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Spatial System Identification of a Simply Supported
Beam and a Trapezoidal Cantilever Plate

Andrew J. Fleming and S. O. Reza Moheim&énior Member, IEEE

Abstract—Dynamic models of structural and acoustic systems number of standard control synthesis variants have emerged that
are usually obtained by means of either modal analysis or finite el- address the control design of spatially distributed systems with
ement modeling. Detrimentally, both techniques rely on a compre- iscrete sensors and actuators. Recent examples include: spatial

hensive knowledge of the system’s physical properties. As a con- .
sequence, experimental data and a nonlinear optimization are re- feedforward control [4], spatial resonant control [3], spaifal

quired to refine the model. For the purpose of control, system iden- control [6], and spatial ., control [1].

tification is often employed to estimate the dynamics from distur- ~ The modal analysis procedure has been used extensively
bance and command inputs to set of outputs. Such discretization throughout the literature for obtaining spatial models of
of a spatially distributed system places unknown weightings on the structural [7], [8] and acoustic systems [9]. Its major disadvan-

control objective, in many cases, contradicting the original goal of t beina th . t for detailed bhvsical inf fi
optimal control. This paper introduces a frequency domain system age being the requirement for detailed physical information

identification technique aimed at obtaining spatially continuous regarding the sensors, actuators, and underlying mechanical
models for a class of distributed parameter systems. The technique system. Practical application typically involves the use of
is demonstrated by identifying a simply supported beam and a experimental data and a nonlinear optimization to identify
trapezoidal cantllgver_ plate,_ both with bonded plezoelectrlq trans- \\nknown parameters such as modal amplitudes, resonance fre-
ducers. The plate’s dimensions are based on the scaled side eleva- . - . . . -
guencies, and damping ratios. Even in this case, the descriptive
) _ ) partial differential equations must still be solved (as functions
_ Index Terms—Frequency domain, spatial control, spatial system f the ynknown parameters) to obtain the mode shapes. This
identification, spatially distributed systems, structural modeling. e . . . .
may be difficult or impossible for realistic structural or acoustic
systems with complicated boundary conditions.
I. INTRODUCTION Another popular technique for obtaining spatial models is

N THE ANALYSIS and control of distributed parameter Sys;hat of finite-element (FE) analysis [10]. This is an approximate

tems, it is of great benefit to possess a spatial model. That ethod that results in high-order spatially discrete models. If

a model that describes system dynamics over an entire spa i dynamics of SEnsors and actuators are knoy\_/n, the integrated
10del can be cast in a state space form to facilitate control de-

domain. This paper is concerned with the modeling and ident: . : .
fication for a class of distributed parameter systems. Such s %gn'anfl antalyss [1(111' Thelappr(sz|maFetpature ?f lF Ef;n odetllmlg
tems include but are not limited to: flexible beams and plate ,|m|na es the need lor solving descriptive partial ditterentia

compound linear structures, slewing structures, and acousticgﬂyat'ons' -Deta||ed information r(_agard|_ng t_he stru_ctures mgte-
closures. rial properties and boundary conditions is still required. As with

The motivation for finding such a model lies in both the fieldéhe modal analysis procedure, FE models are usually tuned with

of analysis and synthesis. During analysis, the user may Sim8f§perlmer\tal data ,[12]' ,
wish to observe the mode shapes of the structure, or in a mor cpn5|derable literature has also developed on the fopic of

complete utilization of the model, mathematically estimate e thods). Th thod b dominantly d ibed
spatial feedback control performance of a system utilizing di 1ethods). These methods can be predominantly described as

crete sensors, actuators, and control objectives. For exam quency-domain transfer function methods. The system is as-
consider [1] \;vhere a stémdadd controller [2], [3] is de- urhed to consist solely of parallel second-order resonant sec-

