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A method for multiple mode piezoelectric shunt damping will be presented in
this paper. The proposed \current 
owing" shunt controller has a number of ben-
e�ts compared to previous shunt damping schemes; it is simpler to implement and
requires small number of passive circuit elements. The passive control strategy is
validated through experimentation on two piezoelectric laminated structures.
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1. INTRODUCTION

Placing an electrical impedance across the terminals of a piezoelectric transducer,
which is normally bonded to or embedded in the host structure, is referred to as
piezoelectric shunt damping. As the piezo-laminated structure strains, an electrical
charge forms on the terminals of the transducer. By placing an appropriate passive
electrical impedance across the terminals of the transducer, the circuit network is
capable of increasing the mechanical damping.
Forward [1], experimentally demonstrated the use of resistive and inductive-

resistive resonant piezoelectric shunt circuits. Hagood and von Flotow [2] later
presented an analytical model for resistive and inductive-resistive shunt dampened
systems. Other researchers, such as [3{5], have attempted to extend shunt damping
to multiple modes. Currently, single and/or multiple mode shunts require large
inductors to dampen low frequency modes. Consequently, active inductors are syn-
thesized using operational ampli�ers [6] and digital signal processor [7].
In this paper, we present a new passive multiple mode piezoelectric vibration

dampener. The e�ect of the \current 
owing" shunt controller is studied theoret-
ically and then validated experimentally on two resonant structures. The current

owing shunt controller is similar in nature to \current blocking" circuits [5], as only
a single piezoelectric transducer is used to control vibration of several modes. While
achieving comparable performance to that of the current blocking shunt controller,
the proposed controller has a number of advantages; it is simpler to implement as it
requires a smaller number of components, requires no \
oating" inductors [6], and
the controller is inherently multiple mode and guaranteed to be stable.
The paper is organized as follows. Section 2 introduces a method for modeling a
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piezoelectric transducer. Section 3 considers two piezoelectric laminated structures.
Subspace system identi�cation is employed to obtain a model for each system. In
section 4, a method for modeling the piezoelectric composite system, i.e. the damp-
ened structure is developed. The next section, Section 5, presents the proposed
\current 
owing" shunt controller. Section 6, reports experimental results that
verify the proposed control scheme. Finally in Section 7, the paper is concluded.

2. DYNAMIC MODELING FOR PIEZOELECTRIC SHUNT DAMPING

2:1: PIEZOELECTRIC MODEL

Piezoelectric crystals have the unique ability to convert mechanical strain into
electrical energy and vice versa. For vibration control, a thin layer of piezoelectric
material, normally lead titanate zirconate (PZT), is sandwiched between two con-
ducting layers. This forms a piezoelectric transducer. The transducer is then glued
to the surface of the 
exible structure using a strong adhesive material.
A piezoelectric transducer behaves electrically like a capacitor Cp and mechani-

cally like a sti� spring. It is common practice to model the piezoelectric element as
a capacitor Cp in series with a strain dependent voltage source vp [2; 8; 9], as shown
in Figure 1. As discussed in [10; 11], for small mechanical strains, the piezoelectric
strain-voltage relations is relatively linear.
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Figure 1. A piezoelectric shunted structure.

2:2: MODELING THE PIEZOELECTRIC SHUNT SYSTEM

Consider Figure 1, where a piezoelectric transducer is adhered to the surface of a
linear elastic structure. As the structure deforms, due to a point disturbance w, an
electric charge forms on the conducting plates of the piezoelectric transducer. Since
a charge has formed on the terminals of the piezoelectric transducer, a current 
ows
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through the impedance Z. Hence, mechanical energy is transformed to electrical
energy which is subsequently dissipated by the resistive component of Z.
To make the discussion clearer, the shunt impedance Z is removed from the

circuit, i.e., the piezoelectric transducer is open circuited, then the voltage across
the terminals of the transducer is equivalent to vp. The voltage vp is entirely due
to the disturbance w acting on the structure. Therefore, vp is related to w via a
transfer function Gwv. That is,

vp(s) = Gwv(s)w(s); Z(s) =1: (1)

