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Nanopositioning System With Force Feedback for
High-Performance Tracking and Vibration Control

Andrew J. Fleming, Member, IEEE

Abstract—In this study, the actuator load force of a nanopo-
sitioning stage is utilized as a feedback variable to achieve both
tracking and damping. The transfer function from the applied
actuator voltage to the measured load force exhibits a zero-pole
ordering that greatly simplifies the design and implementation of a
tracking and damping controller. Exceptional tracking and damp-
ing performance can be achieved with a simple integral controller.
Other outstanding characteristics include guaranteed stability and
insensitivity to changes in resonance frequency. Experimental re-
sults on a high-speed nanopositioner demonstrate an increase in the
closed-loop bandwidth from 210 Hz (with an integral controller)
to 2.07 kHz (with a force-feedback control). Gain margin is simul-
taneously improved from 5 dB to infinity.

Index Terms—Mechatronics, piezoelectric transducers, position
control.

I. INTRODUCTION

NANOPOSITIONING stages are used to generate fine me-
chanical displacements with resolution down to atomic

scale [1]. Such devices include fiber aligners [2], beam scan-
ners [3], and lateral positioning platforms [1]. Among other ap-
plications in nanotechnology [4], nanopositioning platforms are
used widely in scanning probe microscopy [5]–[7] and nanofab-
rication systems [8]–[11]. An example of a single-degree-of-
freedom lateral positioning platform is shown in Fig. 1. In this
device, a force developed by a piezoelectric actuator displaces
the central platform to the left.

Although piezoelectric nanopositioning systems are designed
to provide the greatest possible positioning accuracy, in prac-
tice, they exhibit a number of non-ideal characteristics such as
creep, hysteresis, and mechanical resonance that severely de-
grade the performance [1]. These characteristics are discussed
in the following section. As a result of these problems, prac-
tical nanopositioning systems require position sensors and a
feedback control loop to provide a satisfactory performance.
The strengths and limitations of present control systems are
surveyed in Section I-B.

To improve the speed and robustness of nanopositioning sys-
tems and to reduce complexity, a new control system is intro-
duced in Section I-C. The proposed technique uses a measure-
ment of the actuator load force to provide high-performance
tracking and vibration control.
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Fig. 1. Single-degree-of-freedom positioning stage. Actuator generates a force
that causes the platform to displace laterally. Force sensor measures actuator
load, while the position sensor measures platform displacement.

A. Problems With Nanopositioning Systems

Due to their high stiffness, compact size, and effectively infi-
nite resolution, piezoelectric actuators are universally employed
in nanopositioning applications. The positioning accuracy of
piezoelectric actuators is however severely limited by hystere-
sis over large displacements, and creep at low frequencies [1].
As a result, all nanopositioning systems require some form of
feedback or feedforward control to reduce or eliminate non-
linearity.

Another difficulty with nanopositioning systems is the me-
chanical resonance that arises from the platform mass interacting
with the stiffness of support flexures, mechanical linkages, and
actuators. As the lowest frequency resonance mode is of greatest
interest, the dynamics of a nanopositioner can be approximated
by a unity-gain second-order low-pass system

G(s) =
ω2

n

s2 + 2ωnξs + ω2
n

(1)

where ωn and ξ are the natural frequency and damping ratio.
Although a second-order system is a highly simplified model, in
the following, it is sufficient to demonstrate the limitations expe-
rienced by many feedback controllers. The magnitude and phase
responses of this system are plotted in Fig. 2. To avoid excitation
of the mechanical resonance, the frequency of driving signals
is limited to between 1% and 10% of the resonance frequency
(depending on the signal). In applications where the frequency
of driving signals should be maximized, for example, in high-
speed atomic force microscopy [12]–[15], the nanopositioner is
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Fig. 2. Nanopositioning system G controlled by an integral controller Ct =
β/s. Frequency response of G and system loop gain Ct G are plotted on the
left- and right-hand side, respectively.

operated in open loop with driving signals that are shaped to
reduce harmonic content. Although such techniques, reviewed
in [16], can provide a fast response, they are not accurate as
non-linearity and disturbance remain uncontrolled.

The transient response of nanopositioners can be vastly im-
proved by actively damping the first resonance mode. This can
reduce settling time by greater than 90% and allows a propor-
tional increase in the frequency of driving signals. Systems with
active damping also facilitate a greater tracking performance as
the controller gain can be significantly increased; this issue is
discussed in the following section.

B. Control of Nanopositioning Systems

The most popular technique for control of commercial
nanopositioning systems is sensor-based feedback using an in-
tegral or proportional–integral control [17]. Such controllers
are simple, robust to modeling error, and, due to a high loop
gain at low frequencies, effectively reduce piezoelectric non-
linearity. However, the bandwidth of integral tracking con-
trollers is severely limited by the presence of highly resonant
modes. The cause of such a limited closed-loop bandwidth can
be explained by examining the loop gain CtG in Fig. 2. Here,
the resonant system G is controlled by an integral controller Ct

with gain β. The factor limiting the maximum feedback gain
and closed-loop bandwidth is gain margin.

Above the natural frequency ωn , which is approximately
equal to the resonance frequency in systems with low damp-
ing, the phase lag of the loop gain exceeds π, so the magnitude
must be less than 1 (0 dB) for stability in a closed loop. The
condition for closed-loop stability is approximately

β

ωn
× 1

2ξ
< 1, or β < 2ωnξ. (2)

As the system G is unity gain, the complimentary sensitivity
function is

d(s)
r(s)

=
Ct(s)G(s)

Ct(s)G(s) + 1
≈ β

s + β
. (3)

Thus, the feedback gain β is also the approximate 3dB band-
width of the complementary sensitivity function ωcl and the
0 dB crossing of the loop gain (in radians per second). From this
fact, and the stability condition (2), the maximum closed-loop
bandwidth is equal to the product of damping ratio ξ and natural
frequency ωn , i.e.,

Max. closed-loop bandwidth < 2ωnξ. (4)

This is a severe limitation as the damping ratio is usually in
the order of 0.01, so the maximum closed-loop bandwidth is
less than 2% of the resonance frequency.

