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Spatial System Identification of a Simply Supported
Beam and a Trapezoidal Cantilever Plate
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Abstract—Dynamic models of structural and acoustic systems
are usually obtained by means of either modal analysis or finite el-
ement modeling. Detrimentally, both techniques rely on a compre-
hensive knowledge of the system’s physical properties. As a con-
sequence, experimental data and a nonlinear optimization are re-
quired to refine the model. For the purpose of control, system iden-
tification is often employed to estimate the dynamics from distur-
bance and command inputs to set of outputs. Such discretization
of a spatially distributed system places unknown weightings on the
control objective, in many cases, contradicting the original goal of
optimal control. This paper introduces a frequency domain system
identification technique aimed at obtaining spatially continuous
models for a class of distributed parameter systems. The technique
is demonstrated by identifying a simply supported beam and a
trapezoidal cantilever plate, both with bonded piezoelectric trans-
ducers. The plate’s dimensions are based on the scaled side eleva-
tion of a McDonnell Douglas FA-18 vertical stabilizer.

Index Terms—Frequency domain, spatial control, spatial system
identification, spatially distributed systems, structural modeling.

I. INTRODUCTION

I N THE ANALYSIS and control of distributed parameter sys-
tems, it is of great benefit to possess a spatial model. That is,

a model that describes system dynamics over an entire spatial
domain. This paper is concerned with the modeling and identi-
fication for a class of distributed parameter systems. Such sys-
tems include but are not limited to: flexible beams and plates,
compound linear structures, slewing structures, and acoustic en-
closures.

The motivation for finding such a model lies in both the fields
of analysis and synthesis. During analysis, the user may simply
wish to observe the mode shapes of the structure, or in a more
complete utilization of the model, mathematically estimate the
spatial feedback control performance of a system utilizing dis-
crete sensors, actuators, and control objectives. For example,
consider [1], where a standard controller [2], [3] is de-
signed to minimize vibration at a single point on a piezoelectric
laminate simply supported beam. A spatial model is required to
analyze the overall performance of such a controller. The fact
that a point-wise controller is shown to provide good local per-
formance but poor spatial performance leads us to the primary
application of spatial models—spatial controller synthesis. A
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number of standard control synthesis variants have emerged that
address the control design of spatially distributed systems with
discrete sensors and actuators. Recent examples include: spatial
feedforward control [4], spatial resonant control [5], spatial
control [6], and spatial control [1].

The modal analysis procedure has been used extensively
throughout the literature for obtaining spatial models of
structural [7], [8] and acoustic systems [9]. Its major disadvan-
tage being the requirement for detailed physical information
regarding the sensors, actuators, and underlying mechanical
system. Practical application typically involves the use of
experimental data and a nonlinear optimization to identify
unknown parameters such as modal amplitudes, resonance fre-
quencies, and damping ratios. Even in this case, the descriptive
partial differential equations must still be solved (as functions
of the unknown parameters) to obtain the mode shapes. This
may be difficult or impossible for realistic structural or acoustic
systems with complicated boundary conditions.

Another popular technique for obtaining spatial models is
that of finite-element (FE) analysis [10]. This is an approximate
method that results in high-order spatially discrete models. If
the dynamics of sensors and actuators are known, the integrated
model can be cast in a state space form to facilitate control de-
sign and analysis [11]. The approximate nature of FE modeling
eliminates the need for solving descriptive partial differential
equations. Detailed information regarding the structures mate-
rial properties and boundary conditions is still required. As with
the modal analysis procedure, FE models are usually tuned with
experimental data [12].

A considerable literature has also developed on the topic of
experimental modal analysis, (see [13] for a compilation of such
methods). These methods can be predominantly described as
frequency-domain transfer function methods. The system is as-
sumed to consist solely of parallel second-order resonant sec-
tions. Sensor, actuator, and additional nonmodal dynamics are
neglected. One of the most popular methods, widely used in
commercial frequency domain modal analysis packages, is the
rational fraction polynomial method [13]. As a transfer func-
tion method, the model is poorly conditioned, incorrectly de-
scribes the systems zero dynamics [14], and neglects nonmodal
dynamics. In addition, all of the mentioned experimental modal
analysis techniques neglect the fundamental limitations in spa-
tial sampling, i.e., reconstructed mode shapes can be distorted
due to violation of the Nyquist criterion in one and two dimen-
sions.

