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Abstract
Piezoelectric shunt damping systems reduce structural vibration by shunting
an attached piezoelectric transducer with an electrical impedance. Current
impedance designs result in a coupled electrical resonance at the target
modal frequencies. In practical situations, variation in structural load or
environmental conditions can result in significant changes in the structural
resonance frequencies. This variation can severely reduce shunt damping
performance as the electrical impedance remains tuned to the nominal
resonance frequencies. This paper introduces a method for online adaptation
of the shunting impedance. A reconstructed estimate of the RMS strain is
minimized by varying the component values of a synthetic shunt damping
circuit. The techniques presented are applied in real time to tune the
component values of a randomly excited beam.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Today’s increasingly high speed and lightweight structures are
subject to extensive vibrations that can reduce structural life
and contribute to mechanical failure. Piezoelectric transducers
(PZTs), in conjunction with appropriate circuitry, can be used
as a mechanical energy dissipation device. If a simple resistor
is placed across the terminals of the PZT, the PZT will act as
a viscoelastic damper [2]. If the network consists of a series
inductor–resistor R–L circuit, the passive network combined
with the inherent capacitance of the PZT creates a damped
electrical resonance. The resonance can be tuned so that the
PZT acts as a tuned vibrational energy absorber [2]. Wu [3]
reports a method for damping multiple vibration modes with a
single PZT. The circuit requires as many R– L parallel branches
as there are modes to be controlled. Each branch also contains
‘current blocking’ networks, each consisting of an inductor and
capacitor connected in parallel to isolate adjacent branches.
Passive shunt damping is regarded as a simple, low cost, light
weight, and easy to implement method of controlling structural
vibrations.

In practical situations, variation in structural load or
environmental conditions can result in significant movement
of the structural resonance frequencies. Such variation
can severely reduce shunt damping performance as the

1 Author to whom any correspondence should be addressed.

electrical impedance remains tuned to the nominal resonance
frequencies. This problem was first addressed in [4], where
a viscoelastic spring, with temperature-dependent stiffness,
was used as a tuned mechanical absorber. Hollkamp [5]
later proposed a similar methodology for piezoelectric shunt
damping. A mechanically driven resistor was used to vary
the virtual inductance of a single mode shunt damping circuit.
The performance function, related to the RMS strain, was
estimated using an additional piezoelectric patch. In this paper
we consider the effect of broadband disturbances on structures
with multiple high profile modes. Another approach, based
on capacitive shunting, considers tonal disturbances and
structures with a single dominant lightly damped mode [6].
In situations involving non-sinusoidal disturbances, such
techniques are deemed undesirable as the structural response
is increased outside of the damped region.

Recently, a new method for implementing shunt damping
circuits has been introduced. The synthetic impedance [7–
9] uses a voltage controlled current source and DSP system
to implement the terminal impedance of an arbitrary shunt
network. It replaces physical circuits to provide effective
structural damping whilst avoiding the problems encountered
with direct circuit implementation. Because the desired
impedance is now defined only by the DSP system transfer
function, the component values are easily modified online.

This paper introduces a technique for online adaptation
of shunt network component values. A single piezoelectric
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patch is used to simultaneously damp multiple modes of a
mechanical system and to procure a performance function
estimate. Experimental results are presented for a randomly
excited, simply supported beam. The second and third modes
of the beam are controlled with an attached PZT and adaptive
shunt damping system. The algorithm is shown to regain
optimal damping performance after severely detuning the
component values.

The paper is presented in six sections. We begin with
a brief review of piezoelectric shunt circuit design and a
description of the synthetic impedance. In section 3 we will
discuss the modelling of structural dynamics and show how
to model the presence of an electrical shunt impedance. The
adaptive impedance is introduced in section 4. Experimental
and theoretical results are presented in section 5. We conclude
with a review of the initial goals, a summary of the results, and
some future directions for research on adaptive shunt damping.

2. Piezoelectric shunt damping

Shunt damping methodologies are often grouped into two
broad categories: single mode and multi-mode. Single-mode
shunt damping techniques are simple but damp only one
structural mode for every PZT. Multiple-mode shunt damping
techniques require more complicated shunt circuits but are
capable of damping many modes.

2.1. Single-mode shunt damping

Single-mode damping was introduced to decrease the
magnitude of one structural mode [10]. Two examples of
single-mode damping are shown in figure 1: parallel and series
shunt damping. The combination of an R–L shunt circuit
combined with the intrinsic capacitance of the PZT introduces
an electrical resonance. This can be tuned to one structural
mode in a manner analogous to that of a mechanical vibration
absorber. Single-mode damping can be applied to reduce
several structural modes with the use of as many piezoelectric
patches and damping circuits as necessary.

Problems may result if these piezoelectric patches are
bonded to, or imbedded in the structure. First, the structure
may not have sufficient room to accommodate all of the
patches. Second, the structure may be altered or weakened
when the piezoelectric patches are applied. In addition, a large
number of patches can increase the structural weight, making
it unsuitable for applications such as aerospace.

2.2. Multiple-mode shunt damping

To alleviate the problems associated with single-mode
damping, multi-mode shunt damping has been introduced;
i.e. the use of one piezoelectric patch to damp several structural
modes. Two multi-mode shunt damping methodologies will be
discussed: current blocking techniques, as presented in [3, 11–
13], and current flowing techniques, as presented in [1, 14].