Techniques aimed at improving the closed-loop bandwidth
are based on either inversion of resonant dynamics using a notch
filter [18] or damped resonant dynamics using a damping con-
troller [19], [20].

Inversion techniques are popular as they are simple to imple-
ment and can provide an excellent closed-loop bandwidth, up
to or greater than the resonance frequency [18]. The major dis-
advantage is the requirement for an accurate system model. If
the system resonance frequency significantly decreases, a high-
gain inversion-based feedback controller can become unstable.
In many applications, this is unacceptable as the load mass and
resonance frequency of a nanopositioner can vary significantly
during service. As a result of this sensitivity, high-performance
inversion-based controllers are usually applied in applications
where the resonance frequency is stable, or where the feedback
controller can be continually recalibrated [18].

Damping control is an alternative method for reducing
the bandwidth limitations imposed by mechanical resonance.
Damping control uses a feedback loop to artificially increase the
damping ratio ξ of a system. Due to (4), an increase in ξ allows
a proportional increase in the feedback gain and closed-loop
bandwidth. Although damping controllers alone cannot increase
the closed-loop bandwidth to beyond the resonance frequency,
they have the advantage of being insensitive to variations in
resonance frequency. In addition, as damping controllers sup-
press, rather than invert, the mechanical resonance, they provide
better rejection of external disturbances than inversion-based
systems [1].

A number of techniques for damping control have been
demonstrated successfully in the literature, these include pos-
itive position feedback (PPF) [21], polynomial based control
[20], shunt control [22], [23], resonant control [24], and integral
resonant control (IRC) [19], [25], [26]. These techniques can
successfully damp a resonant system with modest insensitivity
to variations in the resonance frequency. However, when the
damped system is included in an integral tracking loop, the sys-
tem is still limited by a low gain margin. In addition, the wide
bandwidth of a damping controller can introduce a significant
amount of sensor-induced positioning noise, which cannot be re-
duced in the normal way by scaling back the tracking controller
gain.

Authorized licensed use limited to: University of Newcastle. Downloaded on April 26,2010 at 08:58:30 UTC from IEEE Xplore.  Restrictions apply. 



FLEMING: NANOPOSITIONING SYSTEM WITH FORCE FEEDBACK FOR HIGH-PERFORMANCE TRACKING AND VIBRATION CONTROL 435

To demonstrate the limitations imposed by sensor noise, con-
sider a nanopositioner with feedback control derived from a
high-performance capacitive sensor with a range of ±100 µm
and root-mean-square (RMS) noise density of 20 pm/

√
Hz. An

estimate of the RMS positioning noise can be found by multi-
plying the noise density by the square root of the closed-loop
bandwidth, i.e.,

RMS noise =
√

2 × bandwidth × noise density. (5)

For example, with a closed-loop bandwidth of 100 Hz, the
positioning noise is 0.28 nm RMS. If the noise is normally
distributed, the RMS value is also the standard deviation σ. As
the peak-to-peak amplitude of a Gaussian process in 6σ, the
noise will be approximately 1.7 nm peak-to-peak. For atomic
resolution, the closed-loop bandwidth must be reduced to below
1 Hz, a severe limitation.

At this point in the discussion, it should be noted that feed-
forward control can be employed to improve the performance
of feedback-controlled nanopositioning systems [27]–[29]. Al-
though feedforward techniques can also be used independently
[30], they are generally combined with a feedback controller to
ensure some immunity to modeling error, drift, and external dis-
turbances. The foremost benefit resulting from the addition of
a feedforward controller is the increased tracking performance
that arises from a partial inversion of the closed-loop dynam-
ics. However, as the non-linearity, bandwidth, and resolution
of a nanopositioning system are limited primarily by the feed-
back controller, improving the feedback system is of primary
concern. Furthermore, if a nanopositioner can experience sig-
nificant changes in resonance frequency, feedforward control
may not be feasible [31].

If the reference signal is periodic, iterative feedforward con-
trol [32], [33] and adaptive control [34] can be applied. These
techniques can provide excellent tracking performance at high
speed, but require a periodic input and significant digital signal
processing capabilities.

C. Contribution of This Work

From the previous discussion, it should be clear that tracking
controllers can provide good performance at low frequencies;
however, the maximum gain and closed-loop bandwidth are
severely limited by the presence of a lightly damped mechanical
resonance. As discussed, damping controllers can provide a
substantial improvement, but the tracking controller bandwidth
is still restricted by low stability margins. A further limitation of
present techniques is the high sensor-induced noise that places
a penalty on positioning resolution as bandwidth is increased.

In this study, a new method for feedback control of nanoposi-
tioning systems is proposed. A measurement of the force applied
to the moving platform by the actuator is utilized as a feedback
variable for both tracking and damping control. A major benefit
of this arrangement is discussed in Section II. The system ex-
hibits a zero-pole ordering, meaning that the resonant zeros of
the system appear lower in frequency than the resonant poles.
Section II also presents a new modeling technique for piezo-
electric actuators. Rather than modeling piezoelectric actuators

Fig. 3. (a) Noliac monolithic stack actuator represented in (b) by a voltage
dependent force Fa , stiffness ka , effective mass Ma , and damping coefficient
ca .

as displacement actuators, they are modeled as force actuators.
This technique provides a more intuitive understanding of actu-
ator dynamics and is simpler to apply.

In Section III, the unique properties of the system described
in Section II are exploited to provide damping control. A simple
integral controller is shown to provide damping performance
without any limitations on the gain. The system is guaranteed to
be stable with a theoretically infinite gain margin and 90◦ phase
margin.

