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1 IntroductionDuring the previous decade there has been a substantial and consistent focus onthe problem of active noise cancellation (ANC) in acoustic enclosures and ducts.Early work concentrated mainly on adaptive feedforward con�gurations such asthose detailed in [8]. Such techniques involve the measurement of a disturbance andattempt to arrest the propagation downstream. Although impressive results havebeen achieved for ducts with end mounted disturbances (see for example [17, 18])new approaches have been required to confront the greater problems of multipledisturbances, three dimensional sound �elds, and spatial cancellation. More recentwork involves the design of feedback control systems to cancel or absorb noise inacoustic enclosures, see, e.g., [1, 15, 16].Model-based feedback control strategies require a reliable model of the systemthat is to be controlled. Various authors have addressed the problem of analyticmodeling of ducts and enclosures, see, e.g., [5, 2, 4]. It is known however, thatanalytic modeling may result in a poor model if the system is even mildly realistic(see reference [4]). System identi�cation methods may be employed for this purpose.Such methods are convenient as they model the overall system, i.e. the acousticdynamics of the duct in addition to exterior systems such as actuator dynamics,ampli�ers, and �lters. To obtain an analytical model, all of these items have to bemodeled separately, then combined to construct the overall system.Methods which identify state-space models by means of geometrical properties ofthe input and output sequences are commonly known as subspace methods. Thesemethods have received much attention in the literature (see [22] for a survey of timedomain techniques). One of the advantages of subspace methods is that an estimateis calculated without any non-linear parametric optimization over the entire modelspace. In classical prediction error minimization [10], such a step is necessary formost model structures. A second advantage is that the identi�cation of multivariablesystems is just as simple as that of scalar systems. This may prove an importantadvantage for ANC applications where a large number of actuators and sensors areused.In this paper we consider the case where data is given in the frequency domain,i.e. when samples of the Fourier transform of the input and output signals aretaken as the primary measurements. In a number of applications, particularly whenmodeling 
exible structures, it is common to �t models in the frequency domain[19, 14]. A few subspace based algorithms formulated in the frequency domain haveappeared recently [9, 12, 20, 11]From a statistical point of view it is well known that, under some assumptions,the best models are obtained by the method of maximum-likelihood. In this paper2



we will, as a second step, after obtaining an initial model from the subspace method,invoke a parametric optimization minimizing the 2-norm of the frequency domainerror. Under suitable assumptions this can be interpreted as a maximum-likelihoodestimation step [14]. It is important to point out that the success of the secondparametric optimization is heavily based on the availability of a good starting pointfor the optimization.1.1 PreliminariesConsider a stable time-invariant discrete time linear system of �nite order n instate-space form x(k + 1) = Ax(k) +Bu(k)y(k) = Cx(k) +Du(k) + v(k) (1)where u(k) 2 Rm is the input vector, y(k) 2 Rp the output vector and x(k) 2 Rnis the state vector. By considering real valued signals we implicitly assume thatthe matrix quadruple (A;B;C;D) is also real valued. The noise term v(k) 2 Rp isassumed to be independent of the input sequence u(k). Here the time index k denotesnormalized time. Hence y(k) denotes the sample of the output signal y(t) at timeinstant t = kTs where Ts denotes the sample time. We also assume that the state-space realization (1) is minimal which implies both observability and controllability[7]. A system with this type of noise model is commonly known as output-errormodels [10]. Note that all such pairs (1) describing the same input/output behaviorof the system are equivalent under a non-singular similarity transformation T 2Rn�n [7], i.e. the matrices (T�1AT; T�1B;CT;D) will be a state-space realizationwith equivalent i/o properties.The discrete time Fourier transform F of a sequence f(k) is de�ned asFf(k) = F (!) = 1Xk=�1 f(k)e�j!k (2)where j = p�1. Applying the Fourier transform to (1) givesej!X(!) = AX(!) +BU(!)Y (!) = CX(!) +DU(!) + V (!) (3)where Y (!); U(!); V (!) and X(!) are the transformed output, input, noise andstate respectively. By eliminating the state from (3) we obtainY (!) = G(ej!)U(!) + V (!) (4)where G(z) = D + C(zI � A)�1B is known as the transfer function of the linearsystem. 3