2.2.1. Current blocking techniques. The principle of
multi-mode shunt damping is to insert a current blocking
network [3, 11–13] in series with each shunt branch. In
figure 2, the blocking circuit consists of a capacitor and
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Figure 1. Series (a), and parallel (b), single-mode shunt damping
circuits shown connected to a PZT transducer.

inductor in parallel, C3–L3. The number of antiresonant
circuits in each R–L shunt branch increases with the number
of structural modes to be damped simultaneously. Each R–L
shunt branch is designed to damp one structural mode. For
example, R1–L1 in figure 2 is tuned to resonate at ω1, the
resonance frequency of the first structural mode to be damped.
R2–L2 is tuned to ω2, the second structural mode to be damped,
and so on.

According to Wu [3], the inductance values for the shunt
circuits shown in figure 2 can be calculated from the following
expressions (it is assumed that ω1 < ω2):

L1 = 1

ω2
1Cp

L̃2 = 1

ω2
2Cp

L3 = 1

ω2
1C3

L2 = (L1 L̃2 + L̃2L3 − L1L3 − ω2
2 L1 L̃2L3C3)

(L1 − L̃2)(1 − ω2
2 L3C3)

(1)

where Cp is the capacitance of the PZT, and C3 is an arbitrary
capacitor used in the current blocking network.

2.2.2. Current flowing techniques. More recently, the
current flowing shunt circuit has been introduced [1, 14].
Shown in figure 3, the current flowing circuit requires one
circuit branch for each structural mode to be controlled. The
current flowing L̂ i –Ci network in each branch is tuned to
approximate a short circuit at the target resonance frequency
whilst approximating an open circuit at the adjacent branch
frequencies. The remaining inductor and resistor in each
branch L̃ i –Ri , is tuned to damp the i th target structural mode
in a manner analogous that performed during single-mode
design, i.e. the current flowing network decouples the multi-
mode problem into a number of effectively independent single-
mode designs. Unlike current blocking techniques, the order of
each current flowing branch does not increase as the number of
modes to be shunt damped simultaneously increases. Besides
greatly simplifying the tuning procedure, the current flowing
technique requires less components and gracefully extends
to damp a large number of modes simultaneously, e.g. five
modes of a simply supported plate [14]. Further practical
advantages are realized when implementing the circuit; only
a single non-floating inductor is required per branch [14]. A
similar technique can be found in [15].
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Figure 2. Parallel (a), and series (b), multi-mode shunt damping circuits shown connected to a PZT transducer.
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Figure 3. Current flowing piezoelectric shunt damping circuit [1]
shown connected to a PZT transducer.

2.3. Implementation difficulties

Currently shunt damping circuits are implemented using a
network of physical components. There are a number of
problems associated with direct circuit implementation, the
foremost of which are listed below.

• Typically the shunt circuits require large inductor values
(up to thousands of henries). Virtual grounded and
floating inductors (Riordan gyrators [16]) are required
to implement the inductor elements. Such virtual
implementations are typically poor representations of
ideal inductors. They are large in size, difficult to tune,
and are sensitive to component age, temperature, and non-
ideal characteristics.

• Piezoelectric patches are capable of generating hundreds
of volts for moderate structural excitations. This requires
the entire circuit to be constructed from high voltage
components. Further voltage limitations arise due to the
internal gains of the virtual inductors.

• The minimum number of opamps required to implement
the shunt damping circuit increases rapidly with the
number of modes to be damped. At least 30 opamps are
required to implement a series configuration multi-mode
shunt damping circuit with current blocking networks in
every branch. The relationship between the number of
opamps and the number of modes to be damped for this
circuit configuration is given by No opamps = 2n +
4n(n −1), where n is the number of modes to be damped.
Current flowing techniques require a considerably smaller
number of opamps, No opamps = 2n, but still suffer
from the previous two difficulties.

DSP

Rc

Vz

+

-

i  z

Synthetic Z

Figure 4. Functionality of the synthetic impedance.

2.4. The synthetic impedance

It should be clear that, although the concept of multi-
mode shunt damping is useful, in practice, implementation
difficulties make its application somewhat limited. The
synthetic impedance [7–9] allows the implementation of
complicated multi-mode shunt damping circuits using only a
few opamps, one resistor, and a digital signal processor (DSP).

The synthetic impedance is a two-terminal device that
establishes an arbitrary relationship between voltage and
current at its terminals [8]. The functionality is shown in
figure 4, where iz(t) = f (vz(t)). This can be made to
synthesize any network of physical components by fixing iz

to be the output of a linear transfer function with input vz , i.e.

Iz(s) = Y (s)Vz(s) (2)

where Y (s) ≡ 1
Z(s) and Z(s) is the impedance to be seen from

the terminals.

3. Modelling the compound system

For generality, we will enter the modelling process with
knowledge a priori of the system dynamics. As an example,
we consider a simply supported beam with two bonded
piezoelectric patches, one to be used as a source of disturbance,
and the other for shunt damping. The transfer function Gvv(s)
from an applied actuator to sensor voltage can be derived
analytically from the Euler–Bernoulli beam equation [17], or
obtained experimentally through system identification [18].
Using similar methods, we may obtain the transfer function
from an applied actuator voltage to the displacement at a point
G yv(x, s).
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Figure 5. Series electrical model of a PZT.

