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Dynamics, Stability, and Control of Multivariable
Piezoelectric Shunts
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Abstract—This paper is concerned with the dynamics and
stability of piezoelectric laminate structures, where several
piezoelectric elements are shunted by a multiinput impedance.
The problem is shown to be equivalent to a multivariable feed-
back control problem for a square plant. A parameterization of
stabilizing admittance transfer function matrices is given together
with a specific class of controllers capable of reducing structural
vibrations and guaranteeing closed-loop stability. An efficient
method for implementation of a multiport admittance transfer
function is introduced and applied experimentally to demonstrate
the effectiveness of the proposed methodology.

Index Terms—Dynamics, multivariable, piezoelctric shunts, sta-
bility.

1. INTRODUCTION

IEZOELECTRIC transducers have been used extensively

as actuators, and also as sensors in active control of struc-
tural vibrations, where the piezoelectric transducer is either used
as a sensor, or as an actuator [1]-[6]. However, due to the nature
of the piezoelectric effect, it is possible to combine both func-
tions of sensing and actuation in a single device. This fact has
generated increasing interest in passive control of vibrations by
shunting piezoelectric transducers with electrical impedances.
This process effectively integrates sensing and actuation capa-
bilities within a single piezoelectric transducer. An analysis of
this procedure is given in [7], where the authors suggest that
a piezoelectric transducer can be shunted by a series combina-
tion of a resistor and an inductor. The piezoelectric transducer
is modeled as a strain-dependent voltage source in series with a
capacitor. The resulting RLC circuit is tuned to one of the res-
onance frequencies of the base structure to suppress structural
vibrations due to that specific mode.

The method suggested in [7], although effective, can only
be applied to one vibration mode. However, following [7],
a number of authors attempted to extend this technique to
allow for passive damping of several modes. In [§], the author
proposed the use of current blocking circuits to separate RL
branches tuned to each resonance frequency. The method works
well for a small number of modes. However, as the number of
modes increases so does the complexity of the electric shunt,
resulting in implementation difficulties.

Reference [9] suggested parallel combination of a series RL
circuit with several series RLC branches. The author experimen-
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tally demonstrated the effectiveness of this specific structure in
reducing vibrations due to two modes of a structure. However,
the synthesis procedure is not straightforward, making it diffi-
cult to extend the application to more modes.

The use of parallel combination of series RLC branches
was studied in [10]. The idea is to introduce “current flowing”
RC circuits in each RL branch. Complexity of the electrical
shunt proposed in [10] is considerably less than that proposed
in [8]. However, the freedom in choice of the capacitive, or
alternatively the inductive elements may complicate the design
process.

Shunt damping of piezoelectric laminate structures is cur-
rently an active area of research in which new applications are
emerging. For some interesting applications, the reader is re-
ferred to [11]-[17] and references therein.

This paper is concerned with the problem of multimode shunt
damping of structural vibrations using several piezoelectric
transducers. It is argued that the problem can be cast as a multi-
variable feedback control problem, in which the impedance, or
alternatively the admittance of the electrical shunt, constitutes
the feedback controller. The model of a flexible structure is
made up of a large number of highly resonant modes. In a typ-
ical vibration-control application, often, only a limited number
of low-frequency modes are to be controlled. In this paper,
conditions under which the closed-loop system remains stable
in the presence of uncontrolled out-of-bandwidth modes are
derived, and a number of specific structures for the electrical
shunt are proposed.

The main difficulty associated with implementing piezoelec-
tric shunt impedances is the need for implementing very large
inductors—in the order of several hundred to several thousand
henrys. Synthetic inductors constructed from opamps [18] have
been proposed as a possible solution. However, if a large number
of modes are to be controlled, one may need to construct an elec-
tronic circuit comprising of many opamps. Such circuits could
be sensitive to operating conditions and may have to be tuned
on a regular basis.

The synthetic admittance circuit proposed in [19] is a viable
solution to the above problem. It enables one to implement any
given admittance transfer function in an efficient way, as demon-
strated in [19]. Furthermore, by using an array of such circuits
a multiinput admittance transfer function, of the kind proposed
in this paper, can be implemented.

The use of synthetic inductors, or synthetic admittance sys-
tems is probably the only possible means of implementing elec-
tric shunts onto piezoelectric transducers. Strictly speaking, the
resulting impedance will not be a “passive” circuit, as it will be
made of “active” components, such as opamps and transistors,
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digital signal processing (DSP) chips, etc. However, there are
clear advantages in using such techniques. Shunt damping cir-
cuits remove the need for external sensors since the piezoelec-
tric transducers act as sensors as well as actuators. Furthermore,
the feedback structure associated with the shunt damping sys-
tems indirectly recovers the collocated transfer function of the
system in an indirect way (see Section II). The latter is partic-
ularly beneficial in terms of constructing impedance structures
that guarantee closed-loop stability in presence of out-of-band-
width dynamics.