signed to minimize vibration at a single pointon a piezoelectrﬂ?ns' Sensor, actuator, and additional nonmodal _dynamlcs are
laminate simply supported beam. A spatial model is requiredrﬂgglededf One of the most_popular methogls, widely “S_ed n
analyze the overall performance of such a controller. The faccqmmerC|aI f.requency do.mam modal analysis packages, is the
that a point-wise controller is shown to provide good local peF_‘:’ltlonal fraction ponnormaI method [1:.)’].' As a.transfer func-
formance but poor spatial performance leads us to the primary . method, the model is poorly conditioned, incorrectly de-
application of spatial models—spatial controller synthesis. A rlbeg the SySteT".S zero dynamics [.14]' and neglects nonmodal
dynamics. In addition, all of the mentioned experimental modal
analysis techniques neglect the fundamental limitations in spa-
%SI sampling, i.e., reconstructed mode shapes can be distorted
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We begin by introducing a model structure for one- andhere H (s) is the concatenation of all nondistributed transfer
two-dimensional systems. The structure is parameterizedfimctions,®;(r) is theith mode shape, anB(r) is the feed-
terms of the shared dynamics, mode shapes, and feed-throtigbugh function included to compensate for all higher order
function. In Section llI, the spatial sampling limitations fortruncated contributions to zero dynamics. The filfé(s) is
linear and spline reconstruction is discussed. Sections IV amskd to model the additional dynamics of sensors, actuators, and
V, deal with the identification of shared system dynamics arfdr example, antialiasing filters. In this wol{ () is not iden-
spatial functions. Results from the identification of a simpliified automatically.
supported beam and trapezoidal cantilever plate are presentethe objective will be to identify the parameters
in Section VI. Conclusions are drawn in Section VII. 6 = [®i(r) D(r) ( w;] from a number of mea-

sured spatially distributed point-wise frequency responses
Il. MODELING
I'E{I‘h . ./I‘Nr} eER

The Lagrangian/modal expansion, or Ritz—Kantorovitch Gy(r,jw) e { )
w Wiy s WN,,

method [7] is commonly used to express the spatial deflection
of a distributed parameter system as an infinite summation 9f «e v is the number of measured spatial locations ahd
. ’I‘
modes. The modes are a product of two functions, one of a§ne number of measured frequency points per location.
spatial coordinate vectar, and another of the temporal The system (5) has a corresponding state-space representa-

(6)

oo tion
d(r,t) =) ai(t)pi(r) @)
=1 x(t) =Ax(t) + Bu(t)
where they;(t)’ s are the modal displacements, thér)’ s are d(r,t) =C(r)x(t) + D(r)u(t) (7)
the system eigenfunctiong(r, ) is the displacement at a point,
andr € R is a coordinate vector on the spatial dom&nThe where C(r) = [®;(r) 0 --- ®x(r) 0], B =
mode shapes;(r) must form a complete coordinate basis fopp 1 --- 0 1]T, D(r) is a scalar function ofr, N

the system, satisfy the geometric boundary conditions, and fethe number of modes to be identified, and
analytic analysis be differentiable over the spatial domain to at

least the degree required by the describing partial differential 0 1 0 0
equations. Many practical systems also obey certain orthogo- —w? —2Cw; 0 0
nality conditions. A —

As discussed in [7], the model (1) can also be expressed in 0 0 ' 0 .

the frequency domain 0 0 2 2
—Wy  —4ONWN
oo FngL r €R2]V><2N. 8
Gy(r,s) ="y L - @ ©

Pt s2 4 2(w;s + w?

whereG (r, s) is the transfer function from an external force, or

for the system considered in this paper, the applied piezoelectric

voltage to the displacement at a point Considering the model structure (5), the spatial functions
For practical reasons, (2) is often truncated to include only®(r) and D(r) must be reconstructed from their identified

certain number of modes that approximate the response ové&egples. For a uniformly sampled one-dimensional system, the

limited bandwidth. [14] introduces a model reduction technigug@mples of our continuous functios(r) and D(r) are

for systems that satisfy certain modal orthogonality conditions.

I1l. SPATIAL SAMPLING

The following truncated model structure is proposed: D,(r) r=nAreR
N Fd)(r) o'} D(T) n 6{0717"'7N'r‘} (9)
Gyr,s) = 5y kigi(r)  (3)
! ; 52 + 2Gwis + wi ,;:%;1 where the scalar specifically denotes a one-dimensional

. .. .. system, and\r is the spatial sampling interval.
where (referring to [14]) thé; terms are found by minimizing There are a number of options available for reconstructing

the spatiall, norm of the resulting error system(is the re- o ontinuous functions, two of which are, traditional linear

tained bandwidth) reconstruction, and spline reconstruction. The following Sec-
F, (Wi + wﬂ) tions IlI-A and B, examine the application of each technique to

ki =

= Ywow; (4)  the two cases of band-limited and nonband-limited functions.