Following the modal analysis procedure [19], the resulting
transfer functions have the familiar form:

G yv(x, s) � Y (x, s)

Va(s)
=

∞∑
i=1

Fiφi(x)

s2 + 2ζiwi s + w2
i

(3)

Gvv(s) � Vs(s)

Va(s)
=

∞∑
i=1

αi

s2 + 2ζiwi s + w2
i

(4)

where Y (x, s) is the measured displacement, Vs(s) is the
piezoelectric sensor voltage, and Va(s) is the voltage applied
to a collocated actuator. Fi , and αi represent the lumped
modal and piezoelectric constants applicable to the i th mode
of vibration.

3.1. Piezoelectric modelling

Piezoelectric crystals have a three-dimensional structure,
i.e. crystal deformation occurs in three dimensions. Practical
mechanical applications require the effect in one or two dimen-
sions only. This can be achieved by manufacturing piezoelec-
tric patches with large length and width to thickness ratios.

PZTs behave electrically like a capacitor and mechanically
like a stiff spring [20]. An equivalent electrical model has been
presented [2, 21–23], and is widely used in the literature. The
model, shown in figure 5, consists of a strain-dependent voltage
source and series capacitor.

3.2. Modelling the presence of a shunt circuit

Consider figures 5 and 6 where a piezoelectric patch is shunted
by an impedance Z . The current–voltage relationship can be
represented in the Laplace domain as

Vz(s) = Iz(s)Z(s) (5)

where Vz(s) is the voltage across the impedance and Iz(s) is
the current flowing through the impedance. Using Kirchhoff’s
voltage law on the circuit shown in figure 5 we obtain

Vz(s) = Vp(s) − 1

Cps
Iz(s) (6)

where Vp is the voltage induced by the electromechanical
coupling effect [2] and Cp represents the capacitance of the

V (s)

Actuator

Shunt
PZT

Z(s)

Impedance

F(x,s)

Y(x,s)

a

V (s)z

I  (s)z

Figure 6. Structural input/outputs.

shunting layer. Combining (5) and (6) we obtain

Vz(s) = Z(s)
1

Cps + Z(s)
Vp(s) (7)

or

Vz(s) = Cps Z(s)

1 + Cps Z(s)
Vp(s). (8)

Notice that when Z = ∞, i.e. open-circuit, we have

Z = ∞ ⇒ Vz(s) � Vp(s) = Gvv(s)Va(s). (9)

However, if the circuit is shunted by a finite impedance Z , by
linearity, we may write

Vp(s) = Gvv(s)Va(s) − Gvv(s)Vz(s) s.t. Z �= ∞, 0.

(10)
The above equations (9) and (10) are reported in state-
space form [24] as the sensing and actuator equations. By
substituting (7) into (10),

Vp(s) = Gvv(s)Va(s) − Gvv(s)
Z(s)

1
Cps + Z(s)

Vp(s). (11)

Then by rearranging we find the shunt damped transfer function

Vp(s)

Va(s)
= Gvv(s)

1 + Gvv(s)K (s)
(12)

where

K (s) = Z(s)

Z(s) + 1
Cp s

. (13)

Note that Vp(s) is dynamically equivalent to Vs(s) (i.e. the
open-circuit voltage). We can rewrite the shunt damped or
closed loop transfer functions as

G̃vv(s) � Vs(s)

Va(s)
= Gvv(s)

1 + Gvv(s)K (s)
(14)

and

G̃ yv(x, s) � Y (x, s)

Va(s)
= G yv(x, s)

1 + Gvv(s)K (s)
. (15)

From equations (14) and (15) we observe that shunt
damping is equivalent to a negative feedback control strategy
parameterized in Z .
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Using a similar procedure and the principle of
superposition, the effect of a generally distributed disturbance
force can be included:

Vs(s) = Gv f (s)F(x, s)

1 + K (s)Gvv(s)
+

Gvv(s)Vin(s)

1 + K (s)Gvv(s)
(16)

Y (x, s) = G y f (x, s)F(x, s)

1 + K (s)Gvv(s)
+

G yv(x, s)Vin(s)

1 + K (s)Gvv(s)
. (17)

4. Adaptive shunt damping

Before service, shunt circuits are tuned to the structural
resonance frequencies of interest. To maintain some kind
of optimal performance, we introduce a technique for online
tuning of the component values. This technique utilizes the
synthetic impedance along with time varying transfer functions
to alter the parameters of a shunt circuit in real time.

4.1. System schematic

We will first derive the damped system transfer function from
an applied actuator voltage to the measured output Vz . From
section 3.2 we have

Vp(s) = Gvv(s)Va(s) − Gvv(s)Vz(s) s.t. Z �= ∞, 0.