In addition to damping control, the controller described in
Section III is extended to provide tracking control without loss
of performance or stability margins. As the noise generated by
a piezoelectric force sensor is much less than a capacitive or
inductive position sensor, the closed-loop positioning noise is
also substantially reduced. The performance of the proposed
techniques are demonstrated experimentally in Section V.

The increased bandwidth and resolution offered by the pro-
posed technique, combined with the simple implementation and
high level of robustness, will allow nanopositioning systems to
be employed in a new range of high-speed applications. For ex-
ample, due to the performance penalties associated with closed-
loop control, high-speed scanning probe microscopes currently
use open-loop nanopositioners [12]–[15]. Due to the simplicity
and bandwidth of the proposed technique, such applications can
now utilize closed-loop control with the associated benefits of
improved linearity, less vibration, and rejection of disturbance.

II. MODELING

In this section, a model is derived for the single-degree-of-
freedom lateral positioning platform illustrated in Fig. 1. In
this device, the force developed by a piezoelectric actuator dis-
places the central platform. The flexures represent the stiffness
introduced by guiding flexures and mechanical linkages that are
often present between the actuator and platform. Although the
model presented is simple, it adequately represents the domi-
nant dynamics exhibited by many nanopositioning geometries.

A. Actuator Dynamics

A typical multilayer monolithic stack actuator is shown in
Fig. 3(a). The actuator experiences an internal stress in response
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to an applied voltage. This stress is represented by the voltage
dependent force Fa and is related to free displacement by

∆L =
Fa

ka
(6)

where ∆L is the change in actuator length (in meter) and ka is
the actuator stiffness (in N/m).

The developed force Fa is most easily related to applied volt-
age by beginning with the standard expression for unrestrained
linear stack actuators [35],

∆L = d33nVa (7)

where d33 is the piezoelectric strain constant (in m/V), n is the
number of layers, and Va is the applied voltage. Combining (6)
and (7) yields an expression for developed force as a function
of applied voltage

Fa = d33nkaVa . (8)

The force equation can also be derived from the stress-charge
form of the piezoelectric constituent equations [36]

T = d33c
E E (9)

where T is the stress (in N/m2), cE is Young’s elastic modulus
under constant electric field (in N/m2), and E is the applied
electric field (in V/m). The developed force Fa is proportional
to stress T and the surface area A (in m2) by Fa = TA. Also,
the electric field is equal to the applied voltage Va divided by
the layer thickness t, i.e., E = Va/t. Taking this into account,
the developed force is

Fa =
d33c

E AVa

t
. (10)

This can be simplified by recognizing that the number of layers
n is equal to the length L divided by layer thickness t, i.e.,
n = L/t. The elasticity cE can also be replaced by stiffness,
which is related to elasticity by

ka =
cE A

L
. (11)

The resulting expression for the developed force is again

Fa = d33nkaVa . (12)

That is, the ratio of the developed force to applied voltage
is d33nka N/V. In the following sections, this constant will be
denoted by ga where

Fa = gaVa and ga = d33nka .

Compared to standard modeling techniques [35], which are
based on displacement, the method described earlier results in
an expression for generated force. This approach provides an
intuitive understanding of the actuator mechanics and signifi-
cantly simplifies the modeling of interconnected structures such
as nanopositioners as the generated actuator force is independent
of load force and stiffness. The ease of combining the actuator
and structural models when using developed force rather than
displacement will become clear in Section II-D.

Fig. 4. Electrical model of a piezoelectric force sensor is shown in gray.
Developed charge q is proportional to the strain and hence the force experienced
by the sensor. Op-amp charge amplifier produces an output voltage Vs equal to
−q/Cs .

B. Sensor Dynamics

Although the load force Fs can be measured in a number of
ways, in this application it is desirable to minimize the additional
mass and compliance associated with the sensor. In such sce-
narios, piezoelectric transducers are an excellent choice. They
provide a high sensitivity and bandwidth with low noise at high
frequencies.

If a single wafer of piezoelectric material is sandwiched be-
tween the actuator and platform, the amount of generated charge
per unit area D (in C/m2) is given by the standard strain-charge
form of the piezoelectric constituent equations [36]

D = d33T. (13)

The generated charge is then

q = d33Fs. (14)

If an n-layer piezoelectric transducer is used as a force sensor,
the generated charge is

q = nd33Fs. (15)

The electrical model of a piezoelectric force sensor and charge
measurement circuit is shown in Fig. 4. In this circuit, the output
voltage Vs is equal to

Vs = − q

Cs
= −nd33Fs

Cs
(16)

that is, the scaling between the force and voltage is −nd3 3
Cs

V/N.
Piezoelectric force sensors can also be calibrated using volt-

age rather than charge measurement. In this case, the generated
charge is deposited on the transducer’s internal capacitance. As
the terminal voltage is non-zero, the dynamics of the sensor
are slightly altered. In effect, the transducer is marginally stiff-
ened [37]. However, as the stiffness of the sensor is already
substantially greater than that of the actuator and flexures, this
effect is negligible. The open-circuit voltage of a piezoelectric
force sensor is

Vs =
nd33Fs

C
(17)

where C is the transducer capacitance defined by C = nεT A/h,
and A, h, and εT are the area, layer thickness, and dielec-
tric permittivity under a constant stress. The scaling factor be-
tween force and measured voltage is nd3 3

C V/N. In the following
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Fig. 5. Mechanical diagram of a single-degree-of-freedom positioning stage.
Fs is the measured force acting between the actuator and platform mass in the
vertical direction.

sections, this sensor constant will be denoted by gs , i.e.,

Vs = gsFs and gs =
nd33

C
. (18)

C. Sensor Noise

Due to the high mechanical stiffness of piezoelectric force
sensors, thermal or the Boltzmann noise is negligible compared
to the electrical noise arising from interface electronics. As
piezoelectric sensors have a capacitive source impedance, the
sensor noise density NV s(ω) is due primarily to current noise
in reacting with the capacitive source impedance, i.e.,

NV s(ω) = in
1

Cω
(19)

where NV s and in are the power spectral densities, measured in
V and A/

√
Hz, respectively. Note that the high-pass filter arising

from the transducer’s leakage resistance has been ignored, as this
pole is approximately canceled by the 1/f corner frequency1 of
the current noise density in [39].