The remainder of the paper continues as follows. Section II
is concerned with the feedback structure associated with shunt
damping systems with multiple piezoelectric transducers. Sec-
tion III presents a parameterization of stabilizing impedances
for such systems. Section IV introduces a class of decentralized
admittance transfer functions that apart from being stabilizing
are very efficient in reducing structural vibrations of the base
structure. Section V includes our experimental results, and Sec-
tion VI concludes the paper.

II. DYNAMICS OF SHUNTED PIEZOELECTRIC LAMINATE
STRUCTURE

Consider a flexible structure with m piezoelectric patches
bonded to its either side in a collocated pattern. Furthermore,
assume that the piezoelectric transducers on one side are used
to disturb the structure by generating vibrations, while those on
the other side of the structure are shunted to an impedance. The
impedance is to be designed in a way that the unwanted struc-
tural vibrations are minimized. It should be noted that the dis-
turbances acting on the structure can take different forms. Nev-
ertheless, the methodology developed in the sequel is general
enough to apply to such cases. This point will be further clari-
fied in due course.

In Fig. 1(a), a schematic of this system is depicted while the
equivalent electrical circuit of the shunted piezoelectric trans-
ducers are drawn in Fig. 1(b). Notice that each shunted piezo-
electric transducer is modeled as a dependent voltage source in
series with a capacitor. Each voltage v, is proportional to me-
chanical strain, which is in turn related to the disturbances acting
on the structure. Furthermore, C),, represents the capacitance of
the sth piezoelectric patch. Dynamics of the shunted system are
derived next.

Let
0 (5) Opa (5)
vw= " veo=|""
Lv...(5) 0y (5)
[ Vin, (8) i1(s)
o= | " L= |
[ Vin,, (5) i (5)

Then

Va(s) = Z(s)1:(s)- (1)
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Fig. 1. (a) Piezoelectric laminate structure with m shunted piezoelectric
patches. (b) Electrical equivalent of part (a).

Furthermore, writing the Kirchhoff’s voltage law (KVL)
around the kth loop we obtain

1
Vs = Vp, — Tk
Cp. 8

which implies

1
Vals) = Vyls) = SAL(s) @
where
1 1 1
A:diag(—,—,...,—) 3)
Cpl OPQ Cpm
and diag(ay, o, ..., ) represents a matrix whose diagonal
entries are o, s, . . . , .y, and whose all other entries are zeros.

To capture the total effect of the disturbance voltages as well
as the effect of the electric shunt on the structure, we may write

[7]

Vp(8) = Guu(8)Vin(8) = Guu(8)V2(3). “4)

Here, G, (s) is the multivariable collocated transfer function
matrix of the system; i.e.,

M

U
Guu(s) =Y - ©)

Pt $2 + 2Cpw s + wi

where resonance frequencies are ordered such that w; < we <
--- < wyps and M can be an arbitrarily large number. Further-
more, due to the fact that G, (s) is a collocated transfer function
matrix, the m X m matrix U, must be a positive semi-definite
matrix [20]. That is

U, =T, >0 for all k. (6)
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Fig. 2. Feedback structure associated with the shunt damping problem.

It should be pointed out that if (5) is obtained by employing
a procedure such as modal analysis [21], one would expect
M — oo. However, choosing a very large number for M
is quite acceptable, as pointed out in [22]. This would enable
us to use finite-dimensional techniques in analyzing dynamics
of the system. Models of the form (5) can be obtained using
a variety of techniques; e.g., modal analysis if the system is
simple with well-defined boundary conditions, or finite element
method (FEM) for more complicated structures. An alternative
approach is to employ frequency-domain system-identifi-
cation techniques [23] to identify a model for the system.
Frequency-domain subspace identification has proved to be
an efficient method for identifying highly resonant systems of
high orders [24].

Next, (1), (2), and (4) are combined to obtain

-1

Vy(s) = | T+ Guuls)2(s) (z<s> + §A)1

X Gyo(8)Vin(s). (1)

From (7) it can be inferred that the transfer function matrix
relating Vi, (s) to V,(s) is the feedback connection of G, (s)
with

K(s) ®

~1
= Z(s) (Z(s) + %A) .

