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Abstract

This paper is aimed at identifying a dynamical model for an acoustic en-
closure, a duct with rectangular cross section, closed ends, and side mounted
speaker enclosures. Acoustic enclosures are known to be resonant systems
of high order. In order to design a high performance feedback controller for
an acoustic enclosure, one needs to have an accurate model of the system.
Subspace based system identification techniques have proven to be an effi-
cient means of identifying dynamics of high order highly resonant systems. In
this paper a frequency domain subspace based method together with a second
iterative optimization step minimizing a frequency domain least-squares cri-
terion is successfully employed to identify a dynamical model for an acoustic

enclosure.
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1 Introduction

During the previous decade there has been a substantial and consistent focus on
the problem of active noise cancellation (ANC) in acoustic enclosures and ducts.
Early work concentrated mainly on adaptive feedforward configurations such as
those detailed in [8]. Such techniques involve the measurement of a disturbance and
attempt to arrest the propagation downstream. Although impressive results have
been achieved for ducts with end mounted disturbances (see for example [17, 18])
new approaches have been required to confront the greater problems of multiple
disturbances, three dimensional sound fields, and spatial cancellation. More recent
work involves the design of feedback control systems to cancel or absorb noise in
acoustic enclosures, see, e.g., [1, 15, 16].

Model-based feedback control strategies require a reliable model of the system
that is to be controlled. Various authors have addressed the problem of analytic
modeling of ducts and enclosures, see, e.g., [5, 2, 4]. Tt is known however, that
analytic modeling may result in a poor model if the system is even mildly realistic
(see reference [4]). System identification methods may be employed for this purpose.
Such methods are convenient as they model the overall system, i.e. the acoustic
dynamics of the duct in addition to exterior systems such as actuator dynamics,
amplifiers, and filters. To obtain an analytical model, all of these items have to be
modeled separately, then combined to construct the overall system.

Methods which identify state-space models by means of geometrical properties of
the input and output sequences are commonly known as subspace methods. These
methods have received much attention in the literature (see [22] for a survey of time
domain techniques). One of the advantages of subspace methods is that an estimate
is calculated without any non-linear parametric optimization over the entire model
space. In classical prediction error minimization [10], such a step is necessary for
most model structures. A second advantage is that the identification of multivariable
systems is just as simple as that of scalar systems. This may prove an important
advantage for ANC applications where a large number of actuators and sensors are
used.

In this paper we consider the case where data is given in the frequency domain,
i.e. when samples of the Fourier transform of the input and output signals are
taken as the primary measurements. In a number of applications, particularly when
modeling flexible structures, it is common to fit models in the frequency domain
[19, 14]. A few subspace based algorithms formulated in the frequency domain have
appeared recently [9, 12, 20, 11]

From a statistical point of view it is well known that, under some assumptions,

the best models are obtained by the method of maximum-likelihood. In this paper



we will, as a second step, after obtaining an initial model from the subspace method,
invoke a parametric optimization minimizing the 2-norm of the frequency domain
error. Under suitable assumptions this can be interpreted as a maximum-likelihood
estimation step [14]. It is important to point out that the success of the second
parametric optimization is heavily based on the availability of a good starting point

for the optimization.

1.1 Preliminaries

Consider a stable time-invariant discrete time linear system of finite order n in

state-space form

z(k+1) = Ax(k)+ Bu(k)
y(k) = Cuz(k)+ Du(k)+ v(k) (1)

where u(k) € R™ is the input vector, y(k) € RP the output vector and z(k) € R”
is the state vector. By considering real valued signals we implicitly assume that
the matrix quadruple (A, B,C, D) is also real valued. The noise term v(k) € RP is
assumed to be independent of the input sequence u(k). Here the time index k denotes
normalized time. Hence y(k) denotes the sample of the output signal y(t) at time
instant ¢ = KT, where T, denotes the sample time. We also assume that the state-
space realization (1) is minimal which implies both observability and controllability
[7]. A system with this type of noise model is commonly known as output-error
models [10]. Note that all such pairs (1) describing the same input/output behavior
of the system are equivalent under a non-singular similarity transformation T €
R™ " [7], i.e. the matrices (T'AT, T-'B,CT, D) will be a state-space realization
with equivalent i/o properties.