The aim is to quantify the expected mean square difference be-
We define the model of a general single input spatially disween the original continuous function and its corresponding re-
tributed system as construction. This will allow us to evaluate the required spatial
Bi(x) sampling interval as a function of the permissible error. An ex-
\r

@y(r!s) = H(s) lz 5 ’ + D(r)] (5) ample of this procedure is performed for a simply supported
' $2 + 2Gw;s + w?

w; — We

beam in Section IlI-C.

i=1
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| FGe) | where Q° f(r) is the Shannon representation of the sampled
function, w, is the spatial frequency in radians per meter, and
|F(jwy)|? is the power spectral density gf(r). In the case
where the optimal prefilter can be applied, the right-hand side
of (11) is reduced by one half.

B. Spline Reconstruction

In recent years, splines have been recognized for their use-
fulness in curve and surface fitting problems [20], [21]. A func-
tion f(r) can be approximately reconstructed from a spline basis
Fig. 1. Discrete magnitude spectra of an oversampled band-limited functiog(7), with coefficientse(k) derived fromf (kAr).

T T

B 27 O x

sp

n n T
A. Whittaker-Shannon Reconstruction Q f(r) =" c(k)e (E - k) (12)
The discrete magnitude spectra of a band limited spatial func- hez

tion f(r) is shown in Fig. 1. To satisfy the Nyquist sampling criwherec(k) € I, are the (finite square summable) spline coeffi-
terion, the spatial sampling frequery/Ar (in rad/m) must . b . . . .

i . cients,Q™ f(r) is the spline reconstruction ¢fr), andy™(r) is
blesgrgﬁter thaf‘ twice thte hltghe.:,:]frequenf[:ytcomponeﬁ(qgf the spline generating function. We will limit our choice of gen-
[15]. Shannon’s reconstruction theorem states fifaj can be erating functions to theth degrees-splines (of ordem + 1)

reconstructed from its samples P
[21]. The conditior:(k) € I, ensures tha®)™ f(r) is a well-de-
sin (= (r — kAr)) fined subspace of., the set of square integratable functions,
T — kAT (10) a considerably larger space than the traditional Shannon space
of band limited functions. References [22] and [23] present a

. _ . unified sampling theory for a wide class of approximation oper-
Theoretically, a perfect reconstruction is possible, however in . . )

: S . ators. In likeness to the Shannon sampling theorem, the optimal
practice, there are two significant sources of degradation.

o , ) : . spline reconstruction involves an optimal prefiltering of the con-

* For finite time signals, truncating the summation (10) ingn 0y signal before sampling and reconstruction by the chosen
troduces a systematicuncation error. Expressions for gjine pasis. The results in this area, including expressions for
bounding the truncation error and references to relevafjk rms error, are summarized in [21]. The technique of quanti-
work can be found in [15]. tative Fourier analysis can be applied to quantify the rms recon-

* Inmany practical situations, the samples will also contayy,ction error [24]. The sampling phase averaged error is given
an additive stochastic disturbance. An expression for ti

mean integral squared reconstruction error (MISE) expe-
rienced when recovering a signal from its corrupted sanj- 5P
ples can be found in [16]. It is also shown that Shannon r r) = Q"f(r)

construction is not a consistent estimator for band-limited 2 . 1/2
signals recovered from noisy samples, i.e., as the number = [i/ |F(jw,,)|2 E"(Arw,)dw, (13)
of signal samples approaches, the MISE does not ap- 2

proach zero, in fact the error diverges and also approaches n . )
oo. Convergent estimators for such scenarios can be fou eBereE (Arw,) is defined as the frequency error kernel and
in [17] and [18] is a function of the interpolant anr. Analytic expressions for

In general, the spatial functigf(r) will not be band-limited. E™(Arwr) have been given for the-splines of order up to 6

Examples include, the mode shapes of a cantilever beam ﬂg]dl']

and the feed-through function for a simply supported beam [14]. n our application, where the_re IS N0 access to the_ continuous
Since the samples are obtained indirectly from point-wise fri Ignal, we cannot apply the optimal prefilter nor achieve the op-

guency response data, no form of low pass filtering is possib}t'é.naI (least squares) fit by projecting our signal onto the approx-

The objective of the following will be to quantify the under—sam'—mat'on space [21]. Instead, we shall simply perform an inter-

pling error as a function of the spatial sampling interval. polation. The penalty in doing so is illustrated in Fig. 2, where

