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Abstract
This paper introduces integral resonant control, IRC, a simple, robust and
well-performing technique for vibration control in smart structures with
collocated sensors and actuators. By adding a direct feed-through to a
collocated system, the transfer function can be modified from containing
resonant poles followed by interlaced zeros, to zeros followed by interlaced
poles. It is shown that this modification permits the direct application of
integral feedback and results in good performance and stability margins. By
slightly increasing the controller complexity from first to second order,
low-frequency gain can be curtailed, alleviating problems due to
unnecessarily high controller gain below the first mode. Experimental
application to a piezoelectric laminate cantilever beam demonstrates up to
24 dB modal amplitude reduction over the first eight modes.

1. Introduction

In many industrial, scientific and defence applications, the
presence of noise and vibration is of significant concern; see for
example [1–3]. The field of smart structures, or structures with
integrated sensors and actuators, has arisen to offer improved
vibration control in applications where passive techniques are
either insufficient or impractical.

The two significant design tasks in active structural
control are the selection and integration of actuators and
sensors, and the control system design. In this work a
new control methodology is introduced for the most common
class of smart structures: those with integrated piezoelectric
actuators and sensors. Due to their small volume, low weight
and ease of structural integration, piezoelectric sensors and
actuators have been the overwhelming transducer of choice for
smart structures; see [4–7] for an introduction to the use of
piezoelectric transducers in structural actuation and sensing.

It is well known that there are a number of difficulties
associated with the control of flexible structures, the foremost
of which are: variable resonance frequencies; high system
order; and highly resonant dynamics. Traditional control
system design techniques such as LQG, H2 and H∞ commonly
appear in research works and have been well documented; see
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for example [8–11]. Unfortunately, the direct application of
such techniques has the tendency to produce control systems
of high order and possibly poor stability margins.

Controllers based on the underlying structure of a
collocated resonant mechanical system have proven to offer
greater robustness, performance, and ease of implementation
relative to traditional techniques. The most useful
characteristic of a collocated system is the interlacing of poles
and zeros up the jω axis. This results in a phase response
that lies continuously between 0◦ and −180◦. Positive position
feedback (PPF) [12] is a popular technique exploiting this
property. PPF controllers are stable in the presence of
uncontrolled in-bandwidth modes, and roll off quickly at
higher frequencies, reducing the risk of destabilizing systems
with high-frequency dynamics. However, PPF controllers are
also equal in order to the system that they are designed to
control, require a model-based design process (often requiring
a nonlinear search), and are difficult to tune if more than one
mode is to be controlled. Velocity feedback [13] is another
technique that exploits the known phase response of collocated
systems. In theory, velocity feedback implements pure viscous
damping with a phase margin of 90◦. Unfortunately, the high-
frequency gain must be attenuated to avoid noise amplification
and destabilization due to unmodelled or non-collocated
dynamics. Although velocity feedback has been applied in
practice, it generally results in relatively low performance and
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Figure 1. Picture of the cantilever beam.

(This figure is in colour only in the electronic version)

poor phase margin (due to the two additional poles required
at high frequencies). Resonant control is another approach
that has been applied successfully to collocated resonant
systems [14]. A resonant controller guarantees closed-loop
stability in the presence of uncontrolled out-of-band modes of
the structure. The high-pass nature of the controller, however,
may not be suitable in certain applications.

The control design in this work is based on augmenting
the feed-through of a collocated system; that is, to add a small
portion of the actuator signal to the sensor signal. It is shown
in section 3 that this procedure results in the addition of a pair
of resonant system zeros at an arbitrary frequency. Choosing
this frequency lower than the first mode results in a compound
system with interlaced zeros then poles, rather than poles then
zeros. The phase response of this system lies between 0◦ and
−180◦. This property can be exploited through the use of direct
integral feedback, which results in a loop phase response that
lies between −90◦ and +90◦, i.e. has a phase margin of 90◦
and infinite gain margin. Integral resonant control, IRC, has the
benefit of substantial damping augmentation while naturally
rolling off at higher frequencies.

The objectives and scope of this work together with
a description of the experimental apparatus are contained
in the following section. The characteristics of collocated
systems, feed-though augmentation, and IRC design are then
discussed in section 3. Experimental results demonstrating up
to 24 dB reduction over eight modes and conclusions follow in
sections 4 and 5.