The discrete time Fourier transform F of a sequence f(k) is defined as
Ffk)=Fw) = f(k)e (2)
k=—oc
where j = +/—1. Applying the Fourier transform to (1) gives
X (w) = AX(w)+ BU(w)
Y(w) = CX(w)+ DU(w)+V(w) (3)

where Y(w),U(w),V(w) and X (w) are the transformed output, input, noise and

state respectively. By eliminating the state from (3) we obtain
Y(w) =G()U(w) +V(w) (4)

where G(z) = D + C(2I — A)"'B is known as the transfer function of the linear

system.



1.2 The Identification Problem

Given samples of the discrete time Fourier transform of the input signal U(w) and
output signal Y (w) at N arbitrary frequency points wy; find a state-space model of

the form (1) which well approximates the data in a least-squares fashion, i.e.

N

G(2) = argmin 3 [[¥ () = G(e™)U w)|| (5)

2 Identification method

This section is devoted to describing the identification technique used. As a first step
a state-space model is identified using a frequency domain subspace based algorithm.
The identified state-space realization is then transformed to a tridiagonal realization
suitable for a tridiagonal parameterization. Finally an optimization is employed to
minimize the 2-norm of the identification error system (see (5)). Here the tridiagonal
parameterization and an iterative Gauss-Newton non-linear least-squares algorithm

is utilized to find a (local) optimum of the least-squares criterion function.

2.1 Frequency domain subspace method

In this section we will outline the basic relations that characterize the frequency

domain subspace identification problem. Let us introduce the vector

T
the extended observability matrix with ¢ block rows
C
CA
O, = . (7)
CAT !
and the lower triangular Toeplitz matrix
D 0 o 0
CB D ... 0
Iy = (8)
CAT 2B CA®3B ... D

By recursive use of (3) we obtain

Ww)®Y(w) =0,X(w)+TWw)®U(w)
+W(w) @ V(w)



where ® denotes the standard Kronecker product [7]. The extended observabil-
ity matrix O, has a rank equal to the system order n if ¢ > n since the system
(A, B,C, D) is minimal.

If N samples of the transforms are known we can collect all data into one complex

matrix equation. Define the diagonalization operator for a sequence of vectors z; of
length p as

21 0 0
0

dlag [211227 R aZN] £ 2 (10)
0 0 ZN

which is a tall (or square) matrix of size Np x N. By introducing the additional
matrices

WN’p: W(wl) W(MQ) W(LUN) ®]p
1
- VN
1
VN
1
Ve=—Wy,diag[V(w;), ..., V(wy)] € CP*N,
N g[V(wr) (wn)]
1
X=—| X(w), ---, X(wy), | €CNV,

VN

and using (9) we arrive at the matrix equation

Ye© Wy diag[Y(wy), ..., Y(wy)] € CP*N,

U’ = ——Wydiag[U(w)),. .. ,U(wy)] € CT™N

Y =0, X"+T,U"+ V" (11)

The superscript ¢ is used to stress that the matrix is complex valued. Clearly since
the system matrices are assumed real valued O, and T'; are also real. Hence by

forming a real matrix from the real and complex parts of Y¢ as
Y = | Re{Y*‘} Im{Y*}
and similarly for U, X,V we obtain the real valued matrix equation
Y=0X+T,U+V. (12)

Note that this equation now has 2N columns. As the number of frequency samples

increases the number of columns in the matrix equation (12) also increases. The

bt



N
number of frequencies (columns) tends to infinity. The number of (block)-rows ¢

normalization with \/L— ensures that the norm of the matrix stays bounded as the

is up to the user to choose but must be larger than the upper bound of the model
orders which will be considered.

The identification scheme we employ to find a state-space model (A,B,C’, f))
is based on a two step procedure. First the relation (12) is used to consistently
determine a matrix @q with a range space equal to the extended observability matrix
O,. From O, it is straightforward to derive A and C' as is well known from the time
domain subspace methods [22]. In the second step B and D are determined by
performing a well known linear regression using the previously determined matrices

and frequency response [12].