(18)

Vz(s) = Cps Z(s)

1 + Cps Z(s)
Vp(s). (19)

By rearranging (19),

Vp(s) = 1 + Cps Z(s)

Cps Z(s)
Vz(s) (20)

and substituting into (18), the internal variable Vp(s) can be
eliminated to find the damped system transfer function

Vz(s)

Va(s)
= K (s)Gvv(s)

1 + K (s)Gvv(s)
(21)

where

K (s) = Cps Z(s)

1 + Cps Z(s)
. (22)

Using a similar procedure and the principle of
superposition the effect of a generally distributed disturbance
force F(x, s) can be included:

Vz(s) = K (s)Gv f (s)F(x, s)

1 + K (s)Gvv(s)
+

K (s)Gvv(s)Va(s)

1 + K (s)Gvv(s)
. (23)

Note that the output Vz(s) offers little information about
the performance of the controller. Traditionally, designers
seek to minimize the output magnitude resulting from some
disturbance profile. In this case the controller is performing
well when there is a lightly damped electrical resonance
between the impedance and the PZT at the resonance
frequencies. Hence a large measured output can signify a large
reduction in structural vibration.

A useful performance signal is the displacement at a
point or the equivalent sensor voltage Vp . Both of these
quantities are dynamically related to the measured output Vz

but are parameterized in terms of the impedance Z(s), for

Gvv(s)V  (s)

1

F(x,s)

a

θ

Gyv (s)

sCpZ(s)

Gvv(s)

Vz(s)

sCpZ(s)

Vp(s)
Parameter
   Update

Figure 7. Schematic block diagram of the adaptive shunt damped
system.

example (20). This means that, to implement an adaptive
piezoelectric shunt damping system, we need to synthesize the
impedance Z(s) twice: firstly to implement the shunt damping
circuit, and secondly to reconstruct the performance signal Vp .
A schematic block diagram is shown in figure 7 where the
broken line represents the damped system boundary.

4.2. Comparison to existing adaptive frameworks

Consider the adaptive feedback configuration shown in
figure 7. This bears little resemblance to conventional LMS
based feedback control systems [25] for the following reasons:

• The feedback path is not affine in the manipulated transfer
function Z(s, θ).

• The transfer function Z(s, θ) is rigidly parameterized and
spans only a small subset of Gn

s , the set of all stable
transfer functions of degree n. This is because Z(s, θ)

implements a passive circuit of fixed structure. Although
this restriction complicates the performance surface2, it
also guarantees closed loop stability [26] and involves
fewer optimization arguments.

• The secondary path is parameterized in terms of θ and the
manipulated transfer function Z(s, θ).

In summary, by using a controller of fixed structure, we
have retained the known benefits of shunt damping, but have
complicated the analysis. A simple parameterization and
update algorithm will now be presented.

4.3. Impedance parameterization

Consider the current blocking multi-mode shunt circuit shown
in figure 2. This circuit can be parameterized in terms of the
branch resistances and resonance frequencies. Unfortunately
each branch is not only parameterized in terms of its own

2 As opposed to the performance surfaces discussed in [25] that have certain
geometric properties, such as convexity. These properties can be exploited to
facilitate simplified convergence analysis and parameter optimization.
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Figure 8. Admittance block diagram of a series two-mode shunt
damping circuit.

resonance frequency but also the resonance frequencies of
other branches (due to the current blockers). The result is
an overly complicated expression for each inductor in terms
of the desired branch frequencies and can be simplified by
explicitly parameterizing the current blocking network and
using the results of [8] to generate an equivalent block diagram
that can be implemented in real time. Figure 8 shows3Y (s), the
admittance of a series configuration two-mode shunt damping
circuit, explicitly broken up into each R–L branch resonance
pair and L–C current blocker. The relationship between the
parameter vector θ and the component values is shown in
equation (1):

θ = [ω1 ω2 · · · ωNω
]. (24)

Alternatively, if a current flowing configuration is to be
employed, the components and admittance of each branch
can be easily parameterized in terms of the circuit’s target
resonance frequencies [1, 14]. In this case the total admittance
of the circuit is simply the sum of a number of second-order
admittances.

4.4. Performance evaluation

Conventional adaptive feedback control architectures gener-
ally make use of a synthesized reference signal to estimate the
performance of the controller [25]. In this case, an estimate
of the nominal sensitivity function Y (jω)

Do(jω)
is available, where

Y (s) is the system output and Do(s) is the synthesized distur-
bance. Currently, for the architecture shown in figure 7, there
is no such method for obtaining an estimate of the disturbance.
The difficulty is due to the parameterization of the secondary
path in the unknown plant we are trying to control. It may be
possible to estimate the unknown dynamics of the secondary
path on-line (as in [27]), but this is considered an impractical
approach to the problem.

Another technique for evaluating the performance of the
controller is to estimate certain statistical properties of the
disturbance, and use only the system output as a reference.
For example, consider some transfer function G(s) with output
Y (s), excited by u(t), a stationary random process with
constant power spectral density α. The RMS value of the

3 Y (s) is the admittance used to implement Z(s) in the synthetic impedance.
Refer to section 2.4.

output and the H2 norm of the system can be computed using
the following relations:

SY (ω) = |G(jω)|2SU (ω) (25)

E{y(t)2} =
∫ ∞

−∞
y2(t) dt (26)

= 1

2π

∫ ∞

−∞
SY (ω) dω (27)

‖G(jω)‖2
2 = 1

2π

∫ ∞

−∞
|G(jω)|2 dω (28)

= 1

2π

∫ ∞

−∞
SY (ω)

SU (ω)
dω. (29)

For our example system, the quantity
∫ ∞
−∞ SY (ω) dω is

directly proportional to ||G(jω)||22 and E{y(t)2}.

