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Passive Vibration Control via Electromagnetic
Shunt Damping

Sam Behrens, Andrew J. Fleming, and S. O. Reza Moheimani

Abstract—This paper will present a new type of passive vibration control
technique based on the concept of electromagnetic shunt damping. The pro-
posed technique is similar to piezoelectric shunt damping, as an appropri-
ately designed impedance is shunted across the terminals of the transducer.
Theoretical and experimental results are presented for a simple electromag-
netic mass spring damper system.

Index Terms—Control, damping, electromagnetic, shunt, vibration.

I. INTRODUCTION

Electromagnetic transducers can be used as actuators, sensors, or
both [1]–[7]. Piezoelectric transducers [7] exhibit similar electro-
mechanical properties, but have considerably different physical and
electrical characteristics to electromagnetic transducers. Electromag-
netic transducers have a much greater stroke, typically in the millimeter
range, compared to the micrometer range associated with piezoelectric
transducers. Subsequently, in applications where piezoelectric trans-
ducers can not be used, due to their limited stroke, electromagnetic
transducers may serve as a viable alternative. These devices are phys-
ically robust and can be manufactured to either MEMS scale [8] or
as large as a 50-kN electrodynamic shaker [9]. Also, electromagnetic
transducers are easier to drive due to their resistive-inductive nature.

Placing an electrical impedance across the terminals of a piezoelec-
tric transducer, which is bonded to a resonant structure with the view
to minimizing structural vibrations, is referred to as piezoelectric shunt
damping [10]–[12]. This has been proven to be a reliable alternative
to active control techniques [7], offering the benefits of stability and
performance without the need of additional sensors. Most importantly,
the inherent robustness makes passive shunt control techniques very
desirable.

This brief presents the concept of electromagnetic shunt damping
for structural vibration control. By attaching an electromagnetic trans-
ducer to a resonant mechanical structure and shunting the transducer
with an electrical impedance, kinetic energy from the resonant struc-
ture can be dissipated. As the mechanical structure displaces, an op-
posing electro-motive-force (emf) is induced in the transducer. Using
an appropriately designed electrical shunt the transducer is capable of
significantly reducing mechanical vibration.

II. BACKGROUND

The following sections are concerned with the modeling of an elec-
tromagnetic transducer and a simple force mass spring damper system.
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Fig. 1. Electromagnetic shunted mass spring damper system.

A. Electromagnetic Transducer Model

When an electrical conductor, in the form of a coil, moves in a mag-
netic field, as shown in Fig. 1, a voltage Ve proportional to the velocity
� is induced and appears across the terminals of the coil, i.e., Ve / �.
Specifically

Ve

�
= Bl (1)

whereB is the magnetic flux (in tesla), l is the length of the conductor
(in m), and � is the velocity of the conductor relative to the magnetic
field (inm/s). A permanent magnet is usually the source of themagnetic
field.
Assuming the coil is exposed to a field of constant flux density and

the relative displacement is small, (1) can be rewritten as [13]

Ve

�
=
Fe

Iz
= Bl = Ce (2)

where Fe denotes the force (in N) acting on the coil while carrying
a current Iz (in A), and Ce is the ideal electro-mechanical coupling
coefficient (in N/A or V/m�s�1).
When a coil is employed as a force actuator, (2) relates the induced

force to an applied current. Such designs form the basis for electrody-
namic shakers and acoustic actuators, such as a speaker coils. As shown
in Fig. 1, the coil can be modeled as series connection of an inductor
Le, a resistor Re, and a dependent voltage source Ve [2]. If the trans-
ducer is attached to a resonant mechanical system, the voltage source
Ve, represents the induced emf that is dependent on relative velocity �,
and hence, structural dynamics.