2.2 The Basic Projection Method

The first step of the subspace method aims at providing an estimate of the range
space of the observability matrix @q. First consider the noise free case V, y = 0 and
we restate the basic projection method [22] in the frequency domain. In (12) the
term ', U can be removed by a projection. Denote by [Ty the orthogonal projection
onto the null-space of U,

n=r7-uv’(uu”)'u (13)

here U” denotes the transpose of the matrix U. The inverse in (13) will exist if
the input is sufficiently rich. See [12] for details. Since UTI* = 0 the effect of the
input will be removed and we obtain YII* = O, XII*. Provided rank (XIT*) = n.
YTII* and O, will span the same column space. The mild conditions required for
the previous relation to hold can be found in [12].

A matrix which concisely spans the column space of Yq,Nl_[L can be recovered

in a singular value decomposition [6]

s 0
0 3

VT

YHL: |:U9 Uo:| VT

(14)

where Uy, € R?P*" contains the n left principal singular vectors and the diagonal
matrix ¥, the corresponding singular values. In the noise free case 3, = 0 and there
will exist a nonsingular matrix 7" € R"*" such that O, = U,T. This shows that
U, is an extended observability matrix @q of the original transfer function for some
realization. By the shift structure of the observability matrix (7) we can proceed to
calculate A and C' as

A= arg min ||/, U, A — LU|% = (J1U,) JLU, (15)



C = J;U, (16)

where J; are the selection matrices defined by

/i :< Ig-1p Og-1)pxp ) : (17)
o= 0-vpr Tavp ) - (18)
J3 :< I, Opx(g-1yp ) (19)
and I; denotes the ¢ x4 identity matrix, 0;; denotes the i X j zero matrix, ||- || is the

Frobenius norm and XT = (X7 X)X denotes the Moore-Penrose pseudo-inverse
of the full rank matrix X. With the knowledge of A and C, we can now calculate
estimates for B and D [12]. The reader is referred to [12] for an efficient method of

forming YII* using QR factorization.

2.3 Consistency Issues

As we have seen, the basic projection algorithm will estimate a state-space model
that is similar to the original realization in the noise free case. If the noise term
V(w) is a zero mean complex random variable the issue of consistency becomes im-
portant. Does the estimate converge to the true system as N, the number of data,
tends to infinity? Consistency of the basic projection algorithm and the related al-
gorithm [9] has been investigated in [12, 20]. The result is that unless the covariance
structure of the data is known, consistency cannot be expected. Results describing
the asymptotic variance for an unknown noise model can be found in [14]. For the
application studied in this paper, due to a high SNR, the basic projection method
produces sufficiently good estimates although the noise structure is unknown. A
second approach based on the classical instrumental variable technique (IV) [10]
does not require knowledge of the variance properties (or equivalently the color of
the noise). Subspace based time IV-techniques can be found in [21]. A frequency

domain subspace-IV-approach can be found in [11].

2.4 Non-linear optimization

The initial estimate delivered by the subspace method is a good starting point for
a non-linear iterative optimization of the desired criterion (5). The optimization is
assumed to be quasi-convex in the region of the initial estimate. For high order sys-
tems, a numerically sound parameterization of the transfer function G(z) is required.
A parameterization based on the state-space form (1) using a tridiagonal A matrix

has recently been suggested [13]. Particularly the tridiagonal parameterization has



shown promising numerical properties for high order systems. Let
G(2,0) = D(0) +C(0) (= — A(6)) 'B(H) (20)

be a transfer function parameterized through the state-space matrices by the real
valued vector # using the tridiagonal model structure. A Gauss-Newton algorithm

[3] is employed for finding a solution to the parametric optimization problem
N
0= i Y (wp) — G(e?*, 0 ’ 21
argmalnkZ]H (wi) — G(e?*, )U(wk)H (21)

The optimization algorithm is started from the parameter vector fy representing the
transfer function delivered by the subspace method. For high order systems it is vital
to have a high quality starting point in order to converge to a good optimum. Since
the Gauss-Newton algorithm only converges locally to a minimum a starting point
close to the global optimum is desirable. If we assume the frequency domain noise
is complex Gaussian and white the solution to (21) will be the maximum-likelihood
estimate [14].

