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Abstract

Inverse-feedforward control can substantially improve the performance of piezoelectric positioners (piezopositioners). The feedfor-
ward-input is found by modeling and inverting the piezopositioner dynamics. The primary challenge in such an approach is the com-
plexity of modeling and inverting the hysteresis nonlinearity in the piezopositioner dynamics. The main contribution of this work is
to alleviate this complexity by using charge control to linearize the overall dynamics and then model and invert the simplified (linearized)
dynamics. The proposed approach is applied to an experimental piezopositioner and results are presented to contrast the feedforward-
based positioning performance with and without the use of charge control to linearize the dynamics.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Inverse-feedforward control can substantially improve
the performance of piezoelectric positioners (piezoposition-
ers) [1–3] that are widely used in mechatronic systems, e.g.,
scanning probe microscopy (SPM) [4] and SPM-based
nanofabrication [5]. The feedforward-input is found by
modeling and inverting the piezopositioner dynamics [1],
and can then be applied to the system to improve the piez-
opositioner performance. Typically feedforward is inte-
grated with feedback; the addition of feedforward to
feedback tends to improve the positioning performance
when compared to the performance of feedback alone [2].
The primary challenge in such an approach is the complex-
ity of modeling and inverting the hysteresis nonlinearity in
the piezopositioner dynamics. The main contribution of
this work is to alleviate this complexity by using charge
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control to linearize the overall dynamics [6,7] and then
model and invert the simplified (linearized) dynamics.
The proposed approach is applied to an experimental piez-
opositioner and results are presented to contrast the feed-
forward-based positioning performance with and without
the use of charge control to linearize the piezopositioner
dynamics.

The complexity of modeling and inverting the hysteresis
nonlinearity is the main challenge in computing the feed-
forward-input for piezopositioners. A typical inverse-feed-
forward computation is shown in Fig. 1 – note that both
the linear dynamics (G – vibrations and creep) and the hys-
teresis nonlinearity (H) are inverted to find the feedfor-
ward-input (uff), which is then applied to the
piezopositioner as a feedforward-input (vin = uff). The hys-
teresis nonlinearity can be captured using different models
such as the Preisach model [8–10], multiple linear-play
(backlash) models [11,12], and deterministic path (polyno-
mial) models [13]. These models can then be inverted (for
example using iterative approaches [8,11]) to find the
inverse-feedforward-input. An alternative method to mod-
eling and then inverting, is to directly model the inverse
hysteresis bH �1 [1,14] and use it to find the inverse-feedfor-
ward-input. Common to all these approaches is a
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Fig. 1. Inverse-feedforward computation by inverting the piezopositioner
dynamics P. Both the linear dynamics (G – vibrations and creep) and the
hysteresis nonlinearity (H) are inverted to find the feedforward-input (uff),
which is then applied to the piezopositioner as a feedforward-input
(vin = uff).
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high-order model required to capture the hysteresis nonlin-
earity. An associated problem is that the parameters of
such high-order hysteresis models tend to be sensitive to
operating conditions such as temperature and aging effects.
Therefore, the parameters of the model need to be fre-
quently recalibrated and the feedforward-input needs to
be frequently recomputed, which adds to the computa-
tional load. These computational challenges limit the use
of inverse-feedforward in the presence of hysteresis
nonlinearity.

We propose to first linearize the piezopositioner dynam-
ics using charge control and then invert these simplified
(linearized) dynamics to compute the inverse input as
shown in Fig. 2. The use of a charge amplifier in cascade
with the piezopositioner results in an overall linearized sys-
tem (PL). This linearized system can now be modeled (bP L)
and inverted (bP �1