Alternatively, if we apply a voltage at v and measure the displacement at a point
on the structure d, then the related transfer function between v to d is Gvd. Such
that,

d(s) = Gvd(s)v(s); Z(s) =1 w(s) = 0: (2)

Note the conditions Z(s) =1 and w(s) = 0, where the piezoelectric shunting layer
terminals are open circuited and the point disturbance is set to zero, respectively.
Now, assume no disturbance is acting on the structure, i.e., w(s) = 0, while a

voltage source v(s) is attached to the terminals of the piezoelectric transducer. In
this case, the transfer function from vp to v is Gvv(s). That is,

vp(s) = Gvv(s)v(s); w(s) = 0: (3)

If the structure is disturbed by a voltage v̂ applied to an identical collocated
piezoelectric transducer and some impedance Z is attached to the piezoelectric
terminals, then the overall linear relationship is

vp(s) = Gvv(s)v̂(s)�Gvv(s)v(s): (4)

Furthermore, Ohm's law states that the voltage v is related to current i via

v(s) = Z(s)i(s): (5)

Using Kircho�'s voltage law for Figure 1, we can analyze the piezoelectric shunt
circuit voltage v as

v(s) = vp(s)�
i

Cps
; (6)

where Cp is the capacitance of the piezoelectric shunting layer. Using (5) and (6),
we obtain

v(s) =
CpsZ(s)

1 + CpsZ(s)
vp(s): (7)

Combining (4) and (7) using simple algebra, we can �nd the shunt transfer func-
tion Ĝvv(s), as

Ĝvv(s) =
vp(s)

v̂(s)
=

Gvv(s)

1 +Gvv(s)K(s)
; (8)
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where K is de�ned as

K(s) =
CpsZ(s)

CpsZ(s) + 1
: (9)

Equation (8) can also be used to obtain the displacement at a given point on the

exible structure, that is, the shunt transfer function Ĝvd(s), as

Ĝvd(s) =
d(s)

v̂(s)
=

Gvd(s)

1 +Gvv(s)K(s)
: (10)

From the above equations, the reader may note that piezoelectric shunt damping
is in fact a negative feedback control problem where K is the controller. For a more
in-depth description of the shunt feedback scheme the reader is referred to [8; 12].

3. DEVELOPING THE \CURRENT FLOWING" SHUNT CONTROLLER

The \current 
owing" shunt is similar in nature to \current blocking" circuit
[5]. Instead of preventing the current from 
owing at a speci�c frequency !i (i =
1; 2; 3; : : : ; n), we allow the current to 
ow. This is achieved by using a series
capacitor-inductor circuit Ci � L̂i, shown in Figure 2. The series Ci � L̂i is tuned
to the structural resonance frequency !i. The series capacitor-inductor circuit,
Ci � L̂i, appears to be a short circuit at !i and approximately open circuit for all
other frequencies. While the shunting branch ~Li�Cp is also tuned to !i. Therefore,
each circuit branch, Ci � L̂i � ~Li � Ri, is functional at its own frequency !i, but
is approximately open circuit at all other frequencies. Notice that some level of
intereaction between modes that are closely spaced is expected. However, for modes
that are widely spaced, this interaction will be minimal.
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Figure 2. Proposed \current 
owing" multiple mode shunt circuit.

3:1: EXAMPLE \CURRENT FLOWING" SHUNT CONTROLLER FOR TWO MODES

To illustrate the proposed shunt circuit, consider the two mode case shown in
Figure 3, at mode frequencies !1 and !2. The �rst branch of the shunt circuit,
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with shunt inductor ~L1 = 1=(!21Cp) and R1, is inserted with a \current 
owing"
circuit consisting of a series capacitor and inductor circuit C1� L̂1 whose electrical
impedance is designed to approach a short circuit at the branch frequency of !1 (as
indicated with !1 in Figure 3). This is done by selecting C1 and L̂1 such that the

resonance frequency is at !1 = 1=
q
C1L̂1, which is a fundamental characteristic of

any resonant capacitor-inductor circuit. The \current 
owing" circuit in the second
branch also uses a resonant circuit whose electrical impedance approaches a short
circuit at the second structural frequency of !2 by selecting C2 and L̂2 such that

!2 = 1=
q
C2L̂2. When the two branches are connected together to the piezoelectric

shunting layer terminals, each branch acts independently for their respective modes.
That is, the �rst branch is designed to introduce damping at !1 while not disturbing
the second branch that is approximately open circuit (i.e. the impedance is very
large) at !1. The same reason applies for the second branch.
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Figure 3. Proposed two mode \current 
owing" shunt circuit.