2. Objectives

The main objective of this work is to damp the low-frequency
modes of a collocated resonant mechanical system exhibiting
interlaced poles and zeros. The interesting properties of
such transfer functions will be described and analysed. A
mathematical proof for the pole-zero interlacing phenomenon
in such transfer functions will be given. It will be shown that
by adding a specific feed-through term to this transfer function,
the implementation of simple second-order controllers that
damp vibrations over multiple low-frequency resonant modes
is possible. The appropriate feed-through term is identified
and a parametric equation will be provided for the same. A
cantilever beam, which is clamped at one end and free at the
other end, is a well-known example of a resonant mechanical
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Figure 2. Schematic diagram of the control strategy showing the
inputs and outputs.

system. It is susceptible to high amplitude vibrations when
disturbed and will be used to validate experimentally the
theories presented in this work.

2.1. Experimental setup

Figure 1 shows the experimental setup used in this work.
The cantilever beam has three pairs of collocated piezoelectric
patches attached to it. For this work, one collocated pair is
used for actuation and sensing. The second collocated pair
is shorted, thus for all practical purposes it has no effect
on the open- or closed-loop beam dynamics. Of the third
collocated pair, one patch is shorted and the other is used as
an independent disturbance source.

The cantilever beam is treated as a two-input two-output
system; see figure 2. The inputs are the control voltages
applied to the collocated actuator patch (u) and the disturbance
generated by the third (non-collocated) piezo-patch (w). The
outputs are the collocated sensor voltage (y) and the tip
displacement (z).

The frequency response function (FRF) Gi j ( jω) is a
2 × 2 matrix where each element Gi j ( jω), i, j = 1 and
2, corresponds to a particular combination of the input and
output (for example, G yw( jω) = y( jω)/w( jω) when u = 0).
These FRFs are determined by applying a sinusoidal chirp
(from 5 to 250 Hz) as inputs (w and u) to the corresponding
piezoelectric actuators and measuring the output signals (y and
z). The chosen frequency range captures the first three resonant
modes of the cantilever beam. All frequency response data
was measured using a Polytec scanning laser vibrometer (PSV-
300).

3. Controller design

For the purpose of control design and analysis, a model of the
system is required. A subspace based modelling technique [15]
is used to procure an accurate model of the experimental
system. Figures 3 and 4 show the magnitude and phase
responses of the model and experimental system. The model
captures the dynamics of the system with sufficient accuracy.

3.1. Properties of collocated transfer functions

The transfer function associated with a single collocated actu-
ator/sensor pair displays many interesting properties [16, 17],
one of which is that the poles and zeros of the system interlace.
This ensures that the phase of a collocated transfer function
will be between 0◦ and −180◦. The system transfer function
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Figure 3. Magnitude response in dB of the measured (- -) and
modelled (—) system.

can be represented as the sum of many second-order blocks and
can be written as

G(s) =
M∑

i=1

αi

s2 + 2ζiωi s + ω2
i

(1)

where αi > 0 ∀i and M → ∞ [18]. For all practical
applications a very large but finite M represents the number
of modes that sufficiently describe the elastic properties of the
structure under excitation. In most scenarios, control of only a
limited bandwidth is of importance. Typically, N < M modes
of the structure would fit within this bandwidth, while modes
N + 1 and above are left uncontrolled. It is common practice
to truncate the model of the system to include only those
modes which are to be controlled. This truncation introduces
significant errors, as the in-bandwidth zeros of the system are
highly dependent on the out-of-bandwidth poles. Hence, when
the model is truncated, the in-bandwidth zero dynamics are
significantly perturbed. To account for this zero perturbation, a
feed-through term is added. It has been shown that a constant
feed-through is sufficient to model the effect of high-frequency
modes on low-frequency zeros [19]. The truncated model can
be written as

G̃(s) =
N∑

i=1

αi

s2 + 2ζiωi s + ω2
i

+ D (2)

such that D ∈ R. Note that the collocated beam transfer
function G yu(s) is of the form (2).

3.2. The effect of feed-through on pole-zero interlacing

The results in this section will explain the interlacing pole-zero
pattern exhibited by the collocated transfer function G yu(s).
The effect of a particular choice of feed-through, D, will also
be explained. Zero damping is assumed for the sake of brevity,
however the results can easily be extended to systems with

Figure 4. Phase response of the measured (- -) and modelled (—)
system.

damping. The following theorem shows that a system obtained
by adding N second-order sections of the form αi

s2+ω2
i

has N

pairs or complex conjugate poles and N − 1 pairs of complex
conjugate zeros, such that between every two poles, there is a
zero.