4.4.1. The performance function. Two performance
functions will be presented: the RMS strain V strain (θ), and
the ratio of RMS strain to RMS shunt voltage V ratio(θ).
The former is the obvious choice but is prone to errors due
to a dependence on the power of the disturbance. The
latter is an approximate method for minimizing the RMS
strain, but achieves a degree of isolation from the stochastic
characteristics of the disturbance.

RMS strain. The objective will be to minimize E{Vp(t)2},
i.e. to minimize the RMS strain at the PZT (Vp(t) is
dynamically proportional to the strain under the piezoelectric
patch). The signal Vp(t) can be synthesized in real time from
the shunt voltage (20) as discussed in section 4.1:

θ∗ = arg min
θ∈�Nω

V strain (θ) (30)

= arg min
θ∈�Nω

E{V 2
p (t)}. (31)

The performance function V strain (θ) is approximated by its
discrete time equivalent:

V strain
k (θ) = 1

N

(k+1)N−1∑
i=kN

V 2
p (i Ts) (32)

where Ts is the sampling interval and N is the number of
samples in each kth record interval. The corresponding closed
loop system norm interpretation is

θ∗ = arg min
θ∈�Nω

‖G(jω, θ)‖2
2.W (ω) (33)

= arg min
θ∈�Nω

1

2π

∫ ∞

−∞
W (ω)|G(jω, θ)|2 dω (34)

where in this case, G(jω, θ) is the closed loop transfer function
from disturbance to Vp , and W (ω) is a weighting function equal
to SU (ω).

The disturbance signal must be stationary so that
the performance estimates Vk(θ), Vk+1(θ), . . . , Vk+M (θ) are
consistent and unbiased. We refer to the term ‘stationary’ as
‘wide-sense stationary’ [28] relative to N , e.g. stationary over
the interval Ts[k N(k + M)N − 1].

If Vp is stationary, Vk(θ) can be shown to be a consistent
and unbiased estimator over a single record interval. The
requirement for stationarity is extended to M such intervals
so that there will be at least M consecutive estimates of V (θ)

with similar disturbance. In practice, the encountered size of
M will define the amount of noise and bias in the gradient
estimates.
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Figure 9. Disturbance noise model.
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Figure 10. The performance function plotted against the second
mode resonance frequency. The excitation is a zero mean stationary
random process.

RMS ratio. If the disturbance is not sufficiently stationary,
the above performance function will not provide a useful
estimate of the damping performance. Consider the model
of a disturbance shown in figure 9, where nk is a white noise
source, Hn(jω) is a noise filter, and α is a slowly time varying
gain. Although the signal u(t) is not stationary, if the gain
α varies sufficiently slowly, the power spectral density of
adjacent record intervals will differ only by a constant gain
α2. The aim is to define a performance function independent
of α2.

Consider the performance function (35):

V ratio
k (θ) =

∑(k+1)N−1
i=kN V 2

p (i Ts)∑(k+1)N−1
i=kN V 2

R(i Ts)
(35)

where VR is the voltage across the shunting resistor. As both of
the impedance structures, current blocking and current flowing,
approximate a series inductor and resistor around a specific
resonance frequency, we can estimate the signal VR for each
of the shunt branches by filtering the shunt voltage

VR(s) = Vz(s)
R

Ls + R
(36)

where L is the inductor value currently being implemented.
For multiple modes the performance function can be
decomposed into its modal components by appropriately pre-
filtering Vz . Intuitively, by minimizing V ratio

k (θ) we are
minimizing the RMS strain and maximizing the voltage across
the shunting resistance. Maximizing the voltage across a shunt
resistance will maximize the amount of dissipated energy. For
any given disturbance, both the numerator and denominator are
linear in α2 and hence the performance function is independent
of the excitation level α.
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Figure 11. The RMS ratio performance function.
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Figure 12. The RMS value of VR plotted against frequency.

4.4.2. Typical performance curves. Because of the analytic
complexity of the performance functions, little is known
of their properties. By simulation, both are insensitive to
reasonable changes in damping ratio, but as expected, are
strong functions of the branch resonance frequencies.

RMS strain. The surface is definitely not convex but appears
to have a single global minima. The performance function
is plotted against the resonance frequency of the second
mode in figure 10. Over a certain modal frequency range
the contribution from adjacent modes is small, allowing
the performance function to be uncoupled into its modal
components.

RMS ratio. The RMS ratio performance function is plotted
in figure 11. As with the previous case, the function is non-
convex but appears to have a single global minima. It should
be noted that the minima of this function does not occur exactly
at the minimum of RMS strain (in our case the approximation
is correct to 0.01 Hz).

Hollkamp [5], suggests a performance function similar
to (35) with the following exceptions: Vp is measured directly
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Figure 13. The RMS value of Vz plotted against frequency.

from an additional piezoelectric patch, and the denominator
is the RMS value of Vz . Figures 12 and 13 compare the
RMS values of VR and Vz . It can be seen that maximizing
the RMS value of VR is much more desirable than performing
the same operation on Vz . These simulations were performed
using damping ratios of ς = 0.005 for each mode. As
the damping ratios are increased, the approximation made by
Hollkamp becomes more accurate, i.e. arg maxθ∈�Nω E{V 2

z (t)}
approaches arg maxθ∈�Nω E{V 2

r (t)} as the structural damping
ratios are increased.