3 The Experiment

The experiment was conducted in the Laboratory for Dynamics and Control of Smart
Structures at the University of Newcastle, Australia. A plan view of the acoustic
duct apparatus is shown in Figure 1, while the actual setup can be seen in Figure 2.
For disturbance rejection a feedback loop is to be closed around the control speaker
to microphone path. This path represents a system where the speaker signal and
microphone voltage are the input and output respectively. The system dynamics
consists of a series combination of the following transfer functions: speaker signal
low pass filter, power amplifier, applied speaker voltage to baffle acceleration, baffle
acceleration to sound pressure, and the gain of the microphone from sound pressure
to voltage.

Speaker 2 is used in control system experimentation and is redundant during
identification. Our ultimate goal is to use this setup for ANC experiments, which
will be reported subsequently. However, for the moment, the second speaker is not
used. Although it is unused, this speaker must remain attached. This is due to the
coupling that exists between the passive dynamics of the speaker and the enclosed
sound field. For a discussion of the coupling between passive speaker dynamics and
enclosed sound fields the reader is referred to [2].

The acoustic actuators are constructed from 10 inch diameter speakers (Jaycar

(CS-2220) and a sealed enclosure of 23 liters. The main reason for this arrangement
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Figure 1: Plan view of the acoustic duct apparatus.

Figure 2: The experimental acoustic enclosure.

is to improve the low frequency dynamics of the speakers. The frequency response
between applied voltage and baffle acceleration was measured to determine a low
frequency bandwidth of 55 Hz. The measurement was taken using a Polytec scanning
laser vibrometer (PSV-300) and is shown in Figure 3. If an analytic model of the
system is to be derived, one would need to fit a model to the measured data shown in
Figure 3. This model would then be combined with the duct dynamics as explained
in [5]. However, since we employ a system identification method to model the
dynamics of the whole system, we may simply skip this step.

The acoustic sensor is a unidirectional dynamic microphone (Schure SM58) with
a bandwidth of 50 to 15,000 Hz and a pressure sensitivity of -56 dB (0 dB =
1V /ubar). This is a suitable sensor for this apparatus since the low cut-off fre-
quency of the actuator is also, roughly, 50 Hz.

The excitation signal generation and data recording is performed using the
dSPACE-DS1103 rapid prototyping system. The excitation signal is a uniformly
distributed random process sampled at 2 kHz and digitally filtered with a 6th order



Dimension | Value

L 4.840 m
Ls 0.320 m
Le 2.940 m
Ld 0.940 m
W 0.246 m

Ws 0.246 m
Height 0.295 m

Table 1: Duct Internal Dimensions
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Figure 3: Magnitude response of the acoustic actuators from applied voltage to
baffle acceleration

elliptic bandpass filter between 50 and 400 Hz. The DAC output is filtered with a 1
kHz analog low pass filter to remove the sampling frequency component and harmon-
ics. The microphone signal is filtered using low-pass 1 kHz 4th order anti-aliasing
filters and is recorded at 2 kHz with 16 bit resolution for 60 seconds. The filter
used in this experiment is a Frequency Devices 9002 Dual channel programmable
switched capacitor filter.

4 Identification results

The experimental input-output time series is divided into two equal size data sets,
one estimation set and another set for validation purposes. The estimation data is
transformed to the frequency domain by use of the fast Fourier transform (FFT)
without any windowing functions. As the frequency content of the excitation signal
is restricted to the 50-400 Hz frequency band all frequency data outside this interval
is discarded. This reduces the size of the data sets to 5456 samples. As the input to
the system is based on a filtered random signal the spectrum of the input fluctuates

over the frequencies. In order to only use highly excited frequencies, only frequency
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points with an input amplitude above 1.7 are retained in the identification set.
This leads to an identification set with 1545 points with a high SNR. The subspace
estimation algorithm outlined in Section 2 is employed to estimate a model of order

29 using ¢ = 60 as the number of rows in the matrix equation (12).

