isolation system w(s) to v(s), is

T̃ (s) � G̃wv(s) =

(
d + cvvcif

Les+Re+Z(s)

)
s + k

ms2 +
(
d + cvvcif

Les+Re+Z(s)

)
s + k

. (12)

The reader may note that the damped system G̃wv(s), or sometimes referred to as the closed-loop system, is
equivalent to the damped transmissibility ratio T̃ (s).

4. CONTROLLER DESIGN
When a piezoelectric transducer is shunted by a passive electrical network, it acts as a medium for dissipating
mechanical energy of the attached structure. Forward21 and Hagood et. al.22 suggested that a series inductor-
resistor circuit attached across the conducting surfaces of a piezoelectric transducer can be tuned to dissipate
mechanical energy of a host structure. They demonstrated the effectiveness of this technique by tuning the
resulting inductor-resistor (L−R) and inherit capacitance of the piezoelectric transducer, to a specific resonance
frequency of the host structure.

For electromagnetic shunt isolation, we can apply the same methodology as suggested above. For this
particular system, though, we need to apply a series capacitor-resistor (C−R) as suggested by Behrens et. al..17
The shunt impedance is

Z(s) =
1

Cs
+ R (13)

where C is tuned to the resonance frequency of the mechanical structure,

C =
1

ω2
nLe

=
1

k
mLe

. (14)
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In order to determine an optimal value for the shunt resistance R, an optimization approach could be consid-
ered. By minimizing the H2 norm of the closed-loop system T̃ (s), or G̃wv(s), we can determine the appropriate
resistance value R.20 This requires a solution to the following optimization problem to be found

R∗
t =

arg min
Rt > 0

∥∥∥T̃ (s)
∥∥∥

2
(15)

where the total resistance Rt is equivalent to Rt = Re + R.
Now, the electromagnetic shunt force is

fe(s) =
cvvcif

Les + Re + Zp(s)
(v(s) − w(s))

=
cvvcifkLes

kL2
es

2 + kLeRts + m
(v(s) − w(s)) (16)

and the composite electromagnetic shunt isolation system is

T̃ (s) �

(
d + cvvcif

Les+Re+Z(s)

)
s + k

ms2 +
(
d + cvvcif

Les+Re+Z(s)

)
s + k

=

(
d + cvvcif kLes

kL2
es2+kLeRts+m

)
s + k

ms2 +
(
d + cvvcif kLes

kL2
es2+kLeRts+m

)
s + k

. (17)

5. EXPERIMENTAL VALIDATION
5.1. Experimental Apparatus
To support the proposed isolation electromagnetic shunting technique experiments were carried out at the Lab-
oratory for Dynamics and Control of Smart Structures (LDCSS)∗. A photograph of the simple isolated electro-
magnetic apparatus, is shown in Figure 5. The apparatus consists of two identical Jaycar Electronics† subsonic
transducer Cat. XC-1008. Each transducer consists of a permanent toroid magnet, a coil, supporting frame,
magnetic circuit and flexible supports, as shown in Figure 6. Each transducer is mechanically equivalent to the
electromagnetic mass spring damper shown in Figure 6.

By connecting two identical electromagnetic transducers together, as shown in Figure 7, where transducer
1 is the isolated mass spring damper system and transducer 2 as the base disturbance, we obtain a simple
experimental isolation system. Note transducer 2 is connected to ground, for our case a Newport RS 3000
optical table was utilized.

Now, a disturbance current Id(s) is applied to the transducer 2 as a base disturbance, we can measure the
transmissibility ratio T (s) of the isolated mass. To measure the transmissibility ratio, two B&K accelerome-
ter were used to measure the applied base velocity w(s), accelerometer 2, and the isolated mass velocity v(s),
accelerometer 1, as shown in Figure 7. An experimental magnitude frequency response was obtained for trans-
missibility ratio i.e. T (s) � Gwv(s), as shown in Figure 8.