4.4.3. Convergence. For some desired variance in Vk(θ) it
is desirable to estimate the required length of the averaging
interval. A large conservative N will result in a small variance
but slow update rate. The opposite is true for an insufficiently
small N , fast update but large variance.

We will consider only V strain
k (θ): the analysis is easily

extended to V ratio
k (θ) by applying the technique to both the

numerator and denominator. From [29]

Var Vk(θ) = E{V 2
k (θ)} − Vk(θ)

2
(37)

Var Vk(θ) ≈ 4

(N Ts)2

∫ N Ts

0
(N Ts − τ)R2

vp
(τ) dτ (38)

where
Rvp (τ) ≈ F−1{|Gvv(jω)|2SU (ω)}. (39)

To be precise, the autocorrelation Rvp (τ) is actually dependant
on the closed loop transfer function G̃vv(jω), not Gvv(jω)

as shown in (39). For our purposes this (conservative)
approximation is acceptable. Intuitively, equation (38) reveals
that, as the structure becomes more resonant, we have to
gather more data to maintain a constant variance on our
performance function. As Gvv(jω) becomes more resonant,
the autocorrelation Rvp (τ) is spread over τ . Equation (38)
contains a convolution in R2

vp
(τ), so the magnitude of the

variance is increased.

Example: white noise disturbance. Consider a white
disturbance applied to the actuator:

SVa(ω) = 1 (40)
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Figure 14. The variance of Vk(θ) plotted against the averaging
length N .

–2 –1 –0.5 0.5–1.5 1.50 1 2
0

1

2

3

4

5

6

x 10
5

Time (s)

R
xx

2

Figure 15. Autocorrelation function.

SVp(ω) = |Gvv(jω)|2 (41)

R2
vp

(τ) = (F−1{SVp(ω)})2. (42)

Rvp (τ) is easily evaluated numerically using the inverse
discrete Fourier transform. The squared autocorrelation
function is plotted in figure 15. Equation (38) can now be
evaluated numerically for various values of N . Considering
that Rvp (0) = 314.14, a reasonable value for the variance of
Vk(θ) is 10. The coordinate (N = 34 700, Var Vk(θ) = 9.99)
is selected from figure 14, which corresponds to an interval of
approximately 35 s.

4.4.4. Practical implementation. Large averaging lengths
can cause problems in real time implementation as (32)
requires a large buffer size and involves a heavy computational
load at the end of each interval. Given a platform with high
numerical accuracy (i.e. IEEE floating point arithmetic) a
recursive alternative to (32) can be derived.
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Table 1. Experimental beam parameters.

Length, L (m) 0.6
Width, wb (m) 0.05
Thickness, hb (m) 0.003
Young’s modulus, Eb (109 N m−2) 65
Density, ρ (kg m−2) 2650

We begin with the N term approximation:

E{V 2
p }N = 1

N

N∑
i=1

V 2
p (i Ts) (43)

which can be continued to the N + 1 term approximation:

E{V 2
p }N+1 = 1

N + 1

N+1∑
i=1

V 2
p (i Ts) (44)

E{V 2
p }N+1 = 1

N + 1

N∑
i=1

V 2
p (i Ts) +

1

N + 1
V 2

p ((N + 1)Ts).

(45)
Noting that

N E{V 2
p }N =

N∑
i=1

V 2
p (i Ts) (46)

equation (45) becomes

E{V 2
p }N+1 = N

N + 1
E{V 2

p } +
1

N + 1
V 2

p ((N + 1)Ts). (47)

By again considering the N term approximation we arrive at
the solution

E{V 2
p }N = N − 1

N
E{V 2

p }N−1 +
1

N
V 2

p (N Ts). (48)

4.5. Searching the performance surface

Given that an estimate of the performance function is available,
the parameter vector θ can be updated using a gradient search

Table 2. PZT properties.

Length (m) 0.070
Charge constant, d31 (m V−1) −210 × 10−12

Voltage constant, g31 (V m N−1) −11.5 × 10−3

Coupling coefficient, k31 0.340
Capacitance, Cp (µF) 0.105
Width, wswa (m) 0.025
Thickness, hs ha (10−3 m) 0.25
Young’s modulus, Es Ea (109 N m−2) 63
Distance from beam end (m) 0.05

algorithm. Newton’s method [27] is selected for its fast
convergence:

θk+1 = V (θk)(θk − θk−1)

V (θk) − V (θk−1)
. (49)

For practical reasons the step size is artificially limited.
Although this slows convergence, it provides needed
robustness to gradient errors and numerical sensitivity at the
minima. The real time implementation of the limited Newton
search algorithm also contains a small artificial bias to maintain
the algorithm if θk − θk−1 ≈ 0.

5. Experimental results

5.1. Experimental set-up

The experimental beam is a uniform aluminum bar with
rectangular cross section and experimentally pinned boundary
conditions at both ends. A pair of piezoelectric ceramic patches
(PIC151) are attached symmetrically to either side of the beam
surface. One patch is used as an actuator and the other as a
shunting layer. Physical parameters of the experimental beam
and PZTs are summarized in tables 1 and 2. Note that the
location of the piezoelectric patch offers little control authority
over the first mode. In this work, the structure’s second and
third modes are targeted for reduction.

The displacement and voltage frequency responses are
measured using a Polytec laser vibrometer (PSV-300) and a
HP spectrum analyzer (35670A).