In their paper reviewing sources of error in linear reconstrug]e e”otf kelrnelf Ew”) TO: spline anhd She;g;oi rlecl?nstruc—
tion, Thomas and Liu [19] present an expression for the me " optimal and intérpoiation, are shown = L.ltcan

square reconstruction error as a function of the power spec ﬁl observed that although the spline interpolant error is glob-

density outside the Nyquist range. The following expression %F_y greater than that of the projector, within the Nyquist range

sumes the absence of the optimal low-pass filter, which in o tT| T T t?e df|fferencg IS St:'ght' Lnt:;l]nall\?gy t.otSh?nrlﬁn recon-
application, cannot be applied to the continuous signal struction, for irequencies beyond the Wyquist rate, the magni-

tude of the spline interpolant error kernel approaches twice that
of the projector.
1

1/2
£ () =Q F()|l2 = | = / |F(ij)|2 dw, (11) The spline basis functions also have some interesting vari-
T J\w,|>7/Ar ational properties. It is well known that interpolation by the

f)=ar 3 fran)

k=—oc0

— 00
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where p is the material densityA, is the cross-sectional
area, andL is the length of the beam. The spatial spectra of
vazl ¢i(r) is impulsive and easily determined

f{Z@(r)}

. 2 N i i
:JM/pATL; [6(wr+f> —6<wr— f)} . (16)

The highest frequency component@f(r): € {1,...,N} is
N /L, thus, if we were to apply Shannon’s theotetm recon-
struct N mode shapes of a simply supported beam

0.8

0.6

0.4

02f 2 N L
. A—Z > 2%7 that is, Ar < e a7)
0 pi 2pi
o (radim) This simple and complete result applies in general to a subclass

Fia 2. Unit led. cubic spli kernals. Optimal (with prefiter) )ofthe systems (2). Such systems are characterized by sinusoidal
1. 2. nit samplea, cubic spline error Kernals. Optimal (with prefilter) (- - . . . .

interpolation (—). Shannon reconstruction E(Js| > ) = 1, interpolation mode_shapgs. Example_s mclud_e umf_orm beams and strings in
(-+) E(jw] > 7) = 2. one dimension, plates in two dimensions, and closed acoustic

systems in three dimensions.

sh basis in th f effect hast i 2) Feed-Through FunctioD(r): The feed-through func-
annon basis in the presence ol €eflects such as trunca 'Orlli D(r) can be found analytically for systems of the form (2).
additive high-frequency sample noise, tend to result in an overly

“peaky” or oscillatory reconstruction. In contrast, spline inter- s
polation (in a certain sense [21], [25]) is the interpolant that os- D(r)y= > kii(r) (18)
cillates the least. The cubic spline is a special case, as it min- i=N+1

imizes the 2-norm of error second derivative, it possesses Wﬁeregbi(r) is given by (15), ands; is given by (4). We can

property of minimum curvature [21]. As this property is alS@nink of (18) as being equivalent to the Fourier series
shared by constrained thin elastic beams and plates, it is natural

to reason that cubic splines may be well suited to approximating
mechanical functions such as the mode shapes of a simply sup-
ported beam.

In the case of noisy samples, we can achieve some degree/hereT, = 2L is the period of repetition
immunity by relaxing the interpolation condition and imposing

D(r) = Z c; e/ Tr (29)

1=—00

a smoothness constraint. For example, for the cubic splines, by %a% In (%) , 1€{...,-N—-2,—N -1}
minimizing ¢ =40, i€{-N,...,N}
okl (2ts), ie(N+1,N+2,..}
9 I sp 2 (20)
sp d?Q" The complex coefficients; reveal the spatial Fourier transform
3 <f(k~Ar) = Q"f(kAr)) +/\/ FQI) ) (14 Lo P

% 0 dr o (T)
where the second term is a measure of the smoothness. The pa- F{D(r)} =F { Z kiqsi(r)} (21)
rameter) is based on the additive noise variance [21]. i=N+1
C. Spatial Sampling of a Simply Supported Beam = Z 2mcid (wy — iwy) (22)

This section demonstrates how the results presented in Sec- 2T 7 23
tion IlI-B can be applied to spatial systems. We present an ex- wr T, L (23)
ample analysis for a simply supported beam. The objective is to 0o x
arrive at a point where (11) and (13) can be applied. Both ex- F{D(r)} = Z 2me;d (wr - if) : (24)
pressions require only the function’s power spectral density. i=—00