In addition to noise, piezoelectric force sensors also exhibit
other non-ideal characteristics. These include temperature de-
pendence and a small amount of non-linearity. A thorough treat-
ment of these topics is beyond the scope of this paper. However,
if such characteristics must be avoided, dedicated piezoelectric
sensor compositions are available with extremely high linear-
ity and essentially no temperature dependence, e.g., quartz or
gallium phosphate.

D. Mechanical Dynamics

The mechanical diagram of a single axis positioner is shown
in Fig. 5. The developed actuator force Fa results in a load force
Fs and platform displacement d. The stiffness and damping
coefficient of the flexures and actuator are denoted by kf , cf ,
and ka , ca , respectively.

1The power spectral density of an electronic device is approximately constant
above the 1/f corner frequency, while below this frequency, it is approximately
proportional to the inverse of frequency [38].

The dynamics of the suspended platform are governed by
Newton’s second law,

(Ma + Mp)d̈ = Fa − kad − kf d − ca ḋ − cf ḋ (20)

where Ma and Mp are the effective mass of the actuator and
the mass of the platform. As the actuator and flexure are me-
chanically in parallel with the suspended platform, the masses,
stiffness, and damping coefficients can be grouped together, i.e.,

M = Ma + Mp (21)

k = ka + kf and (22)

c = ca + cf.

The equation of motion is then

Md̈ + kd + cḋ = Fa (23)

and the transfer function from actuator force Fa to platform
displacement d is

d

Fa
=

1
Ms2 + cs + k

. (24)

Including the actuator gain, the transfer function from applied
voltage to displacement can be written as

GdV a =
d

Va
=

ga

Ms2 + cs + k
. (25)

The load force Fs is also of interest; this can be related to
the actuator force Fa by applying Newton’s second law to the
actuator mass,

Mad̈ = Fa − kad − ca ḋ − Fs. (26)

This results in the following transfer function between the
applied force Fa and measured force Fs :

Fs

Fa
= 1 − (Mas2 + cas + ka)

d

Fa
(27)

=
Mps

2 + cf s + kf

Ms2 + cs + k
. (28)

By including the actuator and sensor gains ga and gs , the sys-
tem transfer function from the applied voltage to the measured
voltage can be found:

GV sV a =
Vs

Va
= gags

Mps
2 + cf s + kf

Ms2 + cs + k
. (29)

The two system transfer functions GdV a and GV sV a will be
used in the following sections to simulate the performance of
feedback control systems. As both of these transfer functions
have the same input Va and poles, it is convenient to define a
single-input two-output system G that contains both of these
transfer functions

G =
[

GdV a

GV sV a

]
. (30)
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Fig. 6. Magnitude and phase response of Fs /Fa (27).

E. System Properties

The transfer function GV sV a (29) can be rewritten as

GV sV a = gags
Mp

M

s2 + cf

Mp
s + kf

Mp

s2 + c
M s + k

M

. (31)

This transfer function consists of a pair of resonant poles and
zeros at frequencies ωz and ωp ,

ωz =

√
kf

Mp
ωp =

√
k

M
=

√
ka + kf

Ma + Mp
.

In general, the resonance frequency of the zeros will appear
below the poles. The condition for this to occur is

ωz < ωp

kf

Mp
<

ka + kf

Ma + Mp

Makf < kaMp. (32)

As the actuator mass Ma and flexural stiffness kf are sig-
nificantly less than the actuator stiffness ka and platform mass
Mp , the resonant zeros will always occur below the resonance
frequency of the poles. This characteristic is shown in the fre-
quency response of Fs/Fa in Fig. 6.

F. Example System

For the sake of demonstration, and to assess the validity of
assumptions in the following sections, an example system will
be considered. The system is a single-dimensional positioning
stage as illustrated in Figs. 1 and 5. The actuator is a 10-mm long
PZT linear actuator with 200 layers. Force sensing is provided
by a single PZT wafer of the same area. The dimensions and
physical properties of the system are listed in Table I.

The actuator and sensor gains are

ga = 7.5 N/V and gs = 0.19 V/N (33)

TABLE 1
EXAMPLE SYSTEM PARAMETERS

Fig. 7. Nanopositioning system GV sV a with input and output voltages Va

and Vs proportional to applied and measured forces, controlled by an IFF
damping controller Cd (s).

which results in an open-loop static displacement sensitivity
GdV a(0) of

GdV a(0) =
ga

k
= 43 nm/V. (34)

The full scale displacement is 8.5 µm at 200 V, and the system
resonance frequencies are

ωp = 6.3 kHz and ωz = 3.6 kHz. (35)

The open-loop frequency response is plotted in Fig. 9.

III. DAMPING CONTROL

The technique of integral force feedback (IFF) has been
widely applied for augmenting the damping of flexible struc-
tures [40]–[42]. The feedback law is simple to implement and,
under common circumstances, provides excellent damping per-
formance with guaranteed stability [41]. In the following, IFF
is applied to augment the damping of nanopositioning systems.

The feedback diagram of an IFF damping controller is shown
in Fig. 7.

A key observation of the system GV sV a is that its phase
response lies between 0 and 180◦. This is a general feature
of flexible structures with inputs and outputs proportional to
applied and measured forces [41]. A unique property of such
systems is that integral control can be directly applied to achieve
damping, i.e.,

Cd(s) =
α

s
(36)

where α is the controller gain. As the integral controller has a
constant phase lag of 90◦, the loop-gain phase lies between −90
and 90◦. That is, the closed-loop system has an infinite gain
margin and phase margin of 90◦. Simplicity and robustness are
two outstanding properties of systems with IFF.
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Fig. 8. Root locus of a nanopositioning system GV sV a with integral damping
controller Cd .