Theorem 1. Let G(s) = ∑N
i=1

αi

s2+ω2
i

such that αi > 0 for

i = 1, 2, 3, . . . and ω1 < ω2 < · · · < ωN . Then, between
every two consecutive poles of G(s) there exists a zero.

Proof. We begin with a truncated case of G(s) denoted by
G3(s) such that G3(s) = ∑3

i=1
αi

s2+ω2
i
. Expanding, we get

G3(s) = α1

s2 + ω2
1

+ α2

s2 + ω2
2

+ α3

s2 + ω2
3

= {α1(s
2 + ω2

2)(s
2

+ ω2
3) + α2(s

2 + ω2
1)(s

2 + ω2
3) + α3(s

2 + ω2
1)(s

2

+ ω2
2)}{(s2 + ω2

1)(s
2 + ω2

2)(s
2 + ω2

3)}−1.

The numerator of G3(s) is a polynomial in s2. Let this be
known as N (s2). Then,

N (s2) |s2=−ω2
1
= α1(−ω2

1 + ω2
2)(−ω2

1 + ω2
3) > 0

as αi > 0 ∀i and ω1 < ω2 < ω3. Similarly,

N (s2) |s2=−ω2
2
= α1(−ω2

1 + ω2
2)(−ω2

1 + ω2
3) < 0

and

N (s2) |s2=−ω2
3
= α1(−ω2

1 + ω2
2)(−ω2

1 + ω2
3) > 0.

N (s2) is a continuous function in s. The value of N (s2) |s2=−ω2
1

is positive, while at N (s2) |s2=−ω2
2

is negative. N (s2) must
therefore be 0 for a value of s2 somewhere between −ω2

1 and
−ω2

2. Thus for s2 = −ω2
z1

such that ω1 < ωz1 < ω2,
N (−ω2

z1
) = 0. Similarly, it can be shown that N (−ω2

z2
) = 0

where ω2 < ωz2 < ω3.
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Using the same argument for the untruncated numerator
of G(s), it can be shown that there exist n − 1 zeros
ωz1 , ωz2 , . . . , ωzn−1 for G(s) = ∑N

i=1
αi

s2+ω2
i

such that, ω1 <

ωz1 < ω2 < · · · < ωzn−1 < ωN , i.e. between every two
consecutive poles there lies a zero. ��

The next theorem shows that for a system obtained by
adding N second-order sections of the form αi

s2+ω2
i
, the addition

of a feed-through term D ∈ R can introduce a pair of complex
conjugate zeros.

Theorem 2. Let G(s) = ∑N
i=1

αi

s2+ω2
i

such that αi > 0 ∀i and

ω1 < ω2 < · · · < ωN . If G̃(s) = G(s) + D where D ∈ R and
G̃( jωz) = 0 such that ωz is not a zero of G(s), then G̃(s) can
be written as G̃(s) = (s2 + ω2

z )
∑N

i=1
βi

s2+ω2
i
.

Proof. At s2 = −w2
z , G̃(s) = 0. Substituting s2 = −w2

z in
G̃(s), we have

G̃( jωz) =
N∑

i=1

αi

−ω2
z + ω2

i

+ D = 0.

Thus, D = −∑N
i=1

αi

−ω2
z +ω2

i
.

Substituting the value of D in G̃(s), we get

G̃(s) =
N∑

i=1

αi

s2 + ω2
i

−
N∑

i=1

αi

−ω2
z + ω2

i

=
N∑

i=1

αi

(
1

s2 + ω2
i

− 1

ω2
i − ω2

z

)
.

Let 1
ω2

i −ω2
z

= ki . Then,

G̃(s) =
N∑

i=1

αi

(
1 − ki s2 − kiω

2
i

s2 + ω2
i

)

=
N∑

i=1

−αi ki

(
s2 + ω2

i − 1
ki

s2 + ω2
i

)
.

Note that ω2
i − 1

ki
= ω2

z . Thus,

G̃(s) =
N∑

i=1

−αi ki

(
s2 + ω2

z

s2 + ω2
i

)
.

Let −αi ki = βi . Then G̃(s) = (s2 + ω2
z )

∑N
i=1

βi

s2+ω2
i
. ��

A typical pole-zero plot of the collocated transfer function
before and after addition of the feed-through term D is shown
in figure 5. The pole locations remain the same even after
adding the feed-through term.