L ) to compensate for the piezopositioner’s
dynamics. The inverse of the linearized system is relatively
easy to compute and has been applied for precision posi-
tioning applications in previous works [14–16]. Thus, the
main advantage of the approach is to circumvent the diffi-
culties associated with inverting the hysteresis nonlinearity
by using charge control as opposed to the typically used
voltage control (without charge) [6]. It is noted that the
hysteresis appears as an input nonlinearity between the
applied voltage input and the induced charge – therefore,
charge control can significantly reduce this input nonlin-
earity by up to 90% [7]. To show the effectiveness of this
method, it is applied to control an experimental piezoposi-
tioner in Section 3. The experimental results show substan-
tial reductions in the positioning error with the use of the
proposed approach.
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Fig. 2. Proposed approach computes the inverse input uff,L by first
linearizing the overall dynamics using charge control and then inverting
the linearized dynamics bP L.
The remainder of this article is organized as follows. The
methods used in the article are described in Section 2.
Experimental results are presented and discussed in Section
3. Section 4 presents our conclusions.

2. Methods

In this section, the components of the inverse-feedfor-
ward method shown in Fig. 2 are described, including the
design of the charge amplifier, the experimental modeling
of the linearized dynamics (bP L), and the computation of
the inverse-feedforward (bP �1

L ).

2.1. Charge amplifier

The charge amplifier linearizes the overall dynamics of
the piezopositioner. Previous works have shown that oper-
ating piezopositioners with charge control, as opposed to
voltage control, reduces the overall input nonlinearity by
up to 90% [6,7]. This reduction in nonlinearity can be
explained with a commonly used lumped parameter model
of a piezopositioner [17,18], shown in Fig. 3, wherein the
piezopositioner is modeled as the series combination of a
voltage source (vp, which is proportional to the piezoposi-
tioner strain), a capacitor (CL, which captures the capaci-
tance of the piezopositioner) and a nonlinear impedance
(D, which models the hysteresis). It is noted that the deflec-
tion of the piezopositioner is proportional to the charge
(qLC) on the capacitor (CL) [17].

When operated using a voltage amplifier, Fig. 3a, the
charge on the capacitor (qLC) is not linearly related to input
voltage (vin) because the voltage across the capacitor (vLC –
proportional to charge) is not linearly related to the input
voltage (vin) due to the nonlinear hysteresis element (D).
Therefore, hysteresis is seen between the input voltage
and output displacement.

In contrast, if a charge amplifier is used, Fig. 3b, then
the input charge (qin) collects on the capacitor (CL) and
is not effected by the nonlinear impedance (D). This results
in a linear relationship between the input charge (qin) and
the charge on the capacitor (qLC), and therefore, a linear
relationship between the input charge and output displace-
ment. Thus, the hysteresis nonlinearity can be avoided by
driving the piezopositioner with a charge amplifier.
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Fig. 3. Lumped parameter model of the piezopositioner: voltage amplifier
and charge amplifier.
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Fig. 5. DC-accurate charge amplifier [7].
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2.1.1. Low-frequency limitation of charge amplifiers

The application of charge amplifiers at low frequencies
is limited by charge leakage, which can be modeled as a
resistance (RL) placed in parallel with the capacitor as
shown in Fig. 4. To illustrate the loss of control at low-fre-
quency, it is sufficient to consider a simplified model which
neglects the nonlinear impedance (D) and the voltage (vp)
generated by the piezopositioner strain in Fig. 3.

Then, the relation between the input charge (qin) and the
charge on the capacitor (qLC) can be obtained as

qLCðsÞ ¼
RLCLs

RLCLsþ 1
qinðsÞ; ð1Þ

which contains a high-pass filter with a cutoff frequency
xc ¼ 1

RLCL
. This high-pass filter leads to poor low-frequency

tracking and thus, the high-pass filter behavior precludes
the use of charge amplifiers in applications requiring low-
frequency positioning. Although the charge amplifier’s per-
formance is affected at low frequencies by the leakage resis-
tance (RL) in Fig. 4, the performance as a voltage amplifier
is not affected by the leakage resistance since it is in parallel
to the main piezopositioner capacitor.
2.1.2. DC-accurate charge amplifier