The current source and buffer/amplifiers required for
the synthetic impedance are constructed from Burr Brown
OPA445 opamps. These opamps have a supply voltage limit
of ±45 V. If necessary, the circuit can be constructed from high
voltage opamps with supplies of greater than ±400 V.

5.2. Damping performance

To verify the function of the adaptive impedance a poorly tuned
shunt circuit is applied to the experimental beam. This is
equivalent to a large step change in the resonance frequencies
of the structure. It is expected that the update algorithm
will iteratively retune the parameters to minimize (32). In
order to perform simulations, a frequency domain subspace
algorithm [30, 31] is employed to obtain a tenth-order
model for the two open-loop system transfer functions
G yv(s)|x=0.17 m and Gvv(s). The excitation is a pseudo-
random signal with fourth-order low pass cutoff at 400 Hz.
The experimental 1000 average power spectrum is plotted in
figure 16.
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Figure 17. Experimental evolution of the second-mode branch
frequency and modal displacement component (x = 0.17).

5.2.1. Performance function: RMS strain. A parameterized
current blocking shunt circuit is applied to the beam. The
evolution of the frequency tuned parameters and the RMS
displacement for each mode is shown in figures 17 and 18. The
corresponding time evolution of the second-mode frequency
response is shown in figure 19.

A method is presented in [9] for finding shunt circuit
component values that minimize the H2 norm of the
displacement transfer function. This method can be used to
find optimal component values that minimize (32). Figure 20
shows the theoretically predicted and experimentally adapted
displacement frequency responses.

5.2.2. Performance function: RMS ratio. A parameterized
current flowing shunt circuit [1, 14] is applied to the beam.
The evolution of the frequency tuned parameters and the
performance component of each mode is shown below in
figures 21 and 22.

Because of the low gradients around the minima of
this performance function, the resonance frequencies tend to
drift slightly after adjustment. The low gradients cause the
differences in consecutive updates of the performance function
to be small over an attributable range of frequencies around
the minima, see figures 21 and 22. Figure 23 shows the initial,
adapted, and misadjusted displacement frequency responses
of the beam. The frequency response (c) corresponds to the
instance of peak misadjustment in the second-mode branch
frequency.
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Figure 18. Experimental evolution of the third-mode branch
frequency and modal displacement component (x = 0.17).

Figure 19. Experimental time evolution of the second-mode
frequency response.

6. Conclusions

The performance of finely tuned piezoelectric shunt damping
systems is extremely sensitive to the resonance frequencies
of the host structure. The adaptive impedance allows us to
retain the desirable characteristics of shunt damping systems,
e.g. robustness, while automating the process of component
tuning. The technique presented requires only a single
patch. An understanding of the underlying feedback structure
has allowed us to synthesize additional signals required for
adaptation. Previously these signals have been obtained from
additional patches or accelerometers.
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Figure 20. Open loop G yv frequency response: (——) measured,
(· · ·) subspace model. Adapted damped frequency response: (——)
measured, (· · ·) simulated.
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frequency and RMS ratio performance function.

Two performance functions have been proposed:

• The RMS strain. By synthesizing the piezoelectric sensor
voltage, it is possible to estimate the RMS strain under the
PZT. This performance function provides reliable tuning
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Figure 22. Experimental evolution of the third-mode branch
frequency and RMS ratio performance function.

only if the disturbance is wide sense stationary. By
simulation, the performance function appears to have a
single global minima and can be minimized using the
Newton search algorithm.

• The RMS ratio. Minimizing this performance function
has the effect of minimizing the synthesized piezoelectric
sensor voltage and maximizing the synthesized voltage
across the shunting resistances. By simulation, it has a
single global minima very close to the minima of the RMS
strain. This function is independent of slow variations in
the disturbance magnitude.

Experimental results show reliable estimation of the
performance functions, optimal tuning of the circuit
parameters, and satisfactory misadjustment. The synthetic
impedance provides a near-ideal means for implementing the
shunt circuits: the second and third modes are reduced in
magnitude by up to 22 and 19 dB. Although both shunt circuit
configurations (current blocking and current flowing) provide
similar performance, the current flowing technique requires
a lower-order admittance transfer function, and is easily
parameterized in terms of the branch resonance frequencies.
These reasons make the current flowing technique an ideal
candidate for damping a large number of modes, as performed
in [1].

Future work on the proposed adaptive scheme may involve
a full analysis of the convergence properties. An attempt could
also be made to estimate the disturbance, which appears to
be difficult as the secondary path is a strong function of the
parameter vector θ . It may also be possible, using small
samples of open-loop operation, to estimate the resonance
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Figure 23. The measured transfer functions from applied voltage to
structural displacement (x = 0.17 m). (a) Untuned, (b) at the
minima, (c) peak misadjustment.

frequencies and damping ratios of each mode. If so, the
optimal circuit parameters may be estimated in a single update
period.