This paper introduces an efficient and correct method for
identifying the above class of systems directly from measured
frequency response data.
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We begin by introducing a model structure for one- and
two-dimensional systems. The structure is parameterized in
terms of the shared dynamics, mode shapes, and feed-through
function. In Section III, the spatial sampling limitations for
linear and spline reconstruction is discussed. Sections IV and
V, deal with the identification of shared system dynamics and
spatial functions. Results from the identification of a simply
supported beam and trapezoidal cantilever plate are presented
in Section VI. Conclusions are drawn in Section VII.

II. M ODELING

The Lagrangian/modal expansion, or Ritz–Kantorovitch
method [7] is commonly used to express the spatial deflection
of a distributed parameter system as an infinite summation of
modes. The modes are a product of two functions, one of the
spatial coordinate vector, and another of the temporal

(1)

where the s are the modal displacements, the s are
the system eigenfunctions, is the displacement at a point,
and is a coordinate vector on the spatial domain. The
mode shapes must form a complete coordinate basis for
the system, satisfy the geometric boundary conditions, and for
analytic analysis be differentiable over the spatial domain to at
least the degree required by the describing partial differential
equations. Many practical systems also obey certain orthogo-
nality conditions.

As discussed in [7], the model (1) can also be expressed in
the frequency domain

(2)

where is the transfer function from an external force, or
for the system considered in this paper, the applied piezoelectric
voltage to the displacement at a point,

For practical reasons, (2) is often truncated to include only a
certain number of modes that approximate the response over a
limited bandwidth. [14] introduces a model reduction technique
for systems that satisfy certain modal orthogonality conditions.
The following truncated model structure is proposed:

(3)

where (referring to [14]) the terms are found by minimizing
the spatial norm of the resulting error system ( is the re-
tained bandwidth)

(4)

We define the model of a general single input spatially dis-
tributed system as

(5)

where is the concatenation of all nondistributed transfer
functions, is the th mode shape, and is the feed-
through function included to compensate for all higher order
truncated contributions to zero dynamics. The filter is
used to model the additional dynamics of sensors, actuators, and
for example, antialiasing filters. In this work is not iden-
tified automatically.

The objective will be to identify the parameters
from a number of mea-

sured spatially distributed point-wise frequency responses

(6)

where is the number of measured spatial locations and
is the number of measured frequency points per location.

The system (5) has a corresponding state-space representa-
tion

(7)

where ,
, is a scalar function of ,

is the number of modes to be identified, and

...

(8)

III. SPATIAL SAMPLING

Considering the model structure (5), the spatial functions
and must be reconstructed from their identified

samples. For a uniformly sampled one-dimensional system, the
samples of our continuous functions and are

(9)

where the scalar specifically denotes a one-dimensional
system, and is the spatial sampling interval.

There are a number of options available for reconstructing
the continuous functions, two of which are, traditional linear
reconstruction, and spline reconstruction. The following Sec-
tions III-A and B, examine the application of each technique to
the two cases of band-limited and nonband-limited functions.
The aim is to quantify the expected mean square difference be-
tween the original continuous function and its corresponding re-
construction. This will allow us to evaluate the required spatial
sampling interval as a function of the permissible error. An ex-
ample of this procedure is performed for a simply supported
beam in Section III-C.
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Fig. 1. Discrete magnitude spectra of an oversampled band-limited function.

A. Whittaker-Shannon Reconstruction

The discrete magnitude spectra of a band limited spatial func-
tion is shown in Fig. 1. To satisfy the Nyquist sampling cri-
terion, the spatial sampling frequency (in ) must
be greater than twice the highest frequency component of
[15]. Shannon’s reconstruction theorem states that can be
reconstructed from its samples

(10)

Theoretically, a perfect reconstruction is possible, however in
practice, there are two significant sources of degradation.

• For finite time signals, truncating the summation (10) in-
troduces a systematictruncation error. Expressions for
bounding the truncation error and references to relevant
work can be found in [15].

• In many practical situations, the samples will also contain
an additive stochastic disturbance. An expression for the
mean integral squared reconstruction error (MISE) expe-
rienced when recovering a signal from its corrupted sam-
ples can be found in [16]. It is also shown that Shannon re-
construction is not a consistent estimator for band-limited
signals recovered from noisy samples, i.e., as the number
of signal samples approaches, the MISE does not ap-
proach zero, in fact the error diverges and also approaches

. Convergent estimators for such scenarios can be found
in [17] and [18].