DC-accurate charge amplifiers [7,19] resolve the low-fre-
quency limitations of typical charge amplifiers by operating
as voltage amplifiers at low frequencies and as charge
amplifiers at high frequencies. Although, this use of a volt-
age amplifier at low-frequency implies that hysteresis non-
linearity is not compensated at low frequencies, such an
approach avoids the high-pass behavior of traditional
charge amplifiers. Moreover, low-frequency errors (includ-
ing hysteresis) can be corrected with relative ease using
standard integral-type feedback methods. Additional
advantages of this approach such as the ability to drive
grounded loads (e.g., typical piezopositioner configura-
tions) are discussed in Ref. [7].

The circuit diagram for the DC-accurate charge ampli-
fier is shown in Fig. 5, with the piezopositioner shown in
gray. The high gain feedback amplifier (kC) equates the
applied reference voltage (vref), to the voltage (vs) across a
sensing capacitor (Cs). At high frequencies this circuit acts
as a charge amplifier since the impedances of the capacitors
are much smaller than the resistances at high frequencies.
At low frequencies, the resistances are much smaller than
CL

q
in

qLCvin

(a) Voltage Control

CL

q
LC

(b) Charge Control

vLC
RL RL

Fig. 4. Simplified lumped parameter model of the piezopositioner: voltage
amplifier and charge amplifier with charge leakage modeled by resistance
(RL).
the impedance of the capacitors and the circuit approxi-
mates a voltage amplifier. The crossover frequency (xc)
between charge and voltage amplifier characteristics is
xc ¼ 1

CsRs
; above xc the amplifier is charge dominant and

below xc the amplifier is voltage dominant. Details of the
amplifier design are discussed in Refs. [7,19].

2.2. Experimental modeling

The linearized dynamics (bP L from Fig. 2) needed to find
the inverse-feedforward were obtained experimentally
using a dynamic signal analyzer (DSA) (Stanford Research
Systems SR785). A swept-sine technique was used in which
sinusoidal inputs of varying frequencies were applied by
the DSA to the system and the resulting motion of the piez-
opositioner (the output) was measured using an inductive
sensor (Kaman SMU 9000-15N). The resulting experimen-
tal input and output data was then used to obtain the sys-
tem’s model (bP L). The piezopositioner used in these
experiments was a 10 cm long sectored piezoelectric-tube
actuator made of lead zirconate titanate (PZT).

2.2.1. Linearized model

The linearized dynamics (bP L from Fig. 2) were modeled
in transfer function form (bP L) as

bP LðsÞ ¼
y

uff ;L

¼ kL

Q4
m¼1ðs� zL;mÞQ6
n¼1ðs� pL;nÞ

; ð2Þ

where L denotes that the system is linearized (using charge
control), uff,L is the feedforward voltage input to the charge
amplifier, kL is the gain and pL,n and zL,m are the poles and
zeros of the system. The gain for the model was found to
be kL = 8.096 · 106 and the poles and zeros are given in
Table 1.
Table 1
Zeros and poles of linearized model (bP L in Eq. 2)

m and n Zeros (zL,m) (rad/s) Poles (pL,n) (rad/s)

1, 2 �85.12 ± 2530.93j �33.43 ± 1325.75j

3, 4 19505.41 ± 33323.36j �13533.10 ± 3091.28j

5, 6 – �278.73 ± 19190.57j
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The frequency response of the transfer function model is
compared to the experimental frequency response of the sys-
tem obtained using the DSA in Fig. 6. As seen in the Figure,
the model matches the experimental data well up to 4000 Hz.
Inverse
Dynamics Piezopositioner (P)

Fig. 7. Block diagram showing the feedforward control scheme for a
voltage-controlled piezopositioner. The control scheme is similar to the
charge-controlled case in Fig. 2, but without the charge amplifier.