1) Mode ShapesThe mode shapes of a simply supported Immediately,

. by the properties of the Fourier transform, we
beam are given by [7]

learn some characteristics of the feed-through funciign).
* As verification, F {D(r)} = d(jw,) = d(—jw,)* &
Im {D(r)} = 0 which is knowna priori. Re {d (jw,)} =

2 . famr . [amr
¢i(r) = pA L s <T> = @S (T) (15) INeglecting truncation errors.
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0 and |d(jw,)| are even functions ofw, [26], x10 : .
Im{d (jw,)} is an odd function of,. [26]. 5
* SinceF {D(r)} is purely imaginaryD(r) is an odd func- A
tion. Itistrue ingeneral thdte {d (jw,)} =0 & D(r) =
—D(-r) [26]. ¢
» D(r) is periodic with perio®2L. 2

As F {D(r)} does not have compact support on the interv:
(—joo, joo), D(r) can not be exactly reconstructed with any _
finite number of samples. It is also obvious from (24) that th & °
spectra ofD(r) lies completely outside the bandwidth of the _
mode shapes, thus dictating the spatial sampling requireme
of the system.

We can now apply (13) to determine the required spatial sar  -31
pling interval. For a periodic signg{r), the energy density per |
unit frequency is given by [27]

1k

[

IS

5k

1 .
|G(f)|2 -7 Z |Cn|2 5 <f _ nT) (25) 0 0.1 0.2 r()(ﬁ) 0.4 0.5 0.6

nez

. . . ig. 3. Analytic feed-through function for the beam described in Section VI-A.
whereT is the periodG( f) denotes the Fourier transform, ancfg 4 9

¢,, are the Fourier coefficients @f(r). By making a change of  -s . . . . ‘ : ; : :
variables, we can find the power spectral densityDdf )

70} 4

2 ]
|F{D(r)})? = 2nT, Z lei]? 6 <w,, - L%) . (26) s |
i€z T
Hence, from (13), the error in reconstructidg(r) from an T

nth-order spline basis 100t
S]Zz _ o 12 _ z S>—110—
HD(r)—Q i) = 2L[m (Z|c,| 5(% LL)>
€7 —120f
1/2
X E”(Aer)dwT] (27) or

-140f

A 1/2
§ : 42 [ T 1 ; L L . . . . . .
2L | & | E (Zﬂ- L > ‘| (28) - 500 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

1€Z Ar (m)

sp . . . Fig. 4. ||D(r) — Q™D(r)||, rms reconstruction error plotted against the
whereQ™ D(r) is the spline reconstruction d?(r). The error  gyaiial sampling intervalr. The dashed-dot line indicates the rms value of

kernel for a cubic splingZ?(iw Ar/L) is plotted together with the functionD(r).
the equivalent Shannon kernel in Fig. 2.
We can also apply Parseval’s equality to find the mean square3) Other Considerations:The above analysis has consid-

value of D(r) over one period ered only a one dimensional system. The Shannon sampling
) 1 [t theorem is easily extended to multi-variate functions [15]. By

Z |ci|2 = —/ |D(7~)|2 dz. (29) using tensor-product basis functions, spline sampling theory is

i=—o0 2L )1 extended in a similar fashion [21]. Both techniques require an

grqluidistance sampling grid and are based on the application of

Ivariate results in each dimension. For irregular sampling and

yther complicated reconstructions (e.g., by blending functions
20], or FE methods [20]) no such results are known.

We now consider a specific example: the simply supported be
described in Section VI-A, where three modes are retained
identification. The feed-through function resulting from an an

Iytic model [28] is shown in Fig. 3. The rms value of the reco ) ST .
y [28] g In Section 1lI-C, the sampling limitations for a simply sup-

struction error L» norm on[—L, L]) is plotted against the sam- .
pling interval Ar in Fig. 4. [As the] sampling interval increases?orted beam haye peen der!ved. Even. vyhen the mode shapes
the rms error approaches the rms value of the continuous fu £e know.rr.a priori, this analysis can be difficult to perform. For
tion.2 This plot can be used to select a spatial sampling interVat practl.tloner, we offer a rough-rul.e of thumb. .
that achieves some error specificationov). 1) Estimate, by means of a similar system or FE analysis,
the highest significant spatial frequency component of the
2In this analysis we have consider&{r) ¢ L. This arises from the peri- highest order mode to be identified.