A solution for the optimal feedback gain α has already been
derived in [41]. These results can be directly adapted for the
system considered in this study. The method makes the valid
assumption that system damping coefficients are small and can
be neglected. A further valid simplification is that the actuator
mass Ma is negligible compared to the platform mass Mp .
With these assumptions, the optimal feedback gain α� and the
corresponding maximum closed-loop damping ratio ξ�are

α� =
ωp

√
ωp/ωz

gsga
(37)

and

ξ� =
ωp − ωz

2ωz
(38)

An expression for the closed-loop poles can also be adapted
from [41]. The closed-loop poles are given by the roots of the
following equation:

1 + αgsga
s2 + ω2

z

s(s2 + ω2
p )

= 0. (39)

The corresponding closed-loop root locus is plotted in Fig. 8
[41]. Note that the closed-loop poles remain in the left-half plane
and that the system is unconditionally stable. The root locus
also provides a straightforward method for finding the optimal
feedback gain numerically. This can be useful if the model
parameters are unknown, i.e., if the system GV sV a was procured
directly from experimental data by system identification. This
approach is discussed in Section V.

For the example system described in Section II-F, the optimal
gain and maximum damping ratio are computed from (37) and
(38), the result is

α� = 4.0 × 104 and ξ� = 0.43. (40)

These values can be checked with a numerical root-locus plot.
The numerically optimal gain is 4.07 × 104 which provides a
closed-loop damping ratio of 0.45. This correlates closely with
the predicted values and supports the accuracy of the assump-
tions made in deriving the optimal gain.

The simulated open- and closed-loop frequency responses
from the disturbance input w to the measured sensor voltage
Vs are plotted in Fig. 9. Clearly the controller significantly im-

Fig. 9. Open-loop (dashed line) and closed-loop (solid line) frequency re-
sponse from w to Vs .

proves the system damping and disturbance rejection at low
frequencies.

IV. TRACKING CONTROL

After studying the relationship between force and displace-
ment in the following section, three different tracking controller
architectures will be discussed.

A. Relationship Between Force and Displacement

The relationship between measured force and displacement
can be found either by applying Newton’s second law to the plat-
form mass or by multiplying the two system transfer functions
(24) and (27), i.e.,

d

Fs
=

d

Fa

(
Fs

Fa

)−1

(41)

d

Fs
=

1
Mps2 + cf s + kf

. (42)

Thus, the measured voltage Vs is related to displacement by

d

Vs
=

d

gsFs
=

1/gs

Mps2 + cf s + kf
. (43)

From the transfer function d/Vs (43), it can be observed that
displacement is proportional to force up until the frequency of
the system zeros, ωz =

√
kf /Mp . The scaling factor is gcl =

1/gskf m/ V. That is,

d ≈ gclVs =
1

gskf
Vs ω < ωz . (44)

Above ωz , the measured force and voltage are proportional
to platform acceleration. The scaling factor is 1/gsMp ms−2 /V.
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Fig. 10. Simulated position noise spectral density (in picometres/
√

Hz) of a
state-of-the-art capacitive sensor and the piezoelectric force sensor described in
Section II-F.

That is,

ds2 ≈ 1
gsMp

Vs ω > ωz . (45)

As Vs is directly proportional to displacement at frequen-
cies below ωz , it makes an excellent feedback variable when
trajectory tracking is required.

A key benefit of using the piezoelectric force sensor is its
extremely low noise density. The approximate position noise
density N(ω) can be found by combining (19) and (44),

N(ω) = in
1

Cω

1
gskf

(46)

where in is the current noise density of the interface electron-
ics and C is the sensor capacitance. The position noise density
of the example system is compared to the noise density of a
state-of-the-art capacitive sensor (20 pm/

√
Hz) in Fig. 10. The

plot demonstrates the extremely low position noise of the piezo-
electric sensor. This simulation uses the current noise density
from a general purpose LM833 FET-input op-amp, which is
0.5 pA/

√
Hz.

In following sections, NV s(ω) and Nd(ω) will be used to
represent the additive sensor noise exhibited by the piezoelectric
voltage measurement and capacitive displacement sensor.

B. Integral Displacement Feedback

The most straightforward technique for achieving displace-
ment tracking is to simply enclose the system in an integral
feedback loop, as depicted in Fig. 11(a). The tracking controller
Ct is simply

Ct =
β

s
. (47)

In this strategy, the displacement d must be obtained with a
physical displacement sensor such as a capacitive, inductive, or
optical sensor [43].

As discussed in Section I, the foremost limitation of integral
tracking controllers is the low gain margin. For the example
system, the bandwidth is limited to only 60 Hz with a 5-dB gain
margin. The gain margin is also highly sensitive to variations in
resonance frequency.

C. Direct Tracking Control

The low bandwidth of integral tracking controllers can be sig-
nificantly improved by adding an internal force-feedback loop
as shown in Fig. 11(b). As the damping controller eliminates
the lightly damped resonance, the gain margin is drastically in-
creased, allowing a proportional increase in tracking bandwidth.
This was discussed in Section I-A.

To find the closed-loop transfer function, it is first convenient
to find the transfer function of the internal loop. That is, the
transfer function Ĝdu from u to d, which is

Ĝdu =
GdV aCd

1 + CdGV sV a
. (48)

The closed-loop response Ĝdr from r to d is then

Ĝdr =
CtĜdu

1 + CtĜdu

(49)

or equivalently,

Ĝdr =
GdV aCtCd

1 + GdV aCtCd + CdGV sV a
. (50)

The frequency response of this transfer function is plotted in
Fig. 11(b). Compared to the integral controller with the same
gain margin (5 dB), the bandwidth has been increased from
60 Hz to 1 kHz. Although this is an excellent improvement, the
gain margin is still sensitive to changes in resonance frequency.
In practice, the controller needs to be conservatively designed
for stability with the lowest possible resonance frequency.