Table 2
Voltage-controlled piezopositioner model zeros and poles

m and n Zeros (zN,m) (rad/s) Poles (pN,n) (rad/s)

1, 2 �82.77 ± 2535.17j �32.06 ± 1336.92j

3, 4 17376.26 ± 33162.90j �309.54 ± 19189.82j

5 – �9666.62
6 – �30669.86
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2.2.2. Linear model without charge control

In order to contrast the feedforward-based positioning
performance with and without the use of charge control
to linearize the dynamics, the system was modeled without
the charge amplifier, i.e., with a standard voltage amplifier,
as shown in Fig. 7.

Although the dynamics are not linearized (as is the case
with charge control), a frequency response (with the volt-
age amplifier) was obtained by keeping the positioner dis-
placements significantly smaller than the maximum range
of the positioner. For such small displacements, a linear
model was obtained by fitting the experimental frequency
response with a transfer function of the formbP NðsÞ ¼

y
uff ;N

¼ kN

Q4
m¼1ðs� zN;mÞQ6
n¼1ðs� pN;nÞ

; ð3Þ

where uff,N is the feedforward voltage input to the voltage
amplifier, with gain kN = 6.512 · 106 and poles and zeros
as seen in Table 2 (the subscript N denotes that the system
dynamics are not linearized with a charge amplifier).

The frequency responses of the transfer function model
is compared to the experimental frequency response of the
system obtained using the DSA in Fig. 8. As seen in the fig-
ure, the model adequately captures the system dynamics
and the modeling errors (in the frequency response) are
similar to the case with the charge amplifier in Fig. 6.
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Fig. 8. Voltage control frequency response plots for the experimental
system (dotted line) and the transfer function model (solid line).
2.3. Inverse-feedforward

Given a desired output (y = yd), the feedforward-input
with the charge amplifier (uff,L in Fig. 2) can be found by
inverting the model of the system dynamics (bP L)
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Fig. 6. Comparison of frequency response plots for the experimental
system with charge control (dotted line) and the transfer function model
(solid line).
uff;L ¼ bP �1
L yd: ð4Þ

There are two issues in the computation of the feedfor-
ward-input with such an approach. First, this approach
cannot account for design issues such as actuator satura-
tion and bandwidth limitations. Second, the system model
from Eq. (3) could be nonminimum phase (zeros of the sys-
tem are the right-half of the complex plane), in which case
the inverse system bP �1

L will be unstable and standard
approaches to compute the feedforward-input would lead
to unbounded inputs. Both of these issues are discussed
below.
2.3.1. Optimal inverse-feedforward

A Fourier-transform-based approach to compute
bounded inverse inputs (even for nonminimum phase sys-
tems) was developed in [20]. This Fourier-based approach
is extended by the optimal, inverse-feedforward method



Table 3
Weighting factors (R and Q) at different frequencies in Eq. (5)

Frequency (Hz) 0 150 250 275 500 525 1800 2000

Q 1 1 1 0 0 1 1 0
R 0 0 0 1 1 0 0 1

Weights at intermediate frequencies were obtained using linear
interpolation.
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Fig. 9. Experimental hysteresis loops for a 10 Hz desired output of
±2 lm. (a) Without charge control and (b) with charge control.
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[21], which enables trade-offs between input size and out-
put-tracking precision. In particular, the inverse input is
found by minimizing the following cost function:

JðuÞ ¼
Z 1

�1
fu�ðjxÞRðjxÞuðjxÞ

þ ½yðjxÞ � ydðjxÞ�
�QðjxÞ½yðjxÞ � ydðjxÞ�gdx; ð5Þ

where the terms are Fourier transforms of the input u, the
achieved output y, the desired output yd and * denotes the
complex conjugate transpose. The terms R(jx) and Q(jx)
are real-valued frequency dependant weightings that penal-
ize the input (u) and the tracking error (y � yd) respectively.
Both values should not be simultaneously zero at any
frequency.