3:2: GENERALIZED \CURRENT FLOWING" SHUNT CONTROLLER

For the generalized case, for n structural modes,

~L1 =
1

!21Cp

; � � � ; ~Ln =
1

!2nCp

(11)

where ~Li is tuned into Cp. Frequencies !i are the mode frequencies to be passively
controlled and assuming that !1 < !2 < : : : < !n. The relationship for L̂i current

owing branches is

L̂1 =
1

!21C1
; � � � ; L̂n =

1

!2nCn

: (12)

By combining the series inductor values together (e.g. Li = ~Li + L̂i),

L1 =
Cp + C1

!21C1Cp

; � � � ; Ln = ~Ln + L̂n =
Cp + Cn

!2nCnCp

; (13)
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the total impedance for each shunting branch Zi(s) has been simpli�ed. Therefore,
the modi�ed current 
owing shunt, shown in Figure 4, has one less passive element
in each shunting branch. The reader may note that the proposed modi�ed con-
troller, shown in Figure 4, resembles the circuit of Hollkamp [4]. However, there are
signi�cant di�erences between the two approaches.
One distinction is that the shunt circuit proposed in [4] includes only one resistor-

inductor circuit for the �rst mode, while in our approach a resistor-inductor-capacitor
circuit is used to shunt each mode. Furthermore, the methodology proposed here for
determining the capacitive and inductive elements is very di�erent to that suggested
in [4]. The reader can observe that by following the above procedure, capacitors
and inductors for each parallel branch of the circuit can be determined in a very
straightforward manner. This is in contrast to the methodology proposed in [4],
that requires the solution to a non-trivial optimization problem.
The total shunt branch impedance Zi(s), is

Z1(s) =
s2 + R1

L1
s+ 1

L1C1

1
L1
s

; � � � ; Zn(s) =
s2 + Rn

Ln
s+ 1

LnCn
1
Ln
s

; (14)

or the admittance Yi(s) =
1

Zi(s)
is

Y1(s) =
1
L1
s

s2 + R1

L1
s+ 1

L1C1

; � � � ; Yn(s) =
1
Ln
s

s2 + Rn

Ln
s+ 1

LnCn

: (15)

By summing the shunt branches together we derive the total shunt admittance, as

Y (s) =
nX
i=1

Yi(s) =
nX
i=1

1
Li
s

s2 + Ri

Li
s+ 1

LiCi

: (16)
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Figure 4. Proposed modi�ed \current 
owing" multiple mode shunt circuit.

Now, the feedback controller (9), can be determined as

K(s) =
1

1 + 1
Cps

Y (s)
: (17)

Using (16), it can be shown that the e�ective feedback controller is:
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K(s) =
1

1 +
nP
i=1

1

LiCp

s2+
Ri
Li

s+ 1

LiCi

(18)

or alternatively,

K(s) =

nQ
i=1

�
s2 + Ri

Li
s+ 1

LiCi

�

nQ
i=1

�
s2 + Ri

Li
s+ 1

LiCi

�
+

nP
i=1

1
LiCp

nQ
l=1;l 6=i

�
s2 + Rl

Ll
s+ 1

LlCl

� : (19)

Notice that the controller has a highly resonance structure. It applies a high
gain at each target base structure resonant frequency. Viewing the shunted system
in this manner has the advantage that the residual e�ects of each mode on other
modes can be determined in a straightforward manner. It can be observed that
as long as the controlled modes are reasonably spaced, this \residual e�ect" will
be minimal. However, if two modes are very close, this e�ect can not be ignored
and may degrade the performance of the shunted system at those speci�c resonance
frequencies.