This is an interesting observation that enables us to employ
systems theoretic tools in analyzing dynamics and stability of
shunt-damped systems. The feedback control problem associ-
ated with (7) is depicted in Fig. 2. Note that the inner feedback
loop represents the effective controller K (s) in (8). Observe that
the purpose of the system is to regulate v, in the presence of dis-
turbance V;,. The signal v,,, however, is not directly measurable.
The reader may notice that this is a very specific form of cas-
cade feedback control structure [25, Sec. VI-D ].

The above system is mainly used in laboratory experiments.
Indeed, experimental results of this paper are obtained from a
simply-supported beam with two pairs of collocated piezoelec-
tric transducers (see Section V). In a more realistic setting, the
disturbances acting on the structure have a different nature. For
example, they may be point forces, moments, a distributed force,
etc., In this situation, (4) should be modified to

Vo(8) = Gow(s)W(s) — Guu(s)Va(s) 9)

where G, (s) is the unshunted transfer function from the dis-
turbance vector W (s) to V,(s). The transfer function Gy, ()
depends solely on the nature as well as the spatial coordinates of
the disturbance signal w. Nonetheless, due to the common-pole
property of flexible structures, G, (s) and G,,,(s) will have
identical poles. The zeros of the two transfer functions, how-
ever, could be quite different.

An implication of (9) is that the shunted structural dynamics
will have to be revised as

-1

V() = [T+ Guouls)2(s) (z<s> + EA)_I

X Gow(s)W(s). (10)
Observe that although the nature of the disturbance has
changed, stability of the shunted system is still dictated by the
feedback connection of G, (s) and K (s) in (8). Furthermore,
itis noted that under these circumstances, the regulator problem
depicted in Fig. 2 should be modified to that shown in Fig. 3.

III. STABILITY OF THE SHUNTED SYSTEM

A set of conditions under which stability of the closed-loop
system depicted in Fig. 3 is guaranteed, is derived in this sec-
tion. Instead of considering the shunting impedance Z(s) as the
controller, the closed-loop stability of the system is studied in
terms of the shunted admittance Y (s) = Z(s)~!, noting that
the closed-loop transfer function in (10) can be rewritten as

-1

Vi (s) = | T+ Guu(s) <1 4 %AY(s)) (W (s).

Y

The regulator problem associated with this system is depicted
in Fig. 4. A parameterization of stabilizing controllers for the
system in (11) is introduced next.

Considering the structure of the feedback system, the Youla
parameterization [26] of all stabilizing controllers for the inner
feedback loop can be written as

Y(s) = (I-Q(s)A/s)"'Q(s).

Although the inner loop contains integrators, the parameter-
ization for a stable plant can be used as long as Q(s) satisfies
a number of conditions. Namely, ((s) must be stable, proper
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Fig. 3.

Feedback structure associated with the modified shunt damping problem.
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Fig. 4. Feedback structure associated with the shunt damping problem with admittance as the control variable.

$Goup(8)

J(s)

Fig. 5. Feedback connection of sG,,(s) with J(s).

and have a transmission zero at the origin. Furthermore, I —
Q(s)A/s must have a transmission zero at s = 0. These condi-
tions can be enforced by choosing

where H (s) is stable, strictly proper, and I — H(s) has a trans-
mission zero at the origin, i.e.,

I—H(s)

= sJ(s).
This choice for Q(s) results in a closed-loop system with the
transfer function matrix
[+ 5Gou()J(5)] 7 G (5)- (12)
It is now possible to find closed-loop stability conditions in

terms of .J(s) as the stability of (12) is equivalent to that of the
system depicted in Fig. 5.

It turns out that the closed-loop system will be stable as long
as J(s) is a strictly positive real (SPR) transfer function matrix.
The following two definitions and the subsequent theorem due
to [27] are needed in the proofs.

Definition 1: An m X m rational matrix G(s) is said to be
positive real (PR) if

1) all elements of G(s) are analytic in Re(s) > 0;
2) G(s) + G*(s) > 0in Re(s) > 0 or equivalently
a) poles on the imaginary axis are simple and have
nonnegative residues;
b) G(jw) + G*(jw) > 0 for w € (—00, 00).

Definition 2: An m X m stable rational matrix G(s) is said

to be SPR in the weak sense (WSPR) if
G(jw) + G*(jw) > 0, forw € (—o0, 00).

The following theorem is Corollary 1.1 of [27].

Theorem 1: The negative feedback connection of a PR
system with a WSPR controller is stable.