odic nature of the mode shapes. When we refer to the rms or mean square valu . . .
of such signals, we are implicitly referring to the rms or mean-square value overi) Consider the feed-through functidi(r). Assume that its

a single period. highest significant frequency component is three times
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that estimated in Step 1). (This step is suggested on the Identifying the Samples

experience of studying and identifying a number of such g5 mpjes of the spatial functions will now be identified from

systems.) _ _ the available frequency response data.
3) Sample the structure as would be done in practice for apgfinitions: The spatial response matrix

function with spatial bandwidth derived in Step 2). Taking

into consideration the limited domain of the structure, (al- Gy(r,jwn) oo Gylrn, jwn) N oo
lowing for truncation errors), this would normally be from G = : - : € Clex .
tyvo to five times the rate suggested by the Nyquist crite- Gy(r1,jwn,) -+ Gy(rn,,jwn.)
rion. (31)
The dynamic response matrix
1/ - 1/ -
IV. IDENTIFYING THE SYSTEM MATRIX P (jw1) oo Py(jwi)
Ptf — : - : c CN“ XN (32)

The first step in the identification procedure is to obtain an : :
estimate forA, the system matrix whose eigenvalues reveal Pl(jwn,) o Pyl(jww,)
the parallel dynamics of each mode. On first inspection, th}%ereP[l(‘jw) is the response of the orderéth-mode dy-
problem may appear trivial as the transfer function obtaingfmics found from the system matri.
from a single frequency response would perform the task. 1

For spatially distributed systems we must redefine our mea-P; " (jw) = . - (33)
patialy distributed systems v Rl PN vy [ PR ) |
sures of model quality and stochastic performance. In essence, . : J
the two main sources of error in the identification arise frorhhe modal function matrix
measurement noise and slight changes in system dynamics over Py(ry) oo Pi(ry,)
the spatial domain. Intuitively, we would like to distribute the U = : : e RVXNr, (34)
resulting model error in a similar, egually d|sFr|buted fashion. By(r1) - Dy(ry.)
The task of quantifying such errors is the subject of current rsF—
search. he feed-through vector

The problem can be cast as a multi-input—multi-output D=[D(r;) - D(ry,)] € RN, (35)

(MIMO) system identification problem where each point is \\e can form the following complex matrix equation:
regarded as a single output. In the case of a two-dimensional

system, where a large number of point-wise frequency response G =[P 1y, x1] [%} . (36)
measurements are available, it may be necessary to limit the ) o

data space by selecting only a subset of the available points. Ffation (36) has a unique least squares solution,if> N,
virtual systemas seen by the system identification aIgorithrH”"s cond|t|on_|s aqtomatlcally satisfied if the restr_lctlons for the
has a single input andv, outputs, wherelV, may be equal SUPspace estimation in Section IV are met, i.elNif > g + p,

to N, or less thanV, if the data set is to be truncated. Thévherep is the model order and is the auxiliary order [31].
frequency response of such a system is similar to (6) and calyce we are interested in real-valued functions, we restrict the

be expressed as matrices? and D accordingly.
Corcdry rv Y ER B. Linear Reconstruction
Gy (r,u) ¥ S oo (30) . o |
w € {wr, ..., wN, }- Here the ordering and dimension of the coordinate vector

For generality, we treat the identification algorithm as a ert])_ecomes Important. For notational simplicity, we assurie
ger Y, . 9 . 9 single dimensional. Shannon’s formula for linear reconstruction
eral matrix function of the data, i.eA = f (G, (r,jw)).

. . " can be restated in context
Methods that identify state-space models by exploiting geo-

N, .
metric properties of the input and output sequences are com- B;(r) =Ar Z <I>'(rk)sm (—T(T - T‘k))
monly known as subspace methods. These methods have re- ' Py ‘ m(r—rk)
ceived considerable attention in the literature, (see [29] for a =[®i(r1) - i (rn.)]

survey of time-domain methods). The reader is referred to [30]
and [31] for a full discussion of frequency domain techniques.