4. PROPOSED \CURRENT FLOWING" SHUNT CONTROLLER
VALIDATION

The proposed control scheme will be validated experimentally on two resonant
structures; a simply supported beam, and a bounded plate structure. Photographs
of the two piezoelectric laminate structures are shown in Figures 5 and 6. For both
structures, two piezoelectric patches are bonded to the surface of each structure
using a strong adhesive material. On each structure, one piezoelectric patch will
be used as an actuator to generate a disturbance and the other as a shunting layer,
as shown in Figure 7. For a detailed description of the apparatus, the reader is
referred to [8; 12; 13].
In order to design an e�ective shunt controller it is necessary to obtain a model

of the resonant system. Obtaining an analytic model for many realistic structure
may not be possible since the 
exible structure in question may be too diÆcult
to model analytically. In such cases the technique of system identi�cation may
be helpful. Subspace based system identi�cation techniques have proven to be an
eÆcient means of identifying the dynamics of high order, highly resonant systems.
A full summary of subspace based system identi�cation techniques is described in
reference [14].
When observing the dynamics of a structure, it is common practice to consider

the transfer function between the displacement at some point on the structure and
the disturbance actuator voltage applied to the actuating patch Gvd(s). Another
important transfer function is the dynamics between the shunting piezoelectric volt-
age (assuming Z(s) =1) and the actuator voltage. Since the shunting layer voltage
and actuating voltage are collocated, as shown in Figure 7, we can measure Gvv(s)
directly.
For the two resonant structures we need to experimentally minimize the energy

of the system. This can be achieved by minimizing the Gvd(s), i.e. the disturbance
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Figure 5. Piezoelectric laminated simply supported beam.

Figure 6. Piezoelectric laminated plate bounded structure.

actuator voltage to the displacement at a point on the structure, as this e�ectively
minimizes the vibration.
Using a Polytec laser scanning vibrometer (PSV-300) and a Hewlett Packard

spectrum analyzer (35670A), frequency responses were obtained for Gvd(s) and
Gvv(s). These are shown plotted in Figures 8 and 9 respectively. Using the subspace
based system identi�cation technique, a model was �tted to the experimental data,
the measured and identi�ed transfer functions are shown in Figures 8 and 9. In the
bandwidth of interest, the identi�ed models were found to be good representations
of the piezoelectric laminated systems.

4:1: SIMPLY SUPPORTED BEAM

From Figure 8, we can obtain the resonant modes of the laminated structure.
The resonance frequencies for the structure are shown in Table 1. The 2nd, 3rd, 4th

and 5th structural modes were chosen due to their highly resonant amplitudes.
Assuming the capacitance values C2 ,C3, C4 and C5 to be 10nF and the experi-

mentally measured piezoelectric shunt capacitance Cp is 105:77nF , we can calculate
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Figure 7. Experimental piezoelectric laminated structures: (a) simply supported beam and (b) plate
bounded structure. Note v is the applied disturbance actuator voltage and d is the displacement
at some point on the structure.
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Figure 8. Frequency response a) jGvv(s)j and b) jGvd(s)j, for the piezoelectric laminated simply
supported beam structure. Experimental data (� � �) and model obtained using subspace based
system identi�cation (|).

the required inductance values using equation (13), as shown in Table 2.
In order to �nd the appropriate shunt resistance Ri, an optimization approach

could be used. An optimization technique was proposed in [15], where the H2 norm
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Figure 9. Frequency response a) jGvv(s)j and b) jGvd(s)j, for the piezoelectric laminated plate
bounded structure. Experimental data (� � �) and model obtained using subspace based system
identi�cation (|).

TABLE 1

Experimental resonant frequencies for the simply supported beam.

Mode Value (Hz)

!2 76
!3 173
!4 306
!5 472

of the controlled system is minimized. Optimal shunt resistance values obtained
using this technique are displayed in Table 2.