References

[1] Behrens S and Moheimani S O R 2002 Current flowing
multiple mode piezoelectric shunt dampener Proc. SPIE
Smart Materials and Structures (San Diego, CA, March
2002); Paper No 4697-24

[2] Hagood N W and Von Flotow A 1991 Damping of structural
vibrations with piezoelectric materials and passive electrical
networks J. Sound Vib. 146 243–68

[3] Wu S Y 1998 Method for multiple mode shunt damping of
structural vibration using a single PZT transducer Proc.
SPIE Smart Structures and Materials, Smart Structures and
Intelligent Systems (Huntington Beach, CA, March 1998);
SPIE 3327 159–68

[4] Smith K E, Maly J R and Johnson C D 1991 Smart tuned mass
dampers Proc. ADPA/AIAA/ASME/SPIE Conf. on Active
Materials and Adaptive Structures (Alexandria, VA)
pp 19–22

[5] Hollkamp J J and Starchville T F Jr 1994 A self-tuning
piezoelectric vibration absorber J. Intell. Mater. Syst. Struct.
5 559–65

[6] Davis C L and Lesieutre G A 2000 An actively tuned
solid-state vibration absorber using capacitive shunting of
piezoelectric stiffness J. Sound Vib. 232 601–17

[7] Fleming A J, Behrens S and Moheimani S O R 2000 Synthetic
impedance for implementation of piezoelectric
shunt-damping circuits Electron. Lett. 36 1525–6

[8] Fleming A J, Behrens S and Moheimani S 2000 Innovations in
piezoelectric shunt damping Proc. SPIE Symp. on Smart
Materials and MEM’s, Smart Structures Amd Devices
(Melbourne, Australia, Dec. 2000); SPIE 4326

[9] Fleming A J, Behrens S and Moheimani S O R 2002
Optimization and implementation of multi-mode
piezoelectric shunt damping systems IEEE/ASME Trans.
Mechatron. 7 87–94

[10] Hagood N W and Crawley E F 1991 Experimental
investigation of passive enhancement of damping for space
structures J. Guid. Control Dyn. 14 1100–9

[11] Wu S Y 1996 Piezoelectric shunts with parallel R–L circuit
for structural damping and vibration control Proc. SPIE
Smart Structures and Materials, Passive Damping and
Isolation (March 1996); SPIE 2720 259–69

[12] Wu S Y 1999 Multiple PZT transducers implemented with
multiple-mode piezoelectric shunting for passive vibration
damping Proc. SPIE Smart Structures and Materials,
Passive Damping and Isolation (Huntington Beach, CA,
March 1999); SPIE 672 112–22

[13] Wu S Y and Bicos A S 1997 Structural vibration damping
experiments using improved piezoelectric shunts Proc.
SPIE Smart Structures and Materials, Passive Damping and
Isolation (March 1997); SPIE 3045 40–50

[14] Behrens S, Moheimani S O R and Fleming A J 2002 Multiple
mode passive piezoelectric shunt dampener Proc. IFAC
Mechatronics (Berkeley, CA, Dec. 2002)

[15] Hollkamp J J 1994 Multimodal passive vibration suppression
with piezoelectric materials and resonant shunts J. Intell.
Mater. Syst. Struct. 5 49–56

[16] Riordan R H S 1967 Simulated inductors using differential
amplifiers Electron. Lett. 3 50–1

[17] Fuller C R, Elliott S J and Nelson P A 1996 Active Control of
Vibration (New York: Academic)

[18] Ljung L 1999 System Identification: Theory for the User
(Englewood Cliffs, NJ: Prentice-Hall)

[19] Meirovitch L 1996 Elements of Vibration Analysis 2nd edn
(Sydney: McGraw-Hill)

[20] Janocha H 1999 Actuators in adaptronics Adaptronics and
Smart Structures ed B Clephas (Berlin: Springer) ch 6

[21] Dosch J J, Inman D J and Garcia E 1992 A self-sensing
piezoelectric actuator for collocated control J. Intell. Mater.
Syst. Struct. 3 166–85

[22] Edberg D L, Bicos A S, Fuller C M, Tracy J J and Fechter J S
1992 Theoretical and experimental studies of a truss
incorporating active members J. Intell. Mater. Syst. Struct. 3
333–47

[23] Won C C 1995 Piezoelectric transformer J. Guid. Control Dyn.
18 96–101

[24] Hagood N W, Chung W H and Flowtow A v 1990 Modelling
of piezoelectric actuator dynamics for active structural
control J. Intell. Mater. Syst. Struct. 1 327–54

[25] Kuo S M and Morgan D R 1996 Active Noise Control Systems
(New York: Wiley)

[26] Moheimani S O R, Fleming A J and Behrens S 2002 On the
feedback structure of wideband piezoelectric shunt damping
systems Proc. IFAC World Congr. (Barcelona, Spain, July
2002)

47



A J Fleming and S O R Moheimani

[27] Widrow B and Stearns S D 1985 Adaptive Signal Processing
(Signal Processing Series) (Englewood Cliffs, NJ:
Prentice-Hall)

[28] Brown R G and Hwang P 1997 Introduction to Random Signals
and Applied Kalman Filtering (New York: Wiley) ch 2.4

[29] Bendat J S and Piersol A G 1966 Measurement and Analysis of
Random Data (New York: Wiley)

[30] Mckelvy T, Akcay H and Ljung L 1996 Subspace based
multivariable system identification from frequency
response data IEEE Trans. Autom. Control
41 960–78

[31] McKelvey T, Fleming A J and Moheimani S O R 2002
Subspace based system identification for an acoustic
enclosure ASME J. Vib. Acoust. 124 414–19

48