It should be pointed out that there are a number of definitions
in the literature for SPR systems. For a comprehensive review
of these, the reader is referred to [28], [27]. For almost all such
definitions, one would expect a similar result to that of Theorem
1; i.e., the negative feedback connection of a PR system with an
SPR controller is stable. It turns out that for the problem at hand,
definition 2 is the most relevant.

Now, we prove that

Gou(8) = 8 Gyo(8) (13)
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is a PR transfer function matrix. It can be noticed from (13)
and (5), that all of the poles of G, (s) are in the left half of
the complex plane; hence, the system is stable. Furthermore, the
system has no poles on the jw axis. To prove positive realness
of Gy (s), we need to establish that G, (jw) + G*,(jw) > 0
for all w € (—o0, 00).

évu(jw) + Gl (jw)
_ Z Jw¥
w? — w? + j2Cwiw

+

—jwVy
—w? + —j2Cwrw
4Ckwkw2\lfk

+ (2Gewrw)?
for all w € (—o0,0)

(w7 —w2

w2
Wk
N
2
k=1
>0

where the last inequality follows from (6).

An implication of the above analysis is that to guarantee the
closed-loop stability of the system, it would suffice to choose an
admittance

Y(s) = J(s) NI —sJ(s))A™"

with J(s) an WSPR transfer function matrix.

IV. DECENTRALIZED IMPEDANCE DESIGN

The observation made in Section III enables us to design
impedance structures that guarantee closed-loop stability of the
shunted system. This section introduces two specific decentral-
ized structures that enforce the above conditions. Furthermore,
these decentralized impedances result in effective wideband re-
duction of vibrations of the base structure.

These admittances are constructed starting from

ah s+ 2d11w7)
Z diag
82 4 2dyw;s + w?

Q24 (5 + 2d2LwL)
82 4 2dp;w; s + w?

ml 2dm7, 1
ami(s + w; )2 (14)
$2 + 2d,iw; S + Wi
and
= Zdiag d1is
et 82 4 2dyw;s + w?
Q9; S
$2 4+ 2dg;wis + w2’
QUi S
15
52 4+ 2d,iwis + w?) (1)
where, in both cases
Qg >0,  i=12...N; ¢=1,2....m.  (16)
and
N
and» agi=1, ¢=1,2,...,m (17)
i=1

It can be verified that both .J,, (s) and .J;,(s) are strictly proper
WSPR systems. That is .J, (jw) + J,(jw)* > 0 and J,(jw) +
Jp(jw)* > 0forallw € (—o0, o). Hence, the resulting admit-
tances will guarantee closed-loop stability of the system.

Corresponding to J,(s) and J;(s), the expressions for Y, (s)
and Y} (s) can be determined as

ZN aliw?

=152 4 2dywi8 + w?

Y.(s) = diag ~ or
1= Zi:l 52+2duwzs+w?
N a2iwi2
dim1 2 my 2
52 4+ 2dow; s + w;
2 b t
N Q2iW;
1-> "
2z $2 + 2do;w;s + w?
=1 52 +2dmlw28;’_w12 A—ls (18)
1-> -
2zt 82 4 2d,pw; 8 + w2
and
ZN Olli(2d1iu)i8 + w?)
) =1 g2 4 2dy,wis + w?
Yy(s) = diag 5
1 ZN 1;(2d1iw; s + w7)
=1 g2 4 2d;wis + w?
ZN a9, (2d2iwis + sz)
=152 4 2dywis + w?
N a2i(2dywis +w?)
1-37 2 - 2
5% 4+ 2do;w; s + w;
EN amqj(Qdmi(A)iS + w?)
=12 4 9d,iwis + w? A s, (19)

N mi(2dmiw;s + w?)
=182 4 2d, w8 + w?

-y

One of the interesting properties of the above admittance
transfer functions is that over a specific bandwidth, one has
the option of choosing to control only those modes that are of
importance. This is reflected in the constraint on parameters
arg; in (16). This is in contrast to control-design methodologies
such as LQG and H ., where the controller tends to have equal
dimension to that of the system that is being controlled.

A further property of the controllers Y, and Y} is that in
the presence of out of bandwidth modes of the base structure,
they do not cause instabilities. The spillover effect [29] and
[30] is a serious cause of concern in control design for flex-
ible structures. Often, a feedback controller is designed using a
model of the structure that contains a limited number of modes.
Once the controller is implemented on the full order system, the
presence of uncontrolled high-frequency modes may destabilize
the closed-loop system, or severely deteriorate the performance.
Considering the discussion in Section III, it should be clear that
such a problem can not happen if the above procedure is fol-
lowed. Stability of the shunted system with the above class of
shunts is guaranteed. Furthermore, due to their highly localized
nature, these shunts have the additional property that their effect
on the out of bandwidth modes of the system is minimal, hence
minimizing the spillover effect.
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Fig. 6. Experimental beam apparatus.