We point out two extreme cases for the choice of R and
Q. First, if Q = 0 and R nonzero, then not tracking the
desired trajectory would be the best approach (u = 0). In
the second case, if R = 0 and Q is nonzero, then the best
strategy is to track the desired scan path exactly (y = yd).
Note that in the second case, the input from the optimal
inverse is the same as the input from the exact inverse,
which allows the system to precisely track the desired out-
put (at that particular frequency). Choice of R and Q in
between these extreme cases allows for trade-off between
minimization of vibrations and prevention of actuator sat-
uration as discussed in Ref. [22].

By minimizing the cost function in Eq. 5 the optimal
input (uopt) can be found as

uoptðjxÞ ¼
bP �LðjxÞQðjxÞ

RðjxÞ þ bP �LðjxÞQðjxÞbP LðjxÞ

" #
� ydðjxÞ ð6Þ

and the time-domain signal for the feedforward-input (uff,L)
is then obtained through an inverse Fourier transform of
uopt(jx) [21]. For the case without the charge control, the
feedforward-input uff,N is obtained using the same ap-
proach after substituting bP N for bP L in Eq. 6.

Remark: The time domain feedforward input (inverse
Fourier transform of Eq. 6) is noncausal (but bounded)
for nonminimum phase systems. Therefore, to implement
this method for nonminimum phase systems, it is necessary
to calculate the feedforward input offline and apply it to
the system before the desired motion begins. For online
implementation, a preview-based inversion method was
developed in Refs. [23,24].

3. Experiments

Experimental results are used to show that the ability of
charge control to linearize the piezopositioner enables the
use of linear inverse-feedforward, which can substantially
reduce positioning error.

3.1. Design of experiments

To evaluate the capabilities of inverse-feedforward with
charge control, output-tracking of a desired trajectory (yd)
of three cases are compared experimentally:
1. Linear inverse-feedforward with charge control,
2. linear inverse-feedforward without charge control (i.e.,

with the voltage amplifier), and
3. DC-gain control (without charge control), where the

feedforward input is calculated without considering the
vibrational dynamics, i.e., based on the low-frequency
gain (DC-gain) as

uff;DC ¼
yd

DCGain

: ð7Þ

The desired trajectory was chosen as a filtered ±2 lm trian-
gular output trajectory (yd); the filter was chosen such that
the first three components of the triangular waves Fourier
expansion were below the filter’s cutoff frequency.

Remark: It is impossible to track a pure triangular
trajectory with finite inputs since the acceleration at the
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turnarounds is unbounded. Thus the desired trajectory is
chosen to be a filtered, triangle-like trajectory to assure
bounded accelerations and therefore, bounded inputs.

3.2. Experimental methods

3.2.1. Isolating the feedforward performance

To isolate the effects of the feedforward-input, the follow-
ing experiments are carried out using open loop control. In
general, feedforward is used in conjunction with a feedback
controller, e.g. [3,12,25–28]; feedforward in conjunction with
feedback tends to improve the tracking performance when
compared to the use of feedback alone [2]. However, in this
study, we focus on the use of feedforward alone (without
feedback) to isolate and investigate the effects of charge con-
trol on the inverse-feedforward approach.

3.2.2. Weighting factors in optimal inverse
The inverse-feedforward-input was computed using the

optimal inverse-feedforward method (described in Section
2.3.1). The choice of the weighting factors (R and Q in
Eq. 5) are shown in Table 3.