1.2 The Identi�cation ProblemGiven samples of the discrete time Fourier transform of the input signal U(!) andoutput signal Y (!) at N arbitrary frequency points !k; �nd a state-space model ofthe form (1) which well approximates the data in a least-squares fashion, i.e.Ĝ(z) = argminG(z) NXk=1 

Y (!k)�G(ej!k)U(!k)

2 (5)2 Identi�cation methodThis section is devoted to describing the identi�cation technique used. As a �rst stepa state-space model is identi�ed using a frequency domain subspace based algorithm.The identi�ed state-space realization is then transformed to a tridiagonal realizationsuitable for a tridiagonal parameterization. Finally an optimization is employed tominimize the 2-norm of the identi�cation error system (see (5)). Here the tridiagonalparameterization and an iterative Gauss-Newton non-linear least-squares algorithmis utilized to �nd a (local) optimum of the least-squares criterion function.2.1 Frequency domain subspace methodIn this section we will outline the basic relations that characterize the frequencydomain subspace identi�cation problem. Let us introduce the vectorW (!) = h 1 ej! ej2! � � � ej!(q�1) iT (6)the extended observability matrix with q block rowsOq = 266664 CCA...CAq�1
377775 (7)and the lower triangular Toeplitz matrix�q = 266664 D 0 : : : 0CB D : : : 0... ... . . . ...CAq�2B CAq�3B : : : D

377775 (8)By recursive use of (3) we obtainW (!)
 Y (!) =OqX(!) + �qW (!)
 U(!)+W (!)
 V (!) (9)4



where 
 denotes the standard Kronecker product [7]. The extended observabil-ity matrix Oq has a rank equal to the system order n if q � n since the system(A;B;C;D) is minimal.If N samples of the transforms are known we can collect all data into one complexmatrix equation. De�ne the diagonalization operator for a sequence of vectors zi oflength p as diag [z1; z2; : : : ; zN ] , 266664 z1 0 00 z2 . . .. . . . . .0 0 zN
377775 (10)which is a tall (or square) matrix of size Np � N . By introducing the additionalmatrices

WN;p = h W (!1) W (!2) � � � W (!N) i
 IpYc = 1pNWN;pdiag [Y (!1); : : : ; Y (!N)] 2 C qp�N ;Uc = 1pNWN;mdiag [U(!1); : : : ; U(!N )] 2 C qm�N ;Vc = 1pNWN;pdiag [V (!1); : : : ; V (!N)] 2 C qp�N ;Xc = 1pN h X(!1); � � � ; X(!N); i 2 C n�N ;and using (9) we arrive at the matrix equationYc = OqXc + �qUc +Vc: (11)The superscript c is used to stress that the matrix is complex valued. Clearly sincethe system matrices are assumed real valued Oq and �q are also real. Hence byforming a real matrix from the real and complex parts of Yc asY = h RefYcg ImfYcg iand similarly for U;X;V we obtain the real valued matrix equationY = OqX+ �qU+V: (12)Note that this equation now has 2N columns. As the number of frequency samplesincreases the number of columns in the matrix equation (12) also increases. The5