In general, the spatial function will not be band-limited.
Examples include, the mode shapes of a cantilever beam [8],
and the feed-through function for a simply supported beam [14].
Since the samples are obtained indirectly from point-wise fre-
quency response data, no form of low pass filtering is possible.
The objective of the following will be to quantify the under-sam-
pling error as a function of the spatial sampling interval.

In their paper reviewing sources of error in linear reconstruc-
tion, Thomas and Liu [19] present an expression for the mean
square reconstruction error as a function of the power spectral
density outside the Nyquist range. The following expression as-
sumes the absence of the optimal low-pass filter, which in our
application, cannot be applied to the continuous signal

(11)

where is the Shannon representation of the sampled
function, is the spatial frequency in radians per meter, and

is the power spectral density of . In the case
where the optimal prefilter can be applied, the right-hand side
of (11) is reduced by one half.

B. Spline Reconstruction

In recent years, splines have been recognized for their use-
fulness in curve and surface fitting problems [20], [21]. A func-
tion can be approximately reconstructed from a spline basis

, with coefficients derived from .

(12)

where are the (finite square summable) spline coeffi-

cients, is the spline reconstruction of , and is
the spline generating function. We will limit our choice of gen-
erating functions to the th degree -splines (of order )

[21]. The condition ensures that is a well-de-
fined subspace of , the set of square integratable functions,
a considerably larger space than the traditional Shannon space
of band limited functions. References [22] and [23] present a
unified sampling theory for a wide class of approximation oper-
ators. In likeness to the Shannon sampling theorem, the optimal
spline reconstruction involves an optimal prefiltering of the con-
tinuous signal before sampling and reconstruction by the chosen
spline basis. The results in this area, including expressions for
the rms error, are summarized in [21]. The technique of quanti-
tative Fourier analysis can be applied to quantify the rms recon-
struction error [24]. The sampling phase averaged error is given
by

(13)

where is defined as the frequency error kernel and
is a function of the interpolant and . Analytic expressions for

have been given for the-splines of order up to 6
[24].

In our application, where there is no access to the continuous
signal, we cannot apply the optimal prefilter nor achieve the op-
timal (least squares) fit by projecting our signal onto the approx-
imation space [21]. Instead, we shall simply perform an inter-
polation. The penalty in doing so is illustrated in Fig. 2, where
the error kernels for spline and Shannon reconstruc-
tion, optimal and interpolation, are shown for . It can
be observed that although the spline interpolant error is glob-
ally greater than that of the projector, within the Nyquist range

the difference is slight. In analogy to Shannon recon-
struction, for frequencies beyond the Nyquist rate, the magni-
tude of the spline interpolant error kernel approaches twice that
of the projector.

The spline basis functions also have some interesting vari-
ational properties. It is well known that interpolation by the
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Fig. 2. Unit sampled, cubic spline error kernals. Optimal (with prefilter) (- -),
interpolation (—). Shannon reconstruction …E(j!j > �) = 1, interpolation
(� � �) E(j!j > �) = 2.

Shannon basis in the presence of effects such as truncation or
additive high-frequency sample noise, tend to result in an overly
“peaky” or oscillatory reconstruction. In contrast, spline inter-
polation (in a certain sense [21], [25]) is the interpolant that os-
cillates the least. The cubic spline is a special case, as it min-
imizes the 2-norm of error second derivative, it possesses the
property of minimum curvature [21]. As this property is also
shared by constrained thin elastic beams and plates, it is natural
to reason that cubic splines may be well suited to approximating
mechanical functions such as the mode shapes of a simply sup-
ported beam.

In the case of noisy samples, we can achieve some degree of
immunity by relaxing the interpolation condition and imposing
a smoothness constraint. For example, for the cubic splines, by
minimizing

(14)

where the second term is a measure of the smoothness. The pa-
rameter is based on the additive noise variance [21].

C. Spatial Sampling of a Simply Supported Beam

This section demonstrates how the results presented in Sec-
tion III-B can be applied to spatial systems. We present an ex-
ample analysis for a simply supported beam. The objective is to
arrive at a point where (11) and (13) can be applied. Both ex-
pressions require only the function’s power spectral density.