One disadvantage of increasing closed-loop bandwidth is that
position noise is increased. This is illustrated by the wider band-
width power spectral density plotted in Fig. 11(b). The closed-
loop power spectral density N̂d(ω) is obtained from the density
of additive sensor noises, Nd(ω) and NV s(ω), and the noise
sensitivity of the control loop. As the piezoelectric sensor noise
NV s(ω) is negligible compared to Nd(ω), N̂d(ω) can be ap-
proximated by

N̂d(ω) =
∣∣∣∣ −GdV aCtCd

1 + GdV aCtCd + CdGV sV a

∣∣∣∣ Nd(ω). (51)

D. Dual-Sensor Feedback

In Section IV-A, it was found that measured force is propor-
tional to displacement at frequencies below the system zeros.
A logical progression is to simply apply a reference input r to
the force-feedback loop and expect displacement tracking at fre-
quencies from DC to ωz . Unfortunately this is not possible due to
the high-pass filter formed by the piezoelectric capacitance and
finite input impedance of charge amplifiers and voltage buffers.
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Fig. 11. Comparison of basic integral control, force-feedback and direct tracking control, force-feedback control with dual sensors, and force-feedback control
with low-frequency bypass. Closed-loop frequency responses are measured from the applied reference to the resulting displacement in µm. (a) Basic integral
control. (b) Direct tracking control. (c) Dual-sensor feedback. (d) Low-frequency bypass.

The measured voltage across a piezoelectric sensor is equal to

Vs = Vp
s

s + 1/RinC
(52)

where Vp is the piezoelectric strain voltage, Rin is the voltage
buffer input impedance, and C is the transducer capacitance.
The filter is high pass with a cut-off frequency of 1/RinC.

Although the high-pass cut-off frequency can be made ex-
tremely low, in the order of 1 mHz, this is not desirable as the

settling time becomes extremely long. A preferable solution is to
use the displacement measurement d at low frequencies where
the piezoelectric force sensor is inaccurate.

The diagram of a dual-sensor control loop is shown in
Fig. 11(c). This tracking control loop is similar to Fig. 7 ex-
cept for the additional complementary filters FH and FL . These
complementary filters substitute the displacement measurement
d for Vs at frequencies below the crossover frequency ωc , which
in this study is 10 Hz. The simplest choice of complementary

Authorized licensed use limited to: University of Newcastle. Downloaded on April 26,2010 at 08:58:30 UTC from IEEE Xplore.  Restrictions apply. 



442 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 15, NO. 3, JUNE 2010

filters are

FH =
s

s + ωc
and FL =

ωc

s + ωc
. (53)

As the measured displacement signal d will have a different
sensitivity than Vs , it must be scaled by an equalizing constant
λ, as shown in the diagram. The value of λ should be

λ =
GV sV a(0)
GdV a(0)

. (54)

If λ is chosen correctly, the closed-loop response Ĝdr is

Ĝdr =
GdV aCd

1 + CdGV sV a
. (55)

As this control loop is unconditionally stable, there is no re-
striction on the gain of Cd . However, Cd was chosen in the
previous section to provide an optimal damping performance,
this value should be retained. Further increases in Cd are not pro-
ductive as the disturbance rejection at the resonance frequency
will degrade.

The higher gain of the force-feedback loop provides an in-
crease in bandwidth from 1 to 5.1 kHz compared to the direct
tracking controller discussed in the previous section. This in-
crease also comes with a theoretically infinite gain margin and
90◦ phase margin, both of which are immune to variations in
resonance frequency.

The closed-loop position noise density of the dual-sensor
controller is given by

N̂d(ω) =
∣∣∣∣−FLGV sV aCd

1 + GV sV aCd

∣∣∣∣ Nd(ω). (56)

Analogous to the direct tracking controller, position noise
due to the piezoelectric force sensor is negligible and can be
neglected. As the displacement sensor noise is now filtered by
FL , a significant improvement in noise performance is achieved.
This is plotted in Fig. 11(c).

Although physical displacement sensors are much noisier
than piezoelectric transducers, they also have better linearity
and lower drift [39]. The complementary filters FH and FL ex-
ploit the best aspects of each signal. The wide bandwidth and
low noise of piezoelectric force sensors are exploited above the
crossover frequency ωc , while the physical displacement sen-
sors provide a high level of thermal stability at DC and below
the crossover frequency ωc .

E. Low-Frequency Bypass

If a physical displacement sensor is not available, or the sys-
tem does not require a high level of DC accuracy, the low fre-
quency displacement can be estimated from the input voltage Va

as shown in Fig. 11(d). This scheme can be viewed as a simple
first-order observer that estimates DC position. The signal Va

requires the same sensitivity as Vs , so the scaling constant λ is

λ = GV sV a(0). (57)

If λ is chosen correctly, the closed-loop response and stabil-
ity characteristics are the same as that discussed in the previous

section. The foremost benefit of eliminating the physical dis-
placement sensor is noise reduction. The closed-loop position
noise density, plotted in Fig. 11(d), is now

N̂d(ω) =
∣∣∣∣−FH GdV aCd

1 + GV sV aCd

∣∣∣∣ NV s(ω) (58)

which is orders of magnitude below the other controllers. The
force-feedback technique with low-frequency bypass opens the
possibility for nanopositioning systems with a large range, wide
bandwidth, and subatomic resolution. These characteristics are
demonstrated experimentally in the following section.

The major penalty from eliminating the physical displace-
ment sensor is that linearity is now dependent only on the piezo-
electric force sensor and flexural spring constant kf , which is
less reliable. There is also no control of creep. Although these
drawbacks may preclude the use of this technique in some appli-
cations, other applications, such as video-speed scanning probe
microscopy [12]–[15], requiring subatomic resolution with a
wide bandwidth will benefit greatly.