Estimated model after subspace step and validation data
10 T T T T

I
— Validation data
— — Estimated model |]
— - Error q

Transfer function magnitude

? O e
Figure 4: Magnitude transfer functions of parametric model estimate of order 29
from subspace algorithm and ETFE from validation data. The magnitude of the
error also is shown. The transfer functions are derived from the applied actuator
voltage to measured microphone preamp voltage. (-) Validation Data, (- -) Esti-

mated model, (- -) Error.

To validate the model, or rather to check if there is any evidence in the data
which implies that the model is invalid, we use an independent validation data set
of 31178 samples to derive the Empirical Transfer Function Estimate (ETFE) [10]
of the system. In particular the ETFE is calculated at N, = 2'% = 8192 frequency
points equally spaced between 0 and 1kHz. The ETFE is the fraction between the

cross spectrum between the input and output and the auto spectrum of the input.

Hw) = = (22)

In the calculation of the spectral estimates ®,, (w) and ®,,(w) a Hamming window
of size 1024 is employed to smooth the estimates.

The transfer functions of the subspace estimate and the ETFE are plotted to-
gether in Figure 4. The RMS error between the parametric model G and the vali-
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Estimated model after LS—step and validation data ETFE

2
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Figure 5: Final estimated model after parametric optimization of LS criterion. Mag-
nitude and error plot showing estimated model of order 29 and ETFE from validation
data. The transfer functions are derived from the applied actuator voltage to mea-
sured microphone preamp voltage. (-) Validation Data, (- -) Estimated model, ( -)

Error.
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dation ETFE H is 0.24. The RMS error is defined as

1
RMS = \/MZ

key

() — Glern)||

(23)

where V denote the set of frequency indices k£ corresponding to the frequency band
50-400 Hz and consists of 2867 elements.

The nonlinear optimization step further improved the RMS error to a value of
0.09 again calculated against the validation data ETFE. The amplitude of the finally
estimated transfer function is depicted in Figure 5 together with the validation data
ETFE. Also the magnitude of the complex error between the estimated model and
the validation data is shown in the figure.

As a second validation step a time domain simulation comparing the output of
the model to the time domain validation output is performed. The validation input
is used to simulate the output of the 29th order model. An excerpt of the simulation
is shown in Figure 6. The output of the model is almost identical to the measured
output of the validation data.

The estimated model is implemented in the dASPACE DSP prototype equipment
and used to predict the sound pressure at the microphone position in real-time. The
load speaker is driven with a disturbance signal, the addition of 50-400 Hz random
noise and a sinusoid at 71 Hz (near the first mode). The output is measured using
the microphone, and a prediction is produced by simulating the 29th order model in
real time. An excerpt from the measured and predicted data is shown in Figure 7.

Based on the cross validation both in the frequency domain as well as the time
domain it can be concluded that the estimated model is quite accurate. Hence the
model should be a good candidate for use in a model based control design although
bearing in mind the level of estimation error or uncertainty as indicated by the error

curve in Figure 5.

5 Conclusions

In this paper we successfully identified a dynamical model for an acoustic enclosure.
Firstly an initial model of the system was estimated using a frequency domain
subspace based identification algorithm. In a second step the estimate was refined
by minimizing the 2-norm of the frequency error between the model and data. This
was achieved using a tridiagonal parameterization of a state-space model utilizing
a Gauss-Newton type optimization algorithm. The quality of the estimated model
was assessed in both time and frequency domain using independent validation data.
The result indicates that the model is accurate over the frequency range of interest,

and is suitable for high performance model based control design techniques.
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Figure 6: Time domain comparison between the simulated output of the estimated

model and the measured output. The input and outputs are taken as the applied ac-

tuator voltage and microphone preamp voltage. (-) Validation Data, (- -) Estimated

model, (- -) Error.
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Figure 7: Result from a real-time validation experiment comparing the simulated

output of the estimated model and the measured output of the system. The input

and outputs are taken as the applied actuator voltage and microphone preamp

voltage. (-) Real time measurement, (- -) Estimated model, ( -) Error.
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