At frequencies where we seek perfect tracking we set the
weight on the tracking error to be high (Q = 1) relative to
the weight on the input (R = 0). At high frequencies, the
gain of the system is small (see Fig. 6) – therefore, large
inputs are needed to track output signals at such frequen-
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Fig. 10. Experimental output plots for different control techniques (DC-Gain,
charge control) at different frequencies (10, 25, and 50 Hz).
cies. To avoid actuator saturation we do not seek to track
at relatively high frequencies beyond 2000 Hz, i.e., we
choose Q = 0 and R = 1. Similarly, we do not seek to track
in the region where the system gain is small due to the pres-
ence of the zeros (see Fig. 6), i.e., we again set Q = 0 and
R = 1 in the frequency interval 275–500 Hz. Thus, the
choice of the weights (Q,R) allows trade-offs between the
tracking precision and the input size.
3.2.3. Positioning error quantification

The results were quantified in terms of the output-track-
ing error using percentage root-mean-square (RMS) error,

erms;% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � yd;iÞ

2

n

s0@ 1A24 ,
yd;max

35� 100; ð8Þ

where y is the actual output from the system and n is the num-
ber of sample points, and the maximum percentage error

emax;% ¼ ½maxðyi � yd;iÞ=yd;max� � 100; ð9Þ
where yd,max represents the maximum desired displacement
(2 lm).
3.3. Charge control linearizes the piezopositioner

The use of charge control linearizes the overall dynamics
of the piezopositioner. The amount of hysteresis reduction
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afforded by charge control can be shown by plotting the
input versus output for both cases: with charge control
and without charge control as shown in Fig. 9 for 10 Hz,
which is in the charge control region of the amplifier since
the crossover frequency (xc) between voltage amplifier and
charge amplifier, is fc = xc/2p = 1/2pRsCs = 0.04 Hz. Note
that the input axes are on different scales due to the differ-
ence in amplifier gain between the voltage and charge
amplifiers (see Figs. 6 and 8). Fig. 9a shows the hysteresis
loop for the case without charge control (block diagram
shown in Fig. 7), while Fig. 9b shows the loop for the
charge control case (block diagram shown in Fig. 2). The
amount of hysteresis reduction is quantified by determining
the maximum output deviation at zero input (shown
between the arrows). Without charge control, the hysteresis
loop is approximately 0.35 lm wide (8.8% of the maximum
desired displacement) compared to 0.06 lm (1.5%) when
charge control is used, a reduction in hysteresis of 83%.
Thus, charge control reduces hysteresis significantly–essen-
tially linearizing the system.

3.4. Inverse-feedforward with charge control improves

output-tracking

The use of charge control, which linearizes the piezo-
positioner, enables the use of linear inverse-feedforward.
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Fig. 11. Experimental error plots (yd � y) for different control techniques (DC-
with charge control) at different frequencies (10, 25, and 50 Hz).
In piezopositioners, positioning errors come from two pri-
mary sources: (1) hysteresis and (2) vibrations, both of
which can be seen when using the DC-Gain method (Figs.
10 and 11 column 1 and Table 4 column 1). First, hyster-
esis exists at all frequencies, but tends to dominate the
positioning error at low frequencies because the vibra-
tional errors are small. It manifests itself as a lag-like
behavior in the output, as can be seen in the 10 Hz DC-
Gain plot shown in Fig. 10 (column 1, row 1). Second,
vibrations tends to increase as the operating frequency
approaches the first system resonance (in this case
210 Hz), as can be seen in the DC-Gain column of
Fig. 10 (column 1).

Both hysteresis and vibrations can be overcome by using
inverse-feedforward with charge control. This can be seen
by comparing the Inverse-Feedforward (Charge) and DC-
Gain (without Charge) columns of Fig. 10 (columns 1
and 3). At 10 Hz the error seen in the DC-Gain method
(primarily caused by hysteresis) is significantly reduced
when inverse-feedforward with charge control is used
(RMS error is reduced from 3.0% to 1.0% (67% reduction)
– as seen in Table 4). As the frequency is increased to
50 Hz, vibrational error, seen in the DC-Gain method, is
also reduced when inverse-feedforward with charge control
is used (RMS error is reduced from 5.0% to 1.1% (78%
reduction)).
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Table 4
Error data at various frequencies

f (Hz) DC-Gain (erms,%/emax,%) Inverse-feedforward voltage (erms,%/emax,%) Inverse-feedforward charge (erms,%/emax,%)