normalization with 1pN ensures that the norm of the matrix stays bounded as thenumber of frequencies (columns) tends to in�nity. The number of (block)-rows qis up to the user to choose but must be larger than the upper bound of the modelorders which will be considered.The identi�cation scheme we employ to �nd a state-space model (Â; B̂; Ĉ; D̂)is based on a two step procedure. First the relation (12) is used to consistentlydetermine a matrix Ôq with a range space equal to the extended observability matrixOq. From Ôq it is straightforward to derive Â and Ĉ as is well known from the timedomain subspace methods [22]. In the second step B̂ and D̂ are determined byperforming a well known linear regression using the previously determined matricesand frequency response [12].2.2 The Basic Projection MethodThe �rst step of the subspace method aims at providing an estimate of the rangespace of the observability matrix Ôq. First consider the noise free case Vq;N = 0 andwe restate the basic projection method [22] in the frequency domain. In (12) theterm �qU can be removed by a projection. Denote by �?N the orthogonal projectiononto the null-space of U, �? = I �UT (UUT )�1U (13)here UT denotes the transpose of the matrix U. The inverse in (13) will exist ifthe input is suÆciently rich. See [12] for details. Since U�? = 0 the e�ect of theinput will be removed and we obtain Y�? = OqX�?. Provided rank (X�?) = n.Y�? and Oq will span the same column space. The mild conditions required forthe previous relation to hold can be found in [12].A matrix which concisely spans the column space of Yq;N�? can be recoveredin a singular value decomposition [6]Y�? = h Us Uo i " �s 00 �o #" V TsV To # (14)where Us 2 Rqp�n contains the n left principal singular vectors and the diagonalmatrix �s the corresponding singular values. In the noise free case �o = 0 and therewill exist a nonsingular matrix T 2 Rn�n such that Oq = UsT: This shows thatUs is an extended observability matrix Ôq of the original transfer function for somerealization. By the shift structure of the observability matrix (7) we can proceed tocalculate A and C aŝA = argminA kJ1UsA� J2Usk2F = (J1Us)yJ2Us (15)6



Ĉ = J3Us (16)where Ji are the selection matrices de�ned byJ1 =� I(q�1)p 0(q�1)p�p � ; (17)J2 =� 0(q�1)p�p I(q�1)p � ; (18)J3 =� Ip 0p�(q�1)p � (19)and Ii denotes the i�i identity matrix, 0i�j denotes the i�j zero matrix, k�kF is theFrobenius norm and Xy = (XTX)�1XT denotes the Moore-Penrose pseudo-inverseof the full rank matrix X. With the knowledge of Â and Ĉ, we can now calculateestimates for B̂ and D̂ [12]. The reader is referred to [12] for an eÆcient method offorming Y�? using QR factorization.2.3 Consistency IssuesAs we have seen, the basic projection algorithm will estimate a state-space modelthat is similar to the original realization in the noise free case. If the noise termV (!) is a zero mean complex random variable the issue of consistency becomes im-portant. Does the estimate converge to the true system as N , the number of data,tends to in�nity? Consistency of the basic projection algorithm and the related al-gorithm [9] has been investigated in [12, 20]. The result is that unless the covariancestructure of the data is known, consistency cannot be expected. Results describingthe asymptotic variance for an unknown noise model can be found in [14]. For theapplication studied in this paper, due to a high SNR, the basic projection methodproduces suÆciently good estimates although the noise structure is unknown. Asecond approach based on the classical instrumental variable technique (IV) [10]does not require knowledge of the variance properties (or equivalently the color ofthe noise). Subspace based time IV-techniques can be found in [21]. A frequencydomain subspace-IV-approach can be found in [11].2.4 Non-linear optimizationThe initial estimate delivered by the subspace method is a good starting point fora non-linear iterative optimization of the desired criterion (5). The optimization isassumed to be quasi-convex in the region of the initial estimate. For high order sys-tems, a numerically sound parameterization of the transfer function G(z) is required.A parameterization based on the state-space form (1) using a tridiagonal A matrixhas recently been suggested [13]. Particularly the tridiagonal parameterization has7



shown promising numerical properties for high order systems. LetG(z; �) = D(�) + C(�)(zI � A(�))�1B(�) (20)be a transfer function parameterized through the state-space matrices by the realvalued vector � using the tridiagonal model structure. A Gauss-Newton algorithm[3] is employed for �nding a solution to the parametric optimization problem�̂ = argmin� NXk=1 