Now, it is straightforward, but tedious, to verify that both
Y. (s) and Y} (s) are SPR transfer functions. Therefore, they can
be realized by passive circuit components; i.e., resistors, induc-
tors, and capacitors. Given that both Y, (s) and Y3 (s) have de-
centralized structures, effectively, each piezoelectric transducer
is shunted by an independent admittance. However, it is not clear
how such a network may be obtained as standard synthesis tech-
niques result in realizations that require Gyrators and op-amps.
To this end, it should be pointed out that even if passive real-
izations for (18) and (19) are found, in practice, such an imple-
mentation is likely to be impractical. Given that often low-fre-
quency modes of a structure are targeted for shunt damping, the
required inductors may be excessively large, in the order of sev-
eral hundred to several thousand henries. A practical way of im-
plementing Y, and Y} is to use the synthetic admittance circuit
as described in [31], [19] or the alternative, and more effective
method explained in Section V-C.

V. EXPERIMENTAL RESULTS

To validate the proposed concepts, experiments were carried
out on a piezoelectric laminated beam at the Laboratory for Dy-
namics and Control of Smart Structures,' at the University of
Newcastle.

A. Experimental Setup

The test structure is a uniform aluminum beam with rectan-
gular cross section and experimentally pinned boundary condi-
tions. Two pairs of collocated piezoelectric patches are attached
symmetrically to either side of the structure as shown in Figs. 6
and 7. Piezoelectric transducers used in our experiments are
PIC1512 piezoelectric patches. Details of the beam and PIC151
piezoelectric patches are listed in Tables I and II.

The first pair of piezoelectric patches is placed close to one of
the pinned ends of the beam, while the other pair is closer to the
beam’s center. Mode shapes of a simply-supported beam are si-
nusoidal functions [21]. Consequently, the first pair will be more
effective in controlling the first vibration mode of the beam,
while the second mode is better controlled by the second pair.
One of the main advantages of multivariable shunt damping, as
evident from this application, is that if one transducer does not

Thttp://rumi.newcastle.edu.au/
2These patches are manufactured by Polytec PI Ceramics.
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Fig. 7. Beam apparatus.

TABLE 1
PARAMETERS OF THE SIMPLY-SUPPORTED BEAM
Name [ Symbol | Unit
Length L 0.6 m
Width w 0.025 m
Thickness h 0.004 m
Young’s modulus E 65 x 10 N/m?
Poisson’s ratio v 0.3
Mass / unit area p 10.6 kg/m?
TABLE 11
PIC151 PIEZOELECTRIC PATCH PARAMETERS
Name Symbol Unit
Location z-direction T 0.050 m
Location z-direction To 0.240 m
Length L, 0.0724 m
Thickness hy 0.00191 m
Width Wy 0.025 m
Capacitance Cyp 471 x 107° F
Young’s modulus E, 62 x 107 N/m?
Poisson’s ratio Vp 0.3
Strain Constant d3, —320 x 1072 m/V
Electromechanical coupling factor k31 0.44
Stress constant / voltage coefficient g31 —-95x 1073V m/N

offer enough authority over a specific mode, another transducer
may enable the designer to control that mode more effectively.

B. System Identification

The first step in the analysis involves procuring a model
for the transfer function matrix G, (s). This will allow us to
simulate the effect of an attached piezoelectric shunt on the
transfer function from the applied actuator voltages Vi,(s),
to the generated piezoelectric shunt layer voltages V(s).
These variables are internal and cannot be measured directly
whilst an impedance is attached to the shunting layer. We will
also consider the transfer function from the applied actuator
voltages Vi, (s) , to the structural deflection at a point D(z, s).
This point is chosen such that the first three modes of the beam
are observable at that location. In the case where there are two
actuators and two sensors, we require a model with two inputs
and three outputs

[ V”(s))] = Gy (5)Van(s) (20)