B. Forced Mass Spring Damper System

In many cases where vibration becomes an issue, the mechanical
structure can be modeled as a simple mass spring damper system. The
equivalent mass M (in kg), spring constant K (in N/m) and damping
constant D (in N�s/m) for such a structure can be easily determined.
The equation of motion for this forced one degree of freedom (DOF)
system is given by

M �x(t) +D _x(t) +Kx(t) = Fd(t); (3)
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where �x(t); �(t), and x(t) are the acceleration, velocity, and displace-
ment of the mass, respectively. Note that Fd(t) is the applied force
disturbance. The dimensionless representation of (3) is

�x(t) + 2�n!n _x(t) + !2

nx(t) = fd(t) (4)

where !n is the natural frequency of the system, and � is the damping
ratio. Note that !n = (K=M); �n = (D=

p
4MK) and fd(t) =

(Fd(t))=(M).

III. STRUCTURAL DYNAMICS FROM FIRST PRINCIPLES

Electromagnetic shunt damping is modeled for a simple electromag-
netic mass spring damper system. The composite system will be de-
rived from fundamental principles.

A. Model System

Consider Fig. 1, where an electromagnetic transducer (coil 1)
is attached to a mass M . If a current Id(t) is applied to a linear
electromagnetic transducer, a disturbance force Fd(t) is induced such
that Fd(t) = CdId(t), where Cd is the electromagnetic coupling
coefficient relating the applied current to a resulting force in coil 1.
Using the equation of motion, the disturbed system has the following
relationship,M �x(t) +D _x(t) +Kx(t) = CdId(t).

By taking the Laplace transform, the transfer functions relating the
current Id(s) to displacement x(s) is found to be

Gxi(s)
x(s)

Id(s)
=

Cd

Ms2 +Ds +K
; (5)

and the current Id(s) to velocity �(s) is

G�i(s)
�(s)

Id(s)
=

Cds

Ms2 +Ds+K
: (6)

These equations are valid when coil 2 is held in open circuit, i.e.,
Z(s) = 1, as shown in Fig. 1. Note that velocity �(s) is equivalant
to sx(s) in the Laplace domain.

B. Composite System

For an electromagnetic shunted composite system, as shown in
Fig. 1, an impedance Z is attached to coil 2. We have the following
relationship,M �x(t)+D _x(t)+Kx(t) = Fd(t)�Fe(t), where Fe(t)
is the opposing force due to the impedance Z attached to the terminals
of the electromagnetic transducer. In the Laplace domain, we have the
following relationship:

x(s)(Ms2 +Ds +K) = CdId(s)� Fe(s) (7)

where Id(s) is the input current applied to coil 1, as shown in Sec-
tion III-A.

To determine the opposing force Fe(s), we need to consider the sim-
plified electrical model of the electromagnetic shunt, as shown in Fig. 1.
Ohm’s law states that

Vz(s) = Iz(s)Z(s) (8)

where Vz(s) is the voltage across the terminals of the shunt impedance
Z(s), and Iz(s) is the corresponding current. According to Kirchhoff’s
voltage law, we obtain the following relationship between Ve(s) and
Vz(s), as Vz(s) = Ve(s)� (Les+ Re)Iz(s), which implies

Vz(s) =
Z(s)

Z(s) + Les+Re

Ve(s): (9)

As shown in (1), we have the following linear relationship:

Ve(s) = Ce�(s) (10)

Fig. 2. Electrical equivalent model of a twin-coil electromagnetic system.

where Ce is the electromagnetic constant relating �(s) to Ve(s) of
coil 2.
By substituting, (10) into (9), we obtain

Vz(s) =
Z(s)

Z(s) + Les+Re

Ce�(s): (11)

Alternatively, the current flowing through the shunt Iz(s) is

Iz(s) =
Vz(s)

Z(s)
=

1

Z(s) + Les+Re

Ce�(s) (12)

and the opposing shunt force Fe(s) = CeIz(s), assuming a linear
electromagnetic transducer, we obtain

Fe(s) =
C2

e

Les+Re + Z(s)
�(s) = C2

e K̂(s)�(s) (13)

where K̂(s) = (1)=(Les+ Re + Z(s)).
Substituting (13) into (7), the composite system transfer function

Id(s) to x(s) can be obtained

Ĝxi(s)
x(s)

Id(s)
=

Cd

Ms2 + D + C2
e K̂(s) s+K

: (14)

Alternatively, the transfer function relating Id(s) to �(s) is

Ĝ�i(s)
�(s)