Y (!k)�G(ej!k ; �)U(!k)

2 (21)The optimization algorithm is started from the parameter vector �0 representing thetransfer function delivered by the subspace method. For high order systems it is vitalto have a high quality starting point in order to converge to a good optimum. Sincethe Gauss-Newton algorithm only converges locally to a minimum a starting pointclose to the global optimum is desirable. If we assume the frequency domain noiseis complex Gaussian and white the solution to (21) will be the maximum-likelihoodestimate [14].3 The ExperimentThe experiment was conducted in the Laboratory for Dynamics and Control of SmartStructures at the University of Newcastle, Australia. A plan view of the acousticduct apparatus is shown in Figure 1, while the actual setup can be seen in Figure 2.For disturbance rejection a feedback loop is to be closed around the control speakerto microphone path. This path represents a system where the speaker signal andmicrophone voltage are the input and output respectively. The system dynamicsconsists of a series combination of the following transfer functions: speaker signallow pass �lter, power ampli�er, applied speaker voltage to ba�e acceleration, ba�eacceleration to sound pressure, and the gain of the microphone from sound pressureto voltage.Speaker 2 is used in control system experimentation and is redundant duringidenti�cation. Our ultimate goal is to use this setup for ANC experiments, whichwill be reported subsequently. However, for the moment, the second speaker is notused. Although it is unused, this speaker must remain attached. This is due to thecoupling that exists between the passive dynamics of the speaker and the enclosedsound �eld. For a discussion of the coupling between passive speaker dynamics andenclosed sound �elds the reader is referred to [2].The acoustic actuators are constructed from 10 inch diameter speakers (JaycarCS-2220) and a sealed enclosure of 23 liters. The main reason for this arrangement8



L
Lc

Ld

Ws
W xxxxx

xxxxx
xxxxx
xxxxx

Spk1 Spk2

Mic

L
s

Figure 1: Plan view of the acoustic duct apparatus.

Figure 2: The experimental acoustic enclosure.is to improve the low frequency dynamics of the speakers. The frequency responsebetween applied voltage and ba�e acceleration was measured to determine a lowfrequency bandwidth of 55 Hz. The measurement was taken using a Polytec scanninglaser vibrometer (PSV-300) and is shown in Figure 3. If an analytic model of thesystem is to be derived, one would need to �t a model to the measured data shown inFigure 3. This model would then be combined with the duct dynamics as explainedin [5]. However, since we employ a system identi�cation method to model thedynamics of the whole system, we may simply skip this step.The acoustic sensor is a unidirectional dynamic microphone (Schure SM58) witha bandwidth of 50 to 15,000 Hz and a pressure sensitivity of -56 dB (0 dB =1V=�bar). This is a suitable sensor for this apparatus since the low cut-o� fre-quency of the actuator is also, roughly, 50 Hz.The excitation signal generation and data recording is performed using thedSPACE-DS1103 rapid prototyping system. The excitation signal is a uniformlydistributed random process sampled at 2 kHz and digitally �ltered with a 6th order9



Dimension ValueL 4.840 mLs 0.320 mLc 2.940 mLd 0.940 mW 0.246 mWs 0.246 mHeight 0.295 mTable 1: Duct Internal Dimensions
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Figure 3: Magnitude response of the acoustic actuators from applied voltage toba�e accelerationelliptic bandpass �lter between 50 and 400 Hz. The DAC output is �ltered with a 1kHz analog low pass �lter to remove the sampling frequency component and harmon-ics. The microphone signal is �ltered using low-pass 1 kHz 4th order anti-aliasing�lters and is recorded at 2 kHz with 16 bit resolution for 60 seconds. The �lterused in this experiment is a Frequency Devices 9002 Dual channel programmableswitched capacitor �lter.4 Identi�cation resultsThe experimental input-output time series is divided into two equal size data sets,one estimation set and another set for validation purposes. The estimation data istransformed to the frequency domain by use of the fast Fourier transform (FFT)without any windowing functions. As the frequency content of the excitation signalis restricted to the 50-400 Hz frequency band all frequency data outside this intervalis discarded. This reduces the size of the data sets to 5456 samples. As the input tothe system is based on a �ltered random signal the spectrum of the input 
uctuatesover the frequencies. In order to only use highly excited frequencies, only frequency10