Frequency domain subspace-based algorithms have proven par- X : . @37
ticularly useful for identifying high-order multi-variable reso- sinc (& (r —rn,))
nant systems [32]. Similarly for D(r). For convenience, we write a relation de-
scribing all spatial functions
V. IDENTIFYING THE MODE SHAPES D;(r)

sinc (L (r — 1))

AND FEED-THROUGH FUNCTION : [\Tf } .
Samples of the spatial modal and feed-through functions are P (r) D sine (L(:r — )
firstidentified from the frequency response data and system ma- D(r) Aar N

trix. The continuous functions are then approximated by linear
or spline reconstruction.

i
5B (39
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TABLE |
BEAM PARAMETERS
Length, L 0.6m
Width, wy 0.05m
Thickness, hp, 0.003m
Young’s Modulus, Ej, | 65 x 109N/m?
Density, p 2650kg/m?
TABLE 1
IDENTIFICATION PARAMETERS
Frequency Range 10-200 (Hz)
Eqi-distance F Samples 3031
Spatial Sampling interval | 2.5 cm
Identification Samples 13
Validation Samples 13
Fig. 5. Experimental beam apparatus. Excitation Colored Noise

whereB,.(r) is the basis of reconstruction. ; . : : ;

The spatial system can be written in state-space form o5

x =Ax + Bu 04

Y (r) =B,(r)TWT Jx + DB, (r)u (39) o2

0.2

whereJ = [ef ef - e%’;N_l)]T € RVN ande;is |
the ¢ shifted unit impulse, e.ges = [0 0 1 0 --- 0].

Note the equivalence of system (39) to (7), whBrgr) T UTJ
andDB,.(r) represent the identified function mati®(r) and -
feed-through functiod(r). 02

C. Spline Reconstruction
-0.4
The spline reconstructed system is similar to (39) with the e: sl

ception that the function sampl % and reconstruction basis ) ) ) , ,
0.1 0.2 0.3 04 0.5 06

B, are replaced by the spline coefficients and chosen splii ’ r(m)
basis.

1) Finding the Spline Coefficient$k): Many standard pro-
cedures exist for finding the spline coefficient®) as defined
in (12). The reader is referred to [21] for an overview of such VI. EXPERIMENTAL RESULTS

techniques. _ ) . The presented technique will now be applied to identify two

2) Summary:After computing the spline coefficients for g iay distributed systems, a simply supported beam, and
each mode, the spatial system can be expressed in state-SRage, vetric cantilever plate. Both structures are excited using
form bonded piezoelectric actuators. Although the simply supported
beam is easily modeled using analytic methods (albeit with
T T N experimental tuning), applying such techniques to the plate is
Y(r)=B"(r)" C; Jx + DB"(r)u, (40) significantly more difficult. The problem is complicated by the
irregular geometry of the plate boundary.

The experimental beam and plate apparatus are shown in
Figs. 5 and 12.

Fig. 6. Extracted mode samplésg) and linear reconstruction.

x =Ax+ Bu

where, Dy = [cq(1) ca(2) cq(N,)] the spline coeffi-
cients of the feed-through functidd(r), Cs is the matrix con-
taining the spline coefficients for each mode, @¢(r) is the

spline reconstruction basis e .
P A. Beam Identification

[ei(1) - (V) 1) Experimental SetupThe physical parameters of interest
C, = : : (41) are summarized in Table I.
en(1) - en(N,) Colored noise is applied to the actuator, the spatial response

- is measured sequentially using a Polytec scanning laser vibrom-
gl eter. Details of the data set are given in Table II.
B"(r) = Af ) (42) 2) Spatial Functions:The extracted mode and feed-through

: function samples together with their spline and linear recon-
B (5 — (N — 1)) structions are shown in Figs. 6-8. It can be observed that the
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Mag (dB)

o )

=} 3
A E—_

80)\ . ) y ) ~/\0.8
80w : v ST / 05
. . . 100 . g . 0.4
0 0.1 02 0.3 04 05 06 120\\' T A /03
r(m) 140 e . . x
160 /02
Fig. 7. Extracted mode samplés) and spline reconstruction. i) 200 ¢ r(m)

Fig. 9. Experimental beam spatial frequency response from an applied
actuator voltage to the measured displacendentr, jw).

x10
; : : : :
50
_-100
1]
z
g o
= £-150 |
200
PN
20 \\,
40 o > \ // 06
80 .- /// 05
100 " o4
120 03
140 /{2
160
.—5_ L 1 1 1 1 ] 180 o1
0 0.1 02 03 0.4 05 06 1 (Hz) 200 0 r(m)

r (m)
Fig. 10. Spline reconstructed model response, from an applied actuator

Fig.8. Extracted feed-through function samples, the linear reconstruction V0ltage to the measured displacement(r, j).

(=), and spline reconstruction (- -).

identified feed-though function is similar to that derived analy
ically, shown in Fig. 3.