Id(s)
=

Cds

Ms2 + D + C2
e K̂(s) s+K

: (15)

IV. COMPOSITE SYSTEM IN TRANSFER FUNCTION FORM

By modeling the system in transfer function form, we gain a greater
abstraction from the underlying system. Such methods are particularly
useful when dealing with higher order systems or when using models
not obtained directly through physical modeling, i.e., when using
models obtained by means of system identification [14]. Referring to
Fig. 2, the models required are G�F (s), the transfer function from an
applied force to the resulting velocity �; and Gvi(s) is the the transfer
function from an applied current to the induced emf.
We first consider the case where two identical coils experience the

same velocity. When an impedance Z(s) is attached to coil 2, Vz(s) =
Ve(s) � (Les + Re)Iz(s). That is

Vz(s) =
Z(s)

Les+Re + Z(s)
Ve(s) (16)

Iz(s) =
1

Les+Re + Z(s)
Ve(s): (17)
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Fig. 3. Regulator feedback structure associated with the electromagnetic
shunt damping.

By considering the emf induced in both coils 1 and 2 and applying the
principle of superposition, Ve(s) = Gvi(s)Id(s)�Gvi(s)Iz(s). Sub-
stitution of (17) yields Ve(s) = Gvi(s)Id(s)�Gvi(s)(Ve(s))=(Les+
Re + Z(s)). Hence, the composite transfer function relating Id(s) to
Ve(s) is

~Gvi(s)
Ve(s)

Id(s)
=

Gvi(s)

1 + ~K(s)Gvi(s)
(18)

where ~K(s) = (1)=(Les + Re + Z(s)). The reader will appreciate
that the damped system transfer function ~Gvi(s) is in the form of a
feedback system where the impedance Z(s) parameterizes a controller
~K(s), as shown in Fig. 3.
This is an interesting observation as it enables one to employ systems

theoretic tools to analyze the dynamics of the shunted system. The feed-
back control problem associated with (18) is illustrated in Fig. 3. The
reader can observe that the purpose of the control system is to regulate
Ve(s), or alternatively �(s), in the presence of a disturbance Id(s), as
shown in Fig. 3.

In a more general case, we wish to know the damped transfer
function ~G�F (s) from some disturbance force F (s) to the resulting
velocity �(s). Noting that the undamped transfer function Gvi(s)
consists of both the structural dynamics and the electromagnetic
coupling Gvi(s) = CeG�i(s) = C2

eG�F (s), this is easily found to
be

~G�i(s)
�(s)

Id(s)

=
Ve(s)

Id(s)

�(s)

Ve(s)

= ~Gvi(s)
�(s)

Ve(s)

=
G�i(s)

1 + ~K(s)Gvi(s)
: (19)

Thus, ~G�F (s) (�(s)=F (s)) = (�(s))=(CeId(s)) =
(1)=(Ce) ~G�i(s), and

�(s) =
G�i(s)

1 + ~K(s)Gvi(s)
Id(s) +

G�F (s)

1 + ~K(s)Gvi(s)
F (s) (20)

as shown in Fig. 3.

V. SINGLE MODE ELECTROMAGNETIC SHUNT CONTROLLER

Hagood and von Flotow [11] suggested that a series of resistor-in-
ductor circuit attached across the conducting surfaces of a piezoelec-
tric transducer can be tuned to dissipate the mechanical energy of a
host structure. They demonstrated the effectiveness of this technique
by tuning the resulting resistor–inductor (R–L) circuit and inherent

Fig. 4. External photograph of the experimental electromagnetic apparatus.

capacitance of the piezoelectric transducer, to a specific resonance fre-
quency of the host structure.
For electromagnetic shunt damping, we can apply the same method-

ology as suggested above. For this particular system, though,we need to
apply a resistor–capacitor (R–C) circuit to the terminals of the electro-
magnetic transducer. That is,Z(s) = (1)=(Cs)+R,where the capaci-
tance value is determined by!2

n = (1)=(CLe); Le denotes the inherent
inductance of the electromagnetic transducer to be shunted, and !n is
the resonance frequency of the mechanical structure to be controlled.
For example, for a simple mass spring damper system as shown
in Fig. 1, the capacitance is C = (1)=(!2

nLe) = (1)=((K=M)Le),
where K is the spring constant and M the mass of the mechanical
system.
The shunted electromagnetic transducer, �(s) is related to Fe via