For the cantilever beam used in the experiments, the
collocated transfer function is:

G yu(s) = 225

s2 + 0.3854s + 6035
+ 8971

s2 + 1.49s + 217 100

+ 90 960

s2 + 3.573s + 1.697 × 106
+ 0.7456.

This fixed structure form can be obtained approximately by
using the residue function in MATLAB from the identified
collocated model G yu(s) in figures 3 and 4. Due to the fully
parameterized nature of the identified model, the residuals of

Figure 5. Poles (x) and zeros (o) of the collocated transfer function,
before and after the addition of the feed-through term (D).

each second-order section will also contain a small ‘s’ term
that can be neglected. Note that, in this case, G yu(s) ≡ G̃(s)
(defined in theorem 2), where

G(s) = 225

s2 + 0.3854s + 6035
+ 8971

s2 + 1.49s + 217 100

+ 90 960

s2 + 3.573s + 1.697 × 106
,

and
D = 0.7456.

The first resonant mode occurs at 12.33 Hz. Using
theorem 2, it is found that a feed-through term of D =
−0.1372 places a zero at 4.1858 Hz (arbitrarily chosen at a
frequency less than the first resonant mode). Therefore, a feed-
through term of Df = −0.8828 was added to G yu(s).

As discussed in theorem 2, the addition of a low-frequency
zero results in a phase inversion at dc relative to the original
transfer function. The magnitude and phase response of the
collocated open-loop and modified transfer functions, G yu(s)
and (G yu(s) + Df) respectively, are plotted in figure 7. A key
observation is that the phase of the modified transfer function
lies between 0◦ and −180◦; thus, a negative integral controller
(C(s) = −1

s ) in negative feedback, which adds a constant phase
lead of 90◦, will yield a loop transfer function whose phase
response lies between +90◦ and −90◦; that is, the closed-loop
system has a highly desirable phase margin of 90◦. In the
following two sections, two variations of an integral controller
and a technique for gain selection are presented.

3.3. Integral resonant control design

The proposed integral resonant control, IRC, scheme is shown
diagrammatically in figure 6. In the following, three suitable
controllers—direct integral control and its two variants—are
introduced and evaluated for performance and robustness. The
frequency response of each controller is plotted in figure 8.
Note that, in each case, the controller gain γ > 0 needs to
be determined, as explained in section 3.4.

• Simple integrator C(s) = −γ

s : Integral control has been
extensively researched and documented [17]. The main
drawback in this application is the unnecessarily high
sensitivity at low frequencies. A high control input at low
frequencies may lead to actuator saturation.
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Figure 6. Schematic diagram of the implemented control strategy.

• Lossy integrator C(s) = −γ

s+p1
: This controller has

reduced gain at low frequencies. To effectively reduce
low-frequency gain, it is necessary to select p1 close to the
first structural resonance frequency. There is an associated
penalty of slightly reduced closed-loop phase margin.

• Band-pass filter C(s) = −γ s
(s+p1)(s+p1)

: To ensure
the controller response rolls-off at low frequencies, a
controller with two poles at p1 rad s−1 and a zero at
0 rad s−1 is suitable. The resulting closed-loop phase
margin is inferior to that exhibited by the two previous
controllers, but the gain attenuation is greater. The
situation can be improved by implementing C(s) =

−γ s
(s+p1)(s+p2)

, where p2 < p1.

3.4. Gain selection

Referring to the closed-loop schematic given in figure 6, the
gain of the IRC can be determined by analysing the loop gain.
A root-locus plot depicts the trajectories travelled by the poles
with respect to an increase in the system gain, see figure 9.
It is found that by increasing the controller gain, the poles
follow a curve and finally reach the zeros with which they
are paired. This plot also reveals the damping of each pole
along the trajectory. As the gain increases, the poles initially
move away from the imaginary axis and the damping increases
until it reaches a maximum point. A further increase in gain
drags the pole closer to the imaginary axis and reduces the
damping. Finally, the pole is placed at the same position as
its paired zero. At this position, the improvement in damping
is negligible.

To achieve maximum damping of higher-frequency
modes, higher gains are required. This high gain may place
the low-frequency poles close to the imaginary axis (with
no significant increase in damping) and thus low-frequency
modes are not attenuated. In this work, as we are considering
a cantilever beam with dominant low-frequency dynamics, a
gain is chosen that provides optimal damping of the first three
structural modes. For the system used in our experiments, the
gain was found to be γ = 550.

Figure 7. Open-loop collocated beam transfer function G yu(s) (—)
and modified transfer function (G yu(s) + Df) (- -).