1) Mode Shapes:The mode shapes of a simply supported
beam are given by [7]

(15)

where is the material density, is the cross-sectional
area, and is the length of the beam. The spatial spectra of

is impulsive and easily determined

(16)

The highest frequency component of is
, thus, if we were to apply Shannon’s theorem1 to recon-

struct mode shapes of a simply supported beam

(17)

This simple and complete result applies in general to a subclass
of the systems (2). Such systems are characterized by sinusoidal
mode shapes. Examples include uniform beams and strings in
one dimension, plates in two dimensions, and closed acoustic
systems in three dimensions.

2) Feed-Through Function : The feed-through func-
tion can be found analytically for systems of the form (2).

(18)

where is given by (15), and is given by (4). We can
think of (18) as being equivalent to the Fourier series

(19)

where is the period of repetition

(20)
The complex coefficients reveal the spatial Fourier transform
of

(21)

(22)

(23)

(24)

Immediately, by the properties of the Fourier transform, we
learn some characteristics of the feed-through function .

• As verification,
which is knowna priori.

1Neglecting truncation errors.
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and are even functions of [26],
is an odd function of [26].

• Since is purely imaginary, is an odd func-
tion. It is true in general that

[26].
• is periodic with period .

As does not have compact support on the interval
, can not be exactly reconstructed with any

finite number of samples. It is also obvious from (24) that the
spectra of lies completely outside the bandwidth of the
mode shapes, thus dictating the spatial sampling requirements
of the system.

We can now apply (13) to determine the required spatial sam-
pling interval. For a periodic signal , the energy density per
unit frequency is given by [27]

(25)

where is the period, denotes the Fourier transform, and
are the Fourier coefficients of . By making a change of

variables, we can find the power spectral density of

(26)

Hence, from (13), the error in reconstructing from an
th-order spline basis

(27)

(28)

where is the spline reconstruction of . The error
kernel for a cubic spline is plotted together with
the equivalent Shannon kernel in Fig. 2.

We can also apply Parseval’s equality to find the mean square
value of over one period

(29)

We now consider a specific example: the simply supported beam
described in Section VI-A, where three modes are retained for
identification. The feed-through function resulting from an ana-
lytic model [28] is shown in Fig. 3. The rms value of the recon-
struction error ( norm on ) is plotted against the sam-
pling interval in Fig. 4. As the sampling interval increases,
the rms error approaches the rms value of the continuous func-
tion.2 This plot can be used to select a spatial sampling interval
that achieves some error specification on .

2In this analysis we have consideredD(r) =2 L . This arises from the peri-
odic nature of the mode shapes. When we refer to the rms or mean square value
of such signals, we are implicitly referring to the rms or mean-square value over
a single period.

Fig. 3. Analytic feed-through function for the beam described in Section VI-A.

Fig. 4. kD(r)�Q D(r)k rms reconstruction error plotted against the
spatial sampling interval�r. The dashed-dot line indicates the rms value of
the functionD(r).

3) Other Considerations:The above analysis has consid-
ered only a one dimensional system. The Shannon sampling
theorem is easily extended to multi-variate functions [15]. By
using tensor-product basis functions, spline sampling theory is
extended in a similar fashion [21]. Both techniques require an
equidistance sampling grid and are based on the application of
univariate results in each dimension. For irregular sampling and
other complicated reconstructions (e.g., by blending functions
[20], or FE methods [20]) no such results are known.

In Section III-C, the sampling limitations for a simply sup-
ported beam have been derived. Even when the mode shapes
are knowna priori, this analysis can be difficult to perform. For
the practitioner, we offer a rough rule of thumb.

1) Estimate, by means of a similar system or FE analysis,
the highest significant spatial frequency component of the
highest order mode to be identified.

2) Consider the feed-through function . Assume that its
highest significant frequency component is three times
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that estimated in Step 1). (This step is suggested on the
experience of studying and identifying a number of such
systems.)

3) Sample the structure as would be done in practice for a
function with spatial bandwidth derived in Step 2). Taking
into consideration the limited domain of the structure, (al-
lowing for truncation errors), this would normally be from
two to five times the rate suggested by the Nyquist crite-
rion.

IV. I DENTIFYING THE SYSTEM MATRIX

The first step in the identification procedure is to obtain an
estimate for the system matrix whose eigenvalues reveal
the parallel dynamics of each mode. On first inspection, this
problem may appear trivial as the transfer function obtained
from a single frequency response would perform the task.

For spatially distributed systems we must redefine our mea-
sures of model quality and stochastic performance. In essence,
the two main sources of error in the identification arise from
measurement noise and slight changes in system dynamics over
the spatial domain. Intuitively, we would like to distribute the
resulting model error in a similar, equally distributed fashion.
The task of quantifying such errors is the subject of current re-
search.