Fe(s) = C2

eKp(s)�(s),whereKp(s) = ((1=Le))=(s
2+(Rt=Le)s+

(1=CLe)). It should be noted that the controller has a resonant struc-
ture; thus, Rt = (Re + R) determines the controller damping. To de-
termine the optimal total resistance Rt, an optimization strategy could
be used. For a more detailed explanation for the optimization strategy
the reader is referred to Behrens et al. [15].
The damped composite transfer function from disturbance current

Id, to velocity �, is Ĝ�i(s) (�(s))=(Id(s)) = (Cds)=(Ms2 +
(D+C2

eKp(s))s+K) or, alternatively, ~G�i(s) (�(s))=(Id(s)) =
(G�i(s))=(1 +Kp(s)Gvi(s)).

VI. EXPERIMENTAL VERIFICATION OF ELECTROMAGNETIC SHUNT
DAMPING CONCEPT

In this section, we will consider the electromagnetic experimental
apparatus, a method for determining the optimal shunt resistance and a
technique for synthesizing the required shunt impedance. Comparison
between theoretical and experimental results is also presented.

A. Electromagnetic Apparatus

In support of the preceeding sections, the technique of electro-
magnetic shunt damping was applied to an experimental assembly at
the Laboratory for Dynamics and Control of Smart Structures, The
University of Newcastle, Australia.1 A photograph of the electro-
magnetic transducer apparatus, showing the rigid external support,
flexible end supports, mounting plate, coils, and winding cables is
provided in Fig. 4. As shown in Fig. 5, the assembly is essentially a
translational solenoid with two identical fixed coils and a magnetic
plunger supported at either end by flexible supports. This system is
mechanically equivalent to the mass spring damper shown in Fig. 1.
Together with an attached electrical impedance Z(s) = (1=Cs) + R,
coil 2 is employed to damp translational vibrations resulting from an
applied disturbance current Id to coil 1. For a detailed description of

1http://rumi.newcastle.edu.au/lab
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Fig. 5. Side section of the experimental electromagnetic apparatus (all
dimensions in millimeters).

Fig. 6. Undamped frequency response from an applied actuator current to
plunger velocity, i.e., G (s), model (–) and measured results (- -).

the electromagnetic apparatus, the reader is referred to Behrens et al.
[15].

B. Determining Optimal Damping Resistance

The electromechanical model G�i(s) was first determined by mea-
suring the resonance frequency and plunger weight M and, subse-
quently, the spring constantK . The remaining parameter !n, together
with the electromagnetic coupling coefficients Cd and Ce, were deter-
mined experimentally. Experimental apparatus parameters are M =
0:15 Kg, D = 2:677 Nsm�1; K = 56 kNm�1; Ce = 3:4 N/A or
V/ms�1; Cd = 3:65 N/A, Le = 1 mH, and Re = 3:3 
. The fre-
quency response from an applied current to the resulting plunger ve-
locity G�i(s) is shown in Fig. 6. It is observed that the model is an
accurate representation of the physical system.

Sincewewish to damp the fundamental frequency of themass spring
damper system, i.e.,!n = 2� (K=M) = 97:3Hz, the required shunt
capacitance value isC = (1)=(!2nLe) = (1)=((K=M)Le) = 2:7mF.

In order to determine an appropriate value for the total shunt resis-
tanceRt, an optimization approach was used to minimize theH2 norm
of the damped system Ĝ�i(s) [15]. This required a solution to the fol-
lowing optimization problem to be found R�

t = argmin kĜ�i(s)k2
for Rt > 0. Using the proposed optimization strategy the required op-
timal shunt resistance is found to be R�

t = 0:29 
.

Fig. 7. (a) Ideal current controlled voltage source. (b) Experimental current
controlled voltage source.

Fig. 8. Undamped (� � �), theoretically predicted damped (–), and measured
damped (- -) frequency responses from an applied current to the resulting
plunger velocity Ĝ (s).