10 3.0/15.3 2.7/14.0 1.0/5.6
25 3.4/20.1 2.4/12.7 0.9/5.4
50 5.0/30.3 2.2/12.1 1.1/8.1
75 24.6/109.3 2.3/13.5 1.6/9.2
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3.5. Comparison of inverse-feedforward with and without

charge control

The tracking performance of inverse-feedforward, with
and without charge control, are compared in Figs. 10 and
11 and Table 4 (columns 2 and 3 in all). The inverse-feedfor-
ward of a linear model, without charge control, reduces
vibrational errors but not hysteresis effects. In contrast,
the use of charge control allows reduction of the hysteresis
and vibration effects in a piezopositioner with the inverse of
a linear model. This is because the overall system dynamics,
which include the charge amplifier, are linear. For example,
at 10, 25, and 50 Hz, the RMS error reduced from 2.7% to
1.0% (63% reduction), 2.4% to 0.9% (63% reduction) and
2.2% to 1.1% (50% reduction) respectively as seen in Figs.
10 and 11. Thus, the use of charge control to linearize the
system, substantially improves the performance of linear
inverse-feedforward.

3.6. Trade-off between tracking accuracy and input

magnitude

The use of an optimal inverse allows trade-off between
tracking accuracy and input magnitude. For example, con-
sider the tracking results for a 75 Hz output shown in Fig
12 – the data is quantified in Table 4 (row 4). As before,
the use of the inverse-feedforward substantially reduces
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Fig. 12. Experimental output and error (yd–y) plots for different control techn
feedforward with charge control) at 75 Hz.
the tracking error (93% error reduction when compared
to DC-Gain without charge control). However, the resid-
ual tracking error has a significant 375 Hz component as
seen in Fig. 12 (column 2 and 3, row 2) – the error has five
cycles in each 75 Hz period. Note that 375 Hz is the third
components in the Fourier expansion of the 75 Hz triangu-
lar output-trajectory. We expect to see positioning error at
this frequency when the optimal inverse-feedforward-input
is used. This is because the optimal inverse was designed to
not track the 375 Hz frequency component, which lies in
the untracked frequency range (275–500 Hz), see discussion
in Section 3.2.2.

The residual error at 375 Hz could have been corrected,
but at the cost of greater input magnitude. The input
required for such removal of the residual error at 375 Hz
is computed by changing the cost function to achieve full
tracking and the resulting full-inverse input is shown in
Fig. 13. Note that the full-inverse input (center plot in
Fig. 13) is substantially larger than the optimal input (first
plot in Fig. 13) – magnitude of 0.75 V when compared to
the optimal inverse magnitude of 0.48 V which is a 56%
increase in the maximum input needed. When applied to
the piezopositioner, this large increase in the input magni-
tude (almost doubling) would only result in a small
decrease in output error (maximum output error is
0.18 lm or 9% of the maximum desired output, 2 lm).
The need for such large input arises because the gain of
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the system at 375 Hz is small as it is close to the system zero
(see Fig. 6). The advantage of the optimal inversion
approach is that it allows the designer to trade-off this rel-
atively small improvement in output-tracking accuracy for
a substantially reduced feedforward-input magnitude.

4. Conclusion

This article addressed problems associated with the
inverse-feedforward control of piezopositioners. The main
contribution was to negate the necessity to invert the com-
plex hysteresis nonlinearity by first linearizing the piezopo-
sitioner using charge control, and then applying linear
inverse-feedforward to this system. This method was exper-
imentally verified using a piezoelectric-tube actuator and
the advantages were shown by comparing the positioning
performance with and without the use of charge control.
For example, at an operating frequency of 50 Hz, the linear
inverse-feedforward with charge control could reduce the
tracking error by 50% when compared to the case without
charge control.
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