The problem can be cast as a multi-input–multi-output
(MIMO) system identification problem where each point is
regarded as a single output. In the case of a two-dimensional
system, where a large number of point-wise frequency response
measurements are available, it may be necessary to limit the
data space by selecting only a subset of the available points. The
virtual systemas seen by the system identification algorithm
has a single input and outputs, where may be equal
to or less than if the data set is to be truncated. The
frequency response of such a system is similar to (6) and can
be expressed as

(30)

For generality, we treat the identification algorithm as a gen-
eral matrix function of the data, i.e., .

Methods that identify state-space models by exploiting geo-
metric properties of the input and output sequences are com-
monly known as subspace methods. These methods have re-
ceived considerable attention in the literature, (see [29] for a
survey of time-domain methods). The reader is referred to [30]
and [31] for a full discussion of frequency domain techniques.
Frequency domain subspace-based algorithms have proven par-
ticularly useful for identifying high-order multi-variable reso-
nant systems [32].

V. IDENTIFYING THE MODE SHAPES

AND FEED-THROUGH FUNCTION

Samples of the spatial modal and feed-through functions are
first identified from the frequency response data and system ma-
trix. The continuous functions are then approximated by linear
or spline reconstruction.

A. Identifying the Samples

Samples of the spatial functions will now be identified from
the available frequency response data.

Definitions: The spatial response matrix

...
...

...

(31)
The dynamic response matrix

...
...

... (32)

where is the response of the orderedth-mode dy-
namics found from the system matrix.

(33)

The modal function matrix

...
...

... (34)

The feed-through vector

(35)

We can form the following complex matrix equation:

(36)

Equation (36) has a unique least squares solution if ,
this condition is automatically satisfied if the restrictions for the
subspace estimation in Section IV are met, i.e., if ,
where is the model order and is the auxiliary order [31].
Since we are interested in real-valued functions, we restrict the
matrices and accordingly.

B. Linear Reconstruction

Here the ordering and dimension of the coordinate vector
becomes important. For notational simplicity, we assumeis
single dimensional. Shannon’s formula for linear reconstruction
can be restated in context

... (37)

Similarly for . For convenience, we write a relation de-
scribing all spatial functions

... ...

(38)
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Fig. 5. Experimental beam apparatus.

where is the basis of reconstruction.
The spatial system can be written in state-space form

(39)

where , and is
the shifted unit impulse, e.g., .
Note the equivalence of system (39) to (7), where
and represent the identified function matrix and
feed-through function .

C. Spline Reconstruction

The spline reconstructed system is similar to (39) with the ex-

ception that the function samples and reconstruction basis

are replaced by the spline coefficients and chosen spline
basis.

1) Finding the Spline Coefficients : Many standard pro-
cedures exist for finding the spline coefficients as defined
in (12). The reader is referred to [21] for an overview of such
techniques.

2) Summary:After computing the spline coefficients for
each mode, the spatial system can be expressed in state-space
form

(40)

where, the spline coeffi-
cients of the feed-through function , is the matrix con-
taining the spline coefficients for each mode, and is the
spline reconstruction basis

...
...

... (41)

...
(42)

TABLE I
BEAM PARAMETERS

TABLE II
IDENTIFICATION PARAMETERS

Fig. 6. Extracted mode samples(�) and linear reconstruction.

VI. EXPERIMENTAL RESULTS

The presented technique will now be applied to identify two
spatially distributed systems, a simply supported beam, and
asymmetric cantilever plate. Both structures are excited using
bonded piezoelectric actuators. Although the simply supported
beam is easily modeled using analytic methods (albeit with
experimental tuning), applying such techniques to the plate is
significantly more difficult. The problem is complicated by the
irregular geometry of the plate boundary.

The experimental beam and plate apparatus are shown in
Figs. 5 and 12.

A. Beam Identification

1) Experimental Setup:The physical parameters of interest
are summarized in Table I.

Colored noise is applied to the actuator, the spatial response
is measured sequentially using a Polytec scanning laser vibrom-
eter. Details of the data set are given in Table II.

2) Spatial Functions:The extracted mode and feed-through
function samples together with their spline and linear recon-
structions are shown in Figs. 6–8. It can be observed that the
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Fig. 7. Extracted mode samples(�) and spline reconstruction.