3.5. Summary

The IRC controller design process can be summarized in the
following steps:

• Step 1: Measure the open-loop frequency response of the
system and preferably obtain a model for the system as
described in section 3.1.

• Step 2: Use results in section 3.2. Determine the required
feed-through term that adds a zero at a frequency lower
than the first resonant mode of the system.

• Step 3: Design a controller of the form C(s) =
−γ s

(s+p1)(s+p1)
by choosing p1 to be approximately a decade

lower in frequency than the first mode; see section 3.3.
• Step 4: By plotting the root-locus, select a suitable gain

which results in peak attenuation at resonant frequencies
lying in the band of interest; see section 3.4.

• Step 5: Implement IRC using either an analogue or digital
transfer function. Measure the open- and closed-loop
frequency responses and check that they agree with the
simulated results, as shown in section 4.

4. Experimental results

The controller was implemented digitally using dSPACE
with a sampling frequency of 20 kHz. The continuous
transfer function of the controller is given by C(s) =

−550s
(s+0.3(2π))(s+0.3(2π))

. This was converted to a discrete transfer
function using the zero-order hold approximation. To account
for the system time delay, a time advance of one sample
was incorporated into the control loop. This is achieved
by multiplying the transfer function of the controller by the
forward shift operator z. This is possible because C(z) is
strictly proper and has a relative degree of 1. Frequency
responses are measured from the input disturbance w to the
output tip displacement z of the cantilever beam, denoted by
Gzw. Simulated open- and closed-loop frequency responses
are shown in figure 10(a). Measured open- and closed-loop
frequency responses are shown in figure 10(b). The first three
modes are attenuated by 22, 24 and 21 dB, respectively.

443



S S Aphale et al

Figure 8. Typical bode plots of the three possible controllers assuming γ = 1.

Table 1. Damping for the first eight modes of the cantilever beam.

Mode number 1 2 3 4 5 6 7 8

Frequency (Hz) 12.33 74.25 207.48 408.75 682.32 1020.85 1427.23 1914.01
Attenuation (dB) 22 24 21 0.7 16 9 3 7

Table 2. Damping for the first eight modes for a cantilever beam with added mass.

Mode number 1 2 3 4 5 6 7 8

Frequency (Hz) 10.625 67.48 195.76 356.68 702.38 1028.98 1435.82 1921.97
Attenuation (dB) 17 19 20 0.5 4 4 1 5

Figure 9. Root-locus plot showing the trajectories of the poles due to
change in system gain.

To evaluate the controller performance at higher frequen-
cies, frequency responses for the open- and closed-loop system
are recorded for a larger bandwidth, from 0 to 2.5 kHz. This

band captures the first eight resonant modes of the cantilever
beam. The open- and closed-loop responses depicting the first
eight resonant modes are shown in figure 11.

Table 1 shows the attenuation achieved for the first eight
modes. The minimal attenuation of the fourth mode is due to
the position of the collocated patches.

To evaluate performance sensitivity to variations in
resonance frequencies, open- and closed-loop responses were
also taken after loading the cantilever beam with a mass.
This is equivalent to adding uncertainty in the resonance
frequencies. Even though the addition of mass shifts the
resonant modes by as much as 10%, there is minimal
performance degradation. All of the eight modes show
significant damping, even with the mass present.

Figure 12 shows the open- and closed-loop responses of
the cantilever beam with added mass. Table 2 documents the
damping achieved on the loaded beam for the first eight modes.

5. Conclusions

This paper formalizes the pole-zero structure found in the
transfer functions of collocated smart structures. It is shown
that adding a feed-through term to the open-loop system
introduces a new pair of resonant zeros. By adding a pair
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(a) (b)

Figure 10. Simulated (a) and experimental (b) open-loop (- -) and closed-loop (–) responses of the cantilever beam measured from
disturbance input w to the tip displacement z.

Figure 11. Open- (- -) and closed-loop (—) system response for the
first eight modes of the cantilever beam measured from disturbance
input w to the tip displacement z.

Figure 12. Open- (- -) and closed-loop (—) system response for the
additional mass-loaded cantilever beam measured from disturbance
input w to the tip displacement z.

of zeros at a frequency below the first resonant mode, a
simple first- or second-order controller is shown to provide
good performance and stability margins. The so-called
Integral Resonant Control scheme, IRC, is experimentally
demonstrated to damp eight modes of a cantilever beam by up
to 24 dB.
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