D(x,s

where G, (jw) € C3*2 is the open-loop plant transfer function
matrix.
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Fig. 8. Experimental data (——) and identified model (—). Horizontal axes are in hertz, vertical axes in decibels. All the voltages are measured in volts. The
displacement is measured in meters.
Modeling of piezoelectric laminate structures is generally ?—
accomplished in the literature by means of either analytic +
modeling, finite element analysis, or system identification.
Analytic modeling, typically involving the assumed modes
approach [21], requires distinct models for both structural .
dynamics and piezoelectric transducers [32]. Detailed infor- Vz l lz
mation relating to the structural and piezoelectric physical
properties is required. Practical application typically involves
the use of experimental data and nonlinear optimization to
identify unknown parameters such as resonance frequencies, -
piezoelectric coupling coefficients, and modal amplitudes. o—

Another popular technique is that of the FE analysis [33]. This
is an approximate method that results in high order spatially
discrete models. If the dynamics of sensors and actuators are
known, an integrated model can be cast in state—space form,
facilitating design and analysis of passive shunt and feedback
control systems [34]. As with the modal analysis procedure, FE
models are usually tuned using experimental data [35].

System identification can be employed to procure a com-
posite structural-piezoelectric model directly from experimental
data. Although the field of system identification is extremely
diverse [36], the range of possibilities is significantly reduced if
we restrict ourselves to techniques capable of identifying mul-
tiple-input—multiple-output systems not requiring an explicit
model parameterization or a nonlinear optimization, two rather
undesirable traits. The majority of the residue comprises the
so-called subspace class of system identification algorithms.
Such methods identify state—space models by exploiting geo-
metric properties of the input and output sequences. Methods
exist for both time- and frequency-domain data, see [37]
for a summary of time-domain methods. Frequency-domain

Fig. 9. Functionality of the synthetic impedance.

subspace methods have proved extremely effective in iden-
tifying high order resonant systems [24], [38]. In this paper,
we employ the algorithm of Van Overschee and De Moor
[39], a continuous-time frequency-domain subspace method?
to identify a model of the system. Almost all available fre-
quency-domain subspace algorithms will directly identify only
discrete-time systems. This may be undesirable (as in our case)
if the underlying system is continuous. The inconvenience is
tolerated due to practical numerical advantages resulting from
working with the orthonormal basis formed by the powers of
¢*. The algorithm [39] avoids the usual problems associated
with the ill conditioned basis formed by the powers of s.

3A Matlab implementation of this algorithm is freely available by contacting
the corresponding author or by visiting http://rumi.newcastle.edu.au.
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Fig. 10. Compliance controlled high-voltage current amplifier.

C. Implementation of a Multiport Synthetic Admittance

We now discuss the experiment performed to obtain a state-
space representation of G,,(s). Referring to Fig. 7, a prefiltered
periodic chirp was applied to each actuating layer in succession.
The resulting open circuit piezoelectric voltages and displace-
ments were recorded using a dSPACE ds1103 rapid prototyping
system. The chirp prefiltering was performed by an FIR filter de-
signed to reduce the power of the excitation in bands enclosing
the resonance frequencies of the structure. This reduces the dy-
namic range and “flattens out” the power-spectral density and
signal-to-noise ratio versus frequency at the outputs. An esti-
mate for G,(jw) was then obtained using the empirical transfer
function estimate [36]. The magnitude frequency response of
G)p(jw) is plotted in Fig. 8. 340 frequency samples from 0 to 200
Hz were used to identify a sixth-order state model for G, (s).
The magnitude frequency response of the model is overlain on
the experimental data in Fig. 8.

References [19] and [31] introduce the synthetic admittance
as a means for implementation of piezoelectric shunt damping
circuits. The functionality is shown in Fig. 9. The voltage con-
trolled current source ¢, is set as the output of a transfer function
whose input is the voltage v, measured across the terminals, i.e.,
1.(s) = Y(s)V.(s). The resulting impedance as seen from the
terminals is (1/Y(s)).

In this paper, an advanced technique for implementing piezo-
electric shuntdamping circuits is presented. The current feedback
synthetic admittance (CFSA) allows highly accurate control and
instrumentation of the terminal voltage and current. This device
is suitable for multiport impedance synthesis, has a wide band-
widthranging from millihertz to hundreds of kilohertz, and is suit-
able for high power operation (hundreds of watts continuous). No
high-voltage opamps are required in this design.

L
HV

The overall functionality is similar to that shown in Fig. 9.
There are two main components, the current amplifier, and the
admittance transfer function. As in [19], an analog filter or DSP
system is used to implement the admittance transfer function.
This controls the relationship between the measured terminal
voltage and applied current. A discussion on the advantages of
using such a technique is provided in [40].

A simplified circuit diagram of the current amplifier is shown
in Fig. 10. The depicted current sources are used for static bi-
asing and can be implemented using a resistor, or for increased
open-loop gain and power-supply rejection [41], a transistor.
The symbol G denotes a standard low-gain differential ampli-
fier.