Simulated results for jGvd(s)j and
���Ĝvd(s)

��� the shunted transfer function from the

disturbance voltage to displacement, show that the resonance amplitudes have been
considerably dampened, as shown in Figure 10. Table 3 summarizes the simulated
amplitude reductions for the 2nd, 3rd, 4th and 5th modes.
Using a synthetic impedance 1 [7] with the required current 
owing shunt cir-

cuitry, the frequency response of the shunted structure can be measured using the
laser scanning vibrometer. Figure 11 shows the experimentally measured displace-

1 The term \synthetic impedance" denotes a two terminal device that has an arbitrary relationship between
voltage and current at its terminals, assuming that the admittance is stable and proper [7].
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TABLE 2

Circuit parameters for the simply supported beam.

Circuit Element Value

L2 480:0H
L3 92:6H
L4 29:6H
L5 12:4H
R2 1423

R3 1212

R4 913

R5 798


ment responses for jGvd(s)j and
���Ĝvd(s)

���. The experimental resonant amplitudes

were successfully reduced, as summarized in Table 3.
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Figure 10. Simulated beam frequency response: jGvd(s)j undamped response (� � �) and
�
�
�Ĝvd(s)

�
�
�

damped response (|).

4:2: PLATE BOUNDED STRUCTURE

Considering Figure 9, we can obtain the resonance frequencies of the bounded
structure, they are shown in Table 4. The 1st, 2nd, 3rd, 5th and 6th structural modes
were chosen due to their high resonant amplitudes. The 4th mode was neglected
due to the reduced control authority and its proximity to the 5th mode.
Setting C1, C2 ,C3, C5 and C6 to be 7nF , and Cp equal to 67:9nF , we can calculate

the required inductance values, as shown in Table 5. The already mentioned H2

norm optimization strategy is employed to determine the required resistance values,
which are tabulated in Table 5.
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TABLE 3

Amplitude reduction for the simply supported beam.

Mode Simulated (dB) Experimental (dB)

2 14:5 13:5
3 8:2 7:8
4 14:1 13:8
5 16:4 15:8

TABLE 4

Experimental resonant frequencies for the plate bounded structure.

Mode Value (Hz)

!1 44:85
!2 90:2
!3 124:2
!4 161:6
!5 167:6
!6 237:2

TABLE 5

Circuit parameters for the plate bounded structure.

Circuit Element Value

L1 1986:3H
L2 491:1H
L3 259:2H
L5 142:2H
L6 71:1H
R1 2498:2

R2 1858:3

R3 1272:6

R5 1641:5

R6 1400:1
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Figure 11. Experimental beam frequency response: jGvd(s)j undamped response (� � �) and
�
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�Ĝvd(s)
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damped response (|).

Simulated results for jGvd(s)j and
���Ĝvd(s)

��� show that the structural amplitudes

of the resonant structure have been dampened, as shown in Figure 12 and Table 6.
Using the synthetic impedance [7] and the laser scanning vibrometer, we can

measure jGvd(s)j and
���Ĝvd(s)

���. The frequency response for the experimental un-

damped and damped systems are shown in Figure 13. Experimental results, shown
in Figure 13, demonstrate that the structural modes of the bounded structure have
been considerably damped. The experimental resonant amplitudes were successfully
reduced, as shown in Table 6.
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Figure 12. Simulated plate frequency response: jGvd(s)j undamped response (� � �) and
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damped response (|).
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Figure 13. Experimental plate frequency response: jGvd(s)j undamped response (� � �) and
�
�
�Ĝvd(s)
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damped response (|).

TABLE 6

Amplitude reduction for the plate bounded structure.

Mode Simulated (dB) Experimental (dB)

1 3:2 3:8
2 10:9 10:1
3 13:2 12:8
5 13:9 13:2
6 15:8 14:7

5. CONCLUSION

The current 
owing controller has been introduced as an alternative method for
reducing structural vibrations. While achieving comparable performance to other
passive control schemes, the current 
owing piezoelectric shunt circuit has a number
of advantages; it is simple - requires less resistors, capacitors and inductors; requires
no \
oating" inductors [6]; mode dominant - capable of damping more dominate
resonant modes or neglecting the less dominant modes; multiple mode - can damp
multiple modes using a single piezoelectric transducer; and passive - it is dissipative
and guaranteed to be stable.
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