Fig. 8. Extracted feed-through function samples(�), the linear reconstruction
(�), and spline reconstruction (- -).

identified feed-though function is similar to that derived analyt-
ically, shown in Fig. 3.

The Shannon reconstructed mode shapes are significantly dis-
torted by the combination of truncation error and sample noise.
It is interesting to note the effect of piezoelectric stiffness on the
mode shapes of the beam shown in Fig. 7, the length of the beam
bonded to the piezoelectric patch is obviously more restricted in
its deflection. Such structures with localized changes in stiffness
are very difficult to model in closed form using present analytic
techniques.

3) Spatial Response:To evaluate model quality, we will
compare the measured spatial beam response plotted in Fig. 9,
to the identified model response plotted in Fig. 10. Each
point-wise frequency response is measured from the applied
actuator voltage (in volts) to the resulting displacement (in
meters). A separate interlaced set of 13 points was used to
perform the validation. The magnitude response of the error
system, , where denotes the
model response, is plotted in Fig. 11. In the frequency domain,

Fig. 9. Experimental beam spatial frequency response from an applied
actuator voltage to the measured displacementG (r; j!).

Fig. 10. Spline reconstructed model response, from an applied actuator
voltage to the measured displacementĜ (r; j!).

Fig. 11. Error system response response,G (r; j!)� Ĝ (r; j!).

the identified model is observed to accurately represent the
physical system.
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Fig. 12. Experimental plate apparatus.

Fig. 13. Plate geometry (mm).

TABLE III
PLATE SYSTEM IDENTIFICATION PARAMETERS

B. Plate Identification

1) Experimental Setup:The experimental plate is con-
structed from aluminum of 4 mm thickness. Fig. 12 shows the
experimental plate, clamped vertically by its bottom edge to an
optical table. Geometry and dimensions are shown in Fig. 13.
System identification parameters are given in Table III.

2) Spatial Functions:An estimate for the system matrix
is first obtained using a scattered subset of the spatial frequency
samples. The location of subset points is shown in Fig. 14. Equa-
tion (36) is solved to identify the mode shapes and feed-through
function. The resulting mode shapes and feed-through function
are plotted in Figs. 15 and 16.

3) Spatial Response:Due to the difficulties in visualizing
a four-dimensional quantity, we evaluate model quality by
taking a planar section of the spatial frequency response. An
elevation of the section is shown in Fig. 14. The measured,
identified model, and error system fre-

Fig. 14. Distribution of the spatial samples. An “�” represents the location
of a sample used to identify the system matrixA. The dashed line represents
the side elevation of a spatial frequency response cross section used to analyze
model quality.

Fig. 15. Normalized first, second, and third modes of the cantilever fin.

Fig. 16. Identified feed-through functionD(r).

quency responses are shown in Figs. 17–19, respectively. Each
point-wise frequency response is measured from the applied
actuator voltage to the resulting displacement (in meters). As
shown by the magnitude of the error system response, in the
frequency domain, a good correlation between the experimental
data and model response is observed.
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Fig. 17. Cross section of the cantilever plate measured spatial frequency
response. The response is measured from the applied actuator voltage to the
resulting displacement.

Fig. 18. Cross section of the spline reconstructed model response.

Fig. 19. Cross-section of the plate error system frequency response,
G (r; j!) � Ĝ (r; j!).

VII. CONCLUSION

A technique has been presented for identifying a class of dis-
tributed parameter systems from a set of spatially distributed
frequency responses. The systems are modeled as a finite sum
of second-order transfer functions with spatially variant numer-
ators and a feed-through term.

In an attempt to evenly distribute model error, the identifica-
tion is cast as a single-input multi-output identification problem.
An estimate for the system dynamics is sought using a frequency
domain subspace algorithm. Samples of the mode shapes and
feed-through function are then identified and used to recon-
struct the continuous functions. If the spatial Fourier transform
is known, the error due to under sampling can be quantified.

Experimental identification of a simply supported beam and
cantilever plate has shown an adequate correlation in the fre-
quency domain between the measured system and identified
model. In both cases, the majority of discrepancy is due to small
errors in the resonance frequencies. Current work involves the
development of an efficient optimization algorithm to minimize
such errors.

Other topics of current research include: the automatic iden-
tification of nondistributed dynamics , experimental iden-
tification incorporating piezoelectric sensor voltages, time do-
main identification techniques, and stochastic analysis.
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