F. Feedforward Inputs

The feedforward inputs uf f shown in Fig. 11 can be used to
improve the closed-loop response of the system [29]. Inversion-
based feedforward provides the best performance, but the addi-
tional complexity is undesirable for the analog implementation
considered in this study. A basic, but effective form of feedfor-
ward compensation is to simply use the inverse DC gain of the
system as a feedforward injection filter, i.e.,

uf f = kf f r. (59)

This is easily implemented and can provide a reduction in
tracking lag.

With a feedforward input, the closed-loop transfer function
of the dual-sensor and low-frequency bypass controller is

Ĝdr =
kf f GdV a + GdV aCd

1 + CdGV sV a
. (60)

G. Higher Order Modes

So far, only a single-degree-of-freedom system has been con-
sidered. Although this is appropriate for modeling the first res-
onance mode, it does not capture the higher order modes that
occur in distributed mechanical systems. However, such higher
order modes are not problematic, as they do not disturb the zero-
pole ordering of the transfer function from the applied actuator
voltage to the measured force.

In [42], it is shown that the transfer function of a generalized
mechanical system with a discrete piezoelectric transducer and
collocated force sensor is guaranteed to exhibit zero-pole order-
ing. That is, the transfer function GV sV a will always exhibit
zero-pole ordering. As the zero-pole ordering of the system is
guaranteed, it follows that the controller discussed in Section III
will also guarantee the stability of systems with multiple modes.
The zero-pole ordering of an experimental system with multiple
modes, and its successful control using the proposed technique,
is reported in the following section.
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Fig. 12. High-speed nanopositioning platform described in [44].

V. EXPERIMENTAL RESULTS

A. Experimental Nanopositioner

In [44], a high-bandwidth lateral nanopositioning platform
was designed by Kam K. Leang (University of Nevada, Reno)
for video-speed scanning probe microscopy. This device, de-
picted in Fig. 12, is a serial kinematic device with two moving
platforms both suspended by leaf flexures and driven directly
by 10-mm stack actuators. The displacement is measured with
an ADE Tech 2804 capacitive sensor.

The small stage at the center, designed for scan-rates up
to 5 kHz, is sufficiently fast with a resonance frequency of
29 kHz [44]. However, the larger stage which provides motion
in the adjacent axis is limited by a resonance frequency of 1.5
kHz. As this stage is required to operate with triangular trajec-
tories up to 100 Hz, active control is required.

The main application for this nanopositioning device is high-
speed scanning probe microscopy. In this application, high res-
olution and wide bandwidth are the most desirable characteris-
tics. The force-feedback technique with low-frequency bypass,
as discussed in Section IV-E, is the most suitable technique and
will be applied here.

The platform under consideration is mechanically similar to
the system shown in Fig. 1. The major difference is the existence
of higher frequency modes beyond the first resonance frequency.
These can be observed in the open-loop frequency response
plotted in Fig. 15(a). Although only a single-mode system was
previously discussed, the existence of higher order modes is
not problematic. The zero-pole ordering and stability properties
hold regardless of system order. This topic was discussed in
detail in Section IV-G.

B. Actuators and Force Sensors

As discussed in Section II-B, both piezoelectric plate and
stack sensors can be used to measure force. A piezoelectric
plate sensor is depicted in Fig. 13(a). Also shown in Fig. 13(b)
is a 10-mm Noliac SCMAP07 actuator connected to a 2-mm
Noliac CMAP06 stack force sensor. The metal half-ball is used

Fig. 13. Three types of piezoelectric force sensor: (a) a plate force sensor,
(b) a stack actuator with discrete force sensor, and (c) a stack actuator with
integrated force sensor.

Fig. 14. Piezodrive PDL200 voltage amplifier used to drive the actuator.

to eliminate the transmission of torsion and bending moments
to the force sensor and moving platform.

For high-speed nanopositioning applications, the force sensor
can also be integrated into the actuator. Such an arrangement is
depicted in Fig. 13(c). The actuator is a standard 10-mm Noliac
SCMAP07 stack actuator with one of the four internal actuators
wired independently for use as a sensor.

Although integrated sensors are convenient and provide the
highest mechanical stiffness, they also have an associated dis-
advantage. In addition to measuring the applied load force, an
integrated sensor also detects contraction of the actuator due to
the Poisson coupling as the actuator elongates. This contraction
is coupled with the sensor and results in a small additive voltage
that is opposite in polarity to the voltage induced by the load
force. This error is small in systems where the flexural stiffness
is appropriately matched to the stiffness of the actuator. In po-
sitioners with poorly matched actuators, i.e. where the flexural
stiffness is much less than the actuator stiffness, the error due
to the Poisson coupling can be significant. In such cases, how-
ever, the error can be eliminated using the arrangement shown
in Fig. 13(b).

In the following experiments, the actuator with an integrated
sensor is utilized. The integrated sensor simplifies the stage
assembly and provides the highest mechanical stiffness.

The actuator was driven with a Piezodrive PDL200 linear
amplifier shown in Fig. 14. With the 250 nF load capacitance,
the PDL200 provides a bandwidth of approximately 30 kHz.

C. Control Design

To facilitate analysis of the control loop, a model was pro-
cured using the frequency domain subspace technique2 [45]. In

2A Matlab implementation of this algorithm is freely available from the
author.
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Fig. 15. The open- (a) and closed-loop (b) frequency responses of the nanopositioning system. Also plotted are the open- and closed-loop linearity (c) and
response to an 80-Hz triangle wave (d). For the sake of clarity, the displacement curves in (d) have been offset from each other by 100 nm.

Fig. 15(a), the response of a seventh-order, single-input, two-
output identified model can be verified to closely match the
system response.