points with an input amplitude above 1.7 are retained in the identi�cation set.This leads to an identi�cation set with 1545 points with a high SNR. The subspaceestimation algorithm outlined in Section 2 is employed to estimate a model of order29 using q = 60 as the number of rows in the matrix equation (12).
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Figure 4: Magnitude transfer functions of parametric model estimate of order 29from subspace algorithm and ETFE from validation data. The magnitude of theerror also is shown. The transfer functions are derived from the applied actuatorvoltage to measured microphone preamp voltage. (-) Validation Data, (- -) Esti-mated model, ({ -) Error.To validate the model, or rather to check if there is any evidence in the datawhich implies that the model is invalid, we use an independent validation data setof 31178 samples to derive the Empirical Transfer Function Estimate (ETFE) [10]of the system. In particular the ETFE is calculated at Nv = 213 = 8192 frequencypoints equally spaced between 0 and 1kHz. The ETFE is the fraction between thecross spectrum between the input and output and the auto spectrum of the input.Ĥ(!) = �̂yu(!)�̂uu(!) (22)In the calculation of the spectral estimates �̂yu(!) and �̂uu(!) a Hamming windowof size 1024 is employed to smooth the estimates.The transfer functions of the subspace estimate and the ETFE are plotted to-gether in Figure 4. The RMS error between the parametric model Ĝ and the vali-11
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dation ETFE Ĥ is 0.24. The RMS error is de�ned asRMS =s 12867Xk2V 


Ĥ(!k)� Ĝ(ej!k)


2 (23)where V denote the set of frequency indices k corresponding to the frequency band50-400 Hz and consists of 2867 elements.The nonlinear optimization step further improved the RMS error to a value of0.09 again calculated against the validation data ETFE. The amplitude of the �nallyestimated transfer function is depicted in Figure 5 together with the validation dataETFE. Also the magnitude of the complex error between the estimated model andthe validation data is shown in the �gure.As a second validation step a time domain simulation comparing the output ofthe model to the time domain validation output is performed. The validation inputis used to simulate the output of the 29th order model. An excerpt of the simulationis shown in Figure 6. The output of the model is almost identical to the measuredoutput of the validation data.The estimated model is implemented in the dSPACE DSP prototype equipmentand used to predict the sound pressure at the microphone position in real-time. Theload speaker is driven with a disturbance signal, the addition of 50-400 Hz randomnoise and a sinusoid at 71 Hz (near the �rst mode). The output is measured usingthe microphone, and a prediction is produced by simulating the 29th order model inreal time. An excerpt from the measured and predicted data is shown in Figure 7.Based on the cross validation both in the frequency domain as well as the timedomain it can be concluded that the estimated model is quite accurate. Hence themodel should be a good candidate for use in a model based control design althoughbearing in mind the level of estimation error or uncertainty as indicated by the errorcurve in Figure 5.5 ConclusionsIn this paper we successfully identi�ed a dynamical model for an acoustic enclosure.Firstly an initial model of the system was estimated using a frequency domainsubspace based identi�cation algorithm. In a second step the estimate was re�nedby minimizing the 2-norm of the frequency error between the model and data. Thiswas achieved using a tridiagonal parameterization of a state-space model utilizinga Gauss-Newton type optimization algorithm. The quality of the estimated modelwas assessed in both time and frequency domain using independent validation data.The result indicates that the model is accurate over the frequency range of interest,and is suitable for high performance model based control design techniques.13
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