C. Impedance Implementation

To implement the proposed arbitrary shunt impedance Z(s), a cur-
rent controlled voltage source was utilized, as shown in Fig. 7. The
controlled voltage vz was set to be a function of the measured cur-
rent iz , i.e., vz(t) = f(iz(t)), as shown in Fig. 7(a). If the function
f(iz(t)), is a linear transfer function Z(s) whose input impedance is
the measured current Iz(s), i.e., Vz(s) = Z(s)Iz(s), then the terminal
impedance Zt(s) is equal to Z(s), as shown in Fig. 7(b). For a more
detailed description of the impedance apparatus, the reader is referred
to Fleming et al. [16], [17].

D. Simulated versus Experimental Results

With the aim of damping the system, a total series resistance
(Re+R) of 0.35 
 and a capacitance 2.7 mF were tuned online to the
second winding using the synthetic impedance apparatus explained
in Section VI-C. The measured undamped, theoretically predicted
damped, and measured damped frequency responses are shown in
Fig. 8. A significant reduction of 21.8 dB in the magnitude of the
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electromechanical system is observed. An inconsistency between the
theoretical and experimental resistance R�

t was noted and can be
attributed to the tolerance of sensing resistance Rs in the synthetic
impedance apparatus, as shown in Fig. 7. Overall, simulated and
experimental results closely agree, therefore, validating the proposed
electromagnetic shunt damping technique.

VII. CONCLUSION

In this brief, we have introduced a new type of vibration control
method based on the concept of electromagnetic shunt damping. The
proposed technique was experimentally validated on a simple electro-
magnetic mass spring damper system. A 21.8-dB peak amplitude re-
duction was achieved via simulation and experimentation.
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Disturbance Modeling and Control Design for
Self-Servo Track Writing

Chunling Du, Jingliang Zhang, and Guoxiao Guo

Abstract—In this paper, the major disturbances in self-servo track
writing are identified and modeled. Based on the disturbance models, an

controller together with a feedforward compensator is designed via
linear matrix inequality approach to minimize the propagation tracking
error from one track to the next. Furthermore, the error propagation
containment effectiveness of the optimal control is compared with that
of proportional–integral–derivative (PID) and proportional-derivative
(PD) feedback controls with the feedforward compensators. Our results
show that the propagation tracking error is improved by 27% with the

control compared with that by PID control.

Index Terms—Linear matrix inequality, optimal control, servo track
writing, self-servo track writing.

NOMENCLATURE

HDD Hard disk drive.
VCM Voice-coil motor.
GMR Giant magnetoresistive.
STW Servo track writing.
SSTW Self-servo track writing.
R/W Read/write.
TPI Track per inch.
TMR Track mis-registration.
PES Position error signal.
RRO Repeatable runout.
NRRO Nonrepeatable runout.
LMI Linear matrix inequality.

I. INTRODUCTION

Increased storage capacity in HDDs is directly attributed to the high-
track density achievable with servo positioners and the GMRhead tech-
nology that allow reading and writing narrower tracks. As technology
advances to provide smaller disk drives and increased track densities,
the accurate placement of servo information (or “servo bursts”) must
also increase proportionately. Servo bursts are conventionally written
by costly dedicated servowriting equipment external to the disk drive
with a laser-guided mechanism to position write head on the desired
disk surface. With the increase of track density to above 100 000 TPI,
the disk and motor vibrating in nanometer scale makes the accurate
control of R/W head alone in the STW process insufficient. Self-servo
track writing has been developed as an approach to support ultrahigh
TPI at a low cost [2], [5], [12].
In the SSTW, track shape errors introduced by mechanical distur-

bances are mainly due to disk and motor. Such errors may be repro-
duced from one track to the next because the servo controller causes
the actuator to follow the previously written trackwhenwriting the next
track patterns. As a result, each step in the process carries a memory of
all preceding track shape errors, which is called error propagation [2],
[13]. SSTW systems need to correct the error propagation by using con-
trollers. One measure of the control performance is TMR [1], the total
amount of random fluctuation of the R/W head off the desired track
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