The Shannon reconstructed mode shapes are significantly
torted by the combination of truncation error and sample nois
Itis interesting to note the effect of piezoelectric stiffness on tf ;-100-
mode shapes of the beam shown in Fig. 7, the length of the be :5_150
bonded to the piezoelectric patch is obviously more restricted =
its deflection. Such structures with localized changes in stiffne 200 i
are very difficult to model in closed form using present analyti 2 m ,
technigues. 60w

3) Spatial ResponseTo evaluate model quality, we will Bok\' v
compare the measured spatial beam response plotted in Fig % o
to the identified model response plotted in Fig. 10. Eac 180 > ‘
point-wise frequency response is measured from the appl ) 200 0 r(m)

actuator voltage (in volts) to the resulting displacement (in )

meters). A separate interlaced set of 13 points was usedFig 11. Error system response respoise(r, joo) — Gy (7 jw).

perform the validation. The magnitude response of the error

systemG, (1, jw) — éy (r, jw), whereéy (r,jw) denotes the the identified model is observed to accurately represent the
model response, is plotted in Fig. 11. In the frequency domajhysical system.
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Fig. 12. Experimental plate apparatus. 0 0.1 02 0.3 04 05
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Fig. 14. Distribution of the spatial samples. Ax™ represents the location
of a sample used to identify the system matAix The dashed line represents
the side elevation of a spatial frequency response cross section used to analyze

model quality.

SIS S
0 720 "T o(r)

Fig. 13. Plate geometry (mm).

TABLE Il Fig. 15. Normalized first, second, and third modes of the cantilever fin.
PLATE SYSTEM IDENTIFICATION PARAMETERS
Frequency Range 10-100 (Hz)
Eqi-distance F Samples 577

Number of Spatial Samples | 468
Spatial Sampling interval 2.63 cm
Excitation Colored Chirp

B. Plate Identification

1) Experimental SetupThe experimental plate is con-
structed from aluminum of 4 mm thickness. Fig. 12 shows the
experimental plate, clamped vertically by its bottom edge to an
optical table. Geometry and dimensions are shown in Fig. 13.
System identification parameters are given in Table Ill.

2) Spatial Functions:An estimate for the system matrix
is first obtained using a scattered subset of the spatial frequency t
samples. The location of subset points is shown in Fig. 14. Equa-
tion (36) is solved to identify the mode shapes and feed-throufB- 16 Identified feed-through functial(r).

function. The resulting mode shapes and feed-through function
are plotted in Figs. 15 and 16. guency responses are shown in Figs. 17-19, respectively. Each

3) Spatial ResponseDue to the difficulties in visualizing point-wise frequency response is measured from the applied
a four-dimensional quantity, we evaluate model quality bgctuator voltage to the resulting displacement (in meters). As
taking a planar section of the spatial frequency response. slmown by the magnitude of the error system response, in the
elevation of the section is shown in Fig. 14. The measuredequency domain, a good correlation between the experimental

A~

identified model, and error systef, (r, jw) — G (r, jw) fre- data and model response is observed.
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Mag (dB)

735

In an attempt to evenly distribute model error, the identifica-
tion is cast as a single-input multi-output identification problem.
An estimate for the system dynamics is sought using a frequency
domain subspace algorithm. Samples of the mode shapes and
feed-through function are then identified and used to recon-
struct the continuous functions. If the spatial Fourier transform
is known, the error due to under sampling can be quantified.

Experimental identification of a simply supported beam and
cantilever plate has shown an adequate correlation in the fre-
guency domain between the measured system and identified
model. In both cases, the majority of discrepancy is due to small
errors in the resonance frequencies. Current work involves the

100 re (m)

f(Hz)

Fig. 17. Cross section of the cantilever plate measured spatial freque

development of an efficient optimization algorithm to minimize
such errors.

Other topics of current research include: the automatic iden-
tification of nondistributed dynamicH (s), experimental iden-
tification incorporating piezoelectric sensor voltages, time do-

ncy . . e . ) i
response. The response is measured from the applied actuator voltage tJTt’)réHn identification techniques, and stochastic analysis.

resulting displacement.
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VII. CONCLUSION

A technique has been presented for identifying a class of did!
tributed parameter systems from a set of spatially distributed
frequency responses. The systems are modeled as a finite SL[JlrE]
of second-order transfer functions with spatially variant numer-

ators and a feed-through term.
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