The optimal control gain was determined using the root-locus
technique as β = 7800. Together with the 1-Hz corner frequency
complementary filters, the controller was implemented with an
analog circuit. Due to the simplicity of the control loop, analog
implementation is straightforward and has the benefits of avoid-
ing the quantization noise, finite resolution, and sampling delay
associated with digital controllers.

The closed-loop frequency response is plotted in Fig. 15 and
reveals significant damping of the first three modes by 24, 9, and
4 dB. In addition to experimental data, the simulated response
is also overlain, which shows a close correlation. The tracking
bandwidth of the closed-loop system is 2.07 kHz, which is
higher than the open-loop resonance frequency and significantly
greater than the bandwidth achievable with a direct tracking
controller, predicted to be 210 Hz with a 5-dB gain margin.

In Fig. 15(c), the linearity of the system at 100 Hz is plot-
ted. The large ellipse in the open-loop response is due solely to
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Fig. 16. (a) Power spectral density of the capacitive sensor, piezo transducer, and measuring instruments. (b) Closed-loop position noise of the controllers
discussed in Section IV.

hysteresis as the system phase response at 100 Hz is negligi-
ble. Due to the high loop gain of the force-feedback controller,
hysteresis is effectively eliminated, even at 100 Hz.

The time domain response of the closed-loop system to an
80 Hz triangular input is plotted in Fig. 15(d). Due to the high
loop gain and resonance damping, the closed-loop response
exhibits a negligible induced vibration and minimal tracking lag.

D. Noise Performance

A major benefit associated with the piezoelectric force sen-
sor is the extremely low additive noise. To quantify the noise, it
was necessary to amplify the sensor output by 104 using a cir-
cuit of the author’s own design. The resulting signal magnitude
is then large enough to analyze with an HP-35670A spectrum
analyzer. Due to the stochastic nature of the signal, 1000 FFT
averages were required to reduce the measurement variance
to an acceptable level. The extremely low noise voltage pro-
duced by the piezoelectric sensor also necessitates the quantifi-
cation of amplifier and instrumentation noise. This noise floor,
which sets the limit of detection, was found to be approximately
2 fm/

√
Hz, which guarantees the statistical validity of the fol-

lowing measurements.
The power spectral densities of the capacitive and piezoelec-

tric sensor noise, scaled to picometers per
√

Hz are compared
in Fig. 16(a). At high frequencies, where the impedance of the
piezoelectric transducer is low, the sensor noise is up to four
orders of magnitude lower than the capacitive sensor noise,
which is relatively independent of frequency at approximately
26 pm/

√
Hz. At lower frequencies, the improvement is more

modest (see Section IV-A). However, even at 1 Hz, the piezo-
electric sensor noise is only 2% of the capacitive sensor’s noise,

which is 29 pm/
√

Hz compared to 0.57 pm/
√

Hz. In the time
domain, the RMS noise of the capacitive sensor is 1.7 nm com-
pared to 9.5 pm for the piezoelectric sensor.

In truth, the piezoelectric sensor noise is even lower than that
shown in Fig. 16(a). The majority of measured noise power is ac-
tually due to external interference and mechanical excitation, not
random noise. For example, the large peaks at 10 Hz and 2 kHz
are due to mechanical and acoustic excitation of the mounting
table and nanopositioner resonance. The large noise components
at 50 Hz and between 150 and 500 Hz are also exogenous and
most likely result from power-line frequency interference and
harmonics arising from the use of fluorescent lighting. However,
as these noise sources will likely be present in most practical
applications, they are included in the following analysis.

The most intuitive method for evaluating closed-loop noise
performance is to directly measure the sensor noise and sim-
ulate its effect on closed-loop position. The noise sensitivity
transfer functions for the direct tracking controller, dual-sensor
controller, and low-frequency bypass controller were discussed
in Sections IV-C–IV-E. Based on a 1 s measurement of the ca-
pacitive and piezoelectric sensor noise, the resulting closed-loop
position noise for each controller is plotted in Fig. 16(b). As ex-
pected, the direct tracking controller is noisiest as it uses the
capacitive sensor signal over its entire closed-loop bandwidth.
The dual-sensor controller provides an improved noise perfor-
mance. However, the low-frequency bypass controller, which
uses only the piezoelectric force sensor, has an exceptionally
low closed-loop noise of only 9 pm RMS. The majority of this
noise is clearly due to the 50 Hz interference. If this interfer-
ence were eliminated with comprehensive shielding, the closed-
loop position noise could potentially be reduced to just a few
picometers.
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It should be noted that this analysis has considered only
sensor-induced noise. That is, the positioning noise resulting
from the additive sensor noise. In practice, the magnitude of
external disturbances will also have a significant impact on the
overall positioning resolution, particularly if the sensor noise is
reduced to the levels discussed here.

VI. CONCLUSION

In this study, a force sensor is added to a nanopositioning
stage. The resulting transfer function from the applied volt-
age to the measured force exhibits a zero-pole ordering which
greatly simplifies the design and implementation of a damping
controller.

In addition to damping control, the force sensor can also
be used to estimate the platform displacement. This allows the
damping controller to be adapted into an exceptionally high-
performance tracking controller without sacrificing stability
margins.

As with all piezoelectric sensors, the force sensor exhibits
a high-pass characteristic at low frequencies. This problem is
solved by replacing the low-frequency force signal with a phys-
ical displacement measurement or displacement estimate based
on the open-loop system dynamics.

Simulations on a nanopositioner model demonstrate the effec-
tiveness of the proposed tracking and damping controller. The
dual-sensor IFF controller provides a closed-loop bandwidth ap-
proaching the open-loop resonance frequency while maintaining
an infinite gain margin and 90◦ phase margin. By comparison,
a standard integral displacement feedback controller achieves
only 5% of the bandwidth with a gain margin of only 1 dB.

Future work involves the construction of a two-axis positioner
with force feedback for video-speed atomic force microscopy.
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