To model the isolated system, the isolated mass m, damping constant d, spring constant k, coil inductance Le,
coil resistance Re and the electro-mechanical coefficients cvv and cif need to be determined. The isolated mass,
coil inductance and resistances can be measured directly, while damping and spring constant can be determined
by using the resonance frequency of the isolated system i.e. ωn can be obtained from Figure 8, d = 2ζωnm and
k = ω2

nm. To determine the electro-mechanical coefficients cvv and cif , a disturbance current Id(s) is applied to
transducer 2. Assuming the electromagnetic transducer is linear for low frequencies and displacements, we can
measure transducer 1 voltage and relative velocity of the isolation mass v(s) − w(s). Experimental parameters
for the isolated system are as listed in Table 1.

∗School of Electrical Engineering & Computer Science, University of Newcastle, NSW, Australia.
http://rumi.newcastle.edu.au/lab

†www.jaycar.com.au
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Figure 4. Electromagnetic shunted isolation system.

Figure 5. Isolation experimental apparatus. Note transducer 2 is used as a disturbance.
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Figure 6. Electromagnetic transducer: (a) cross section, and (b) mechanical equivalent.
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Figure 7. Sideview of the experimental isolation apparatus. Transducer 1 is shunted by electrical impedance (or admit-
tance), while applying a base disturbance current Id(s) to transducer 2.
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Figure 8. Transmissibility ratio T (s): experimental (−−) and simulated (—).
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Parameter Value
Isolated mass m 0.4 kg
Damping constant d 2.68 Nsm−1

Spring constant k 32 kNm−1

Electro-mechanical cvv and cif 3.36
Coil inductance Le 0.323 mH
Coil resistance Re 4.0 Ω

Table 1. Electromagnetic transducer parameters.

5.2. Implementation of Shunt Impedance
Referring to Figure 9, the terminal impedance of an arbitrary electrical network ZT (s) can be implemented
by either: (a) measuring the terminal current iz and controlling the terminal voltage vz, or (b) measuring the
terminal voltage vz and controlling the terminal current iz. The motivation and benefits behind such techniques
are thoroughly discussed in reference Fleming et. al..20

For the purpose of this paper, we will only consider the first case, a shown in Figure 9 (a). The controlled
voltage vz is set to be a function of the measured current iz. i.e. vz = f(iz). If the function f(iz), is a
linear transfer function Z(s) whose input is the measured current iz, i.e. Vz(s) = Z(s)Iz(s), then the terminal
impedance ZT (s) is equal to Z(s). This is termed a current-controlled-voltage-source (CCVS).

5.3. Simulated and Experimental Results
Using the experimental parameters, as in listed in Table 1, and the impedance

Z(s) =
1

0.0407s
− 3.87,

we can simulate the open- and closed-loop response as shown in Figure 10. From simulation, shown in Figure
10, the passive controller has considerably damped the resonance mode ≈ 28 dB.

Experiments were performed on the experimental apparatus using the current-controlled-voltage-source (CCVS),
as described in Section 5.2. Experimental results for Gwv(s) and G̃wv(s) , or T (s) and T̃ (s), frequency response
are shown in Figure 11.

Simulation and experimental results concur, as shown in Figures 10 and 11. The reader may observe the
cut-off frequency ωc has shifted higher in frequency, that is, the open-loop cut-off frequency was ωc =

√
2ωn =√

2
2π

√
k
m = 63.3 Hz and the closed-loop ωc is approximately equal to 65 Hz. In addition, the closed-loop system

has also retained −20 dB/decade high frequency attenuation.
Overall, this particular technique is very effective around the resonance, approximately 28 dB peak reduction.

The control scheme also offers both static load support and high frequency attenuation. Further research into
the area includes setting up the electromagnetic isolation problem as a standard feedback control problem; LQR,
LQG, or H2 control problem. Similar work can be found in Fleming et. al..23

6. CONCLUSION
In this paper, we have demonstrated an innovative vibration isolation device which provides peak and high
frequency attenuation. By shunting an electromagnetic transducer, with impedance, we can eliminate the need
for additional sensor. A simple experimental apparatus validated the proposed isolation control scheme.
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Figure 9. An arbitrary terminal impedance (a), a synthetic impedance (b), and a synthetic admittance (c).
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Figure 10. Simulated passive shunt T (s) open- (−−) and T̃ (s) closed-loop (—) frequency response.
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Figure 11. Experimental passive shunt T (s) open- (−−) and T̃ (s) closed-loop (—) frequency response.
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