Neglecting the compliance controller C'(s), a high-gain nega-
tive feedback loop ensures the applied reference voltage V.t ap-
pears across the sensing resistor R, i.e., the current through the
load I1is setby (Viet/ Rs). To reconfigure the circuit as a charge
amplifier, the resistor R is replaced by a capacitor. Charge/cur-
rent sources have shown promise for driving piezoelectric loads
as the function relating charge or current to strain exhibits less
nonlinearity than the voltage driven equivalent [42]. Poor driver
performance at low frequencies has limited the practical ex-
ploitation of this phenomena. Small but inevitable voltage and
current offsets in a charge amplifier have the effect of charging
up the load capacitance. Consequently, the uncontrolled output
voltage drifts, reducing the compliance range, and eventually
clipping the output voltage. In combat, a large parallel resistance
is added to reduce the dc magnitude of the load impedance. De-
pending on the necessary size of the resistor (lower to compen-
sate for larger offset currents), high-pass dynamics are added to
the current amplifier, distorting the low-frequency magnitude
response and introducing phase delay. Not only is the low-fre-
quency response degraded, but the user may be impervious to
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Fig. 11.

System diagram of the current feedback synthetic impedance.

the degradation as the measured current is no longer that flowing
through the load. By taking a multiobjective control approach,
we propose a superior technique to compensate for low-fre-
quency offset currents.

To fully understand the problem, consider the system diagram
shown in Fig. 11. A synthetic admittance incorporating a current
feedback amplifier (shown in the dashed rectangle) is attached
to a load with an internal source V),. The diagram relates the
dynamics of the admittance transfer function Y (s), the compli-
ance controller C(s), and the load impedance Zr,(s) to the ter-
minal voltage Vr, the compliance voltage V,, and the load cur-
rent I7,. In analogy to offset current compensation by parallel
resistance, choosing C'(s) as a simple attenuator introduces a
first order high pass filter into the current amplifier. To our ad-
vantage, we are now able to instrument the actual load current.
By using a slightly more complicated compliance controller
C(s), we are able to completely eliminate residual compliance
offsets and obtain a low-frequency bandwidth in the millihertz
range. A simple attenuating integrator C'(s) = (1/as) [41] will
completely reject any source of dc offset current in the circuit,
e.g., amplifier offsets, offsets in the reference voltage, offsets
caused by asymmetric supply voltages, and digital-analog con-
veter offset errors if the transfer function Y (s) is implemented
using a digital signal processor. Neglecting dielectric loss in the
load, the time constant of the system is controlled by the param-
eter . The only penalty for setting an extremely low high-pass
cut off is the slow transient response to a step disturbance or at
start up. The transient limitation of control systems with inte-
gral regulation is well understood and treated in any introduc-
tory text on control design. Low-frequency compliance feed-
back can also be used for electrical prestressing of piezoelec-
tric actuators. Many piezoelectric actuators must only be used in
mechanical compression. By adding an offset to the compliance
feedback loop, an actuator can be driven by current or charge
with a constant dc voltage offset across the load. This has the
effect of altering the dc mechanical operating point of the de-
vice and making it suitable for bipolar applications such as ac-
tive vibration control.

A photo of the experimental current amplifier is shown in
Fig. 12.

D. Implementing the Admittance Transfer Function

On first inspection, the admittance structures (18) and (19)
may appear difficult to implement by means of either analog or
digital signal processing. In fact the reverse is true, the transfer
function can be represented as a simple block diagram com-
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Fig. 13. System diagram of (18) or (19).

TABLE III
ADMITTANCE PARAMETERS

[ Parameter | Value (Hz) |

w1,2 T1.7

w1,3 161.6

w21 22.14

w23 167.9

[ Parameter | Value | [ Parameter | Value |

di2 0.021 ai,2 0.5
di,3 0.024 Q1,3 0.5
da1 0.025 Qg1 0.5
da 3 0.023 Qg 3 0.5

posed of second order subsystems. Consider the admittance re-
quired for a single piezoelectric transducer using the controller

2
[

ZN
i=1 s242d;w; s—l—m}i2

Ya(s) = Cps. (21)

02
%

N
1- Zi:l 82 +2d;w; s+w?
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The structure (21) is shown diagrammatically in Fig. 13. Each
subsystem Y;(s,«,,d,,w,), parameterized for ease of online
tuning, can be implemented by an analog state variable filter
[41], or internally in a DSP algorithm. For digital implementa-
tion, each subsystem is most easily parameterized in state—space
form. For example

aiw?s
82 + 2d;w; s + w?

Yi(s,a,,d,w,) = 2L =
u

(22)
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Frequency (Hz)
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Fig. 16. (a) Simulated and (b) experimental open-loop (——) and closed-loop
(—) frequency responses from Vi,, (volts) to the displacement measured at
z = 0.17 m in decibels.

where

. 0 1 0

. —w? —2diw?}$+[l]u

Yi = [0 aiwl] T (23)
E. Results

In the experiments, one of the actuating piezoelectric trans-
ducers was used to disturb the structure. The two transducers on
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the other side of the beam were shunted with resonant imped-
ances to attenuate the vibrations generated in the beam. Using
the structure Y, (s) (18), shunt circuits were applied to both
of the piezoelectric transducers. Specifically, Y;(s) that was
shunted to the first piezoelectric transducer and tuned to con-
trol the second and third modes, and Y>(s) that was shunted to
the second piezoelectric transducer and tuned to control the first
and third modes. Admittance parameters are shown in Table III.
Parameters a1 2, 1,3, 2,1 and i 3 are set equal to 0.5 to sat-
isfy condition (17) and to put equal emphasis on every mode.
The rest of the parameters are determined via the solution to an
optimization problem.
The admittance has a diagonal structure

Y.(s) = diag(Y1(s), Ya(s)) (24)
where
Yi(s) =
2 2
1,2W7 2 n 1,3W1 3
52 + 2d1’2u}1728 + wiz 52 + 2d173W1738 + w%’3 o
2 2 »¥
1,2W7 o n 1,3W7 3
52 + ZdlynggS + w%72 82 + 2d173w1,35 + w%_ﬁ
and
Ya(s) =
2 2
Q2,1W7 1 n Q2,3W7 3
52 + 2d2’1w1713 + w%l s2 + 2d273w1735 + w%?, o
S.
p

2
Q2,3W1 3

2
Q2,1W1 1 "
82 + 2d273w1,35 + w%_3

52 + 2d271w1715 + a)%_’l

1.5 2
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Fig. 14 compares the simulated frequency response of the un-
shunted system with that of the shunted system. The figure is
associated with a 2 X 3 system whose inputs are the voltages ap-
plied to the two actuating piezoelectric patches, and whose out-
puts are the induced piezoelectric voltages and the displacement
measurement at z = 0.17 m . The displacement measurements
were obtained using a PSV300 laser scanning vibrometer.

Fig. 15 demonstrates the effect of the proposed admittance
structure. It can be observed that by shunting the two piezo-
electric patches with the proposed admittances the closed-loop
poles of the system have been pushed further into the left half of
the complex plane. We notice that both transducers are used to
dampen the third mode, while the first two modes are damped
using the second, and first transducers respectively. This is due
to the location at which the two patches are mounted on the
beam. The first patch offers little authority over the first mode
of the beam, while the second patch displays a similar lack of
authority over the second mode. Both transducers however, are
effectively reducing vibration corresponding to the third mode
of the structure.

In experiments, variables internal to the piezoelectric trans-
ducers are not directly measurable. Therefore, it was not pos-
sible to generate experimental results corresponding to all en-
tries of the transfer function matrix displayed in Fig. 14. How-
ever, as the displacement could be measured, results were ob-
tained by applying a disturbance voltage to the first piezoelec-
tric transducer and measuring the resulting displacement. The
corresponding transfer functions are plotted in Fig. 16. It can be
observed that the experimental results closely match the sim-
ulations. Experimental results show a considerable attenuation
of the resonant peaks; 5 dB for the first mode, 10.5 dB for the
second mode, and 14.4 dB for the third mode.
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To examine the time-domain performance of the damped
system, a 200-Hz low-pass-filtered step was applied to V;,,.
The simulated and experimental displacement responses
measured at z = 0.17 m are plotted in Fig. 17. Note that the
response is dominated by the first mode of vibration. This
is a result of the lower damping achieved for this mode, and
the comparatively greater low-frequency Fourier components
contained in a step function.

VI. CONCLUSION

It was demonstrated that the problem of piezoelectric shunt
damping with several piezoelectric transducers and a multiinput
impedance is equivalent to a feedback control problem for
a square plant. The controller itself was shown to be inside
an inner feedback loop. A parameterization of stabilizing
controllers/electrical shunts was introduced. Two decentralized
shunts with favorable damping properties were proposed
and their effectiveness in reducing structural vibrations was
experimentally verified.
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