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Abstract—The scan rate and image resolution of the atomic
force microscope (AFM) operating in tapping-mode may be im-
proved by modifying the quality (Q) factor of the AFM micro-
cantilever according to the sample type and imaging environment.
Piezoelectric shunt control is a new method of controlling the Q
factor of a piezoelectric self-actuating AFM microcantilever. The
mechanical damping of the microcantilever is controlled by an
electrical impedance placed in series with the tip oscillation circuit.
A synthetic impedance was designed to allow easy modification of
the control parameters which may vary with environmental condi-
tions. The proposed techniques are experimentally demonstrated
to reduce the Q factor of an AFM microcantilever from 297.6 to
35.5. AFM images obtained using this method show significant
improvement in both scan rate and image quality. [2011-0123]

Index Terms—Atomic force microscope (AFM), AFM probe,
microcantilevers, microsensors, piezoelectric cantilever, piezoelec-
tric shunt control, synthetic impedance, tapping-mode AFM.

I. INTRODUCTION

THE ATOMIC force microscope (AFM) [1] senses inter-
atomic forces occurring between a sharp probe tip and

a sample surface to produce images of sample surfaces such
as ceramic materials, biological membranes, metals, polymers,
and semiconductors with subnanometer resolution [2]–[6]. The
images produced are 3-D with resolution on the order of 0.1 to
1 nm.

The AFM uses a microcantilever, with a sharp probe tip
on its lower surface, which is scanned over a sample surface.
Deflection of the cantilever, due to interatomic forces between
the probe tip and the sample, at each scan point is representative
of the sample height. By plotting the sample height versus the
horizontal position of the probe, a 3-D image of the surface can
be obtained.

The high image resolution of the AFM is due to the size of the
probe tip, which may be only a few atoms wide. This gives the
AFM an advantage over optical microscopes, which are limited
by the wavelength of visible light, which is approximately
400–700 nm.

One of the main advantages of the AFM over other types
of nonoptical microscopy is that it can image samples under
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Fig. 1. Schematic of the instrumentation of an AFM operating in tapping
mode.

natural conditions (e.g., in air or liquid). There is no need
to place the sample in vacuum, coat it with metal, or dry it,
which may cause damage to a living sample, making the AFM
particularly useful for biological investigations [7], [8]. One
drawback of the AFM compared to an optical microscope is
that it takes some time to obtain an image, whereas the optical
microscope can produce images in real time.

Most commonly, the probe tip is dragged across the sample in
constant contact, which is referred to as contact-mode imaging.
Continuous lateral force on the sample from the probe tip may
cause damage to soft fragile samples. Tapping mode [9], [10]
was developed to reduce lateral forces on such samples.

A schematic showing the typical instrumentation of an AFM
operating in tapping mode is shown in Fig. 1. When operating
in tapping mode, the cantilever probe is oscillated at one
of its resonance frequencies, tapping the sample once every
oscillation cycle while scanning. A piezoelectric stack actuator
located at the base of the cantilever is typically used to oscillate
the cantilever. New methods of actuation, such as electrostatic
actuation [11] and coating the cantilever with piezoelectric
material to act as a bimorph actuator, are being implemented
to reduce the size of the AFM.

The magnitude of the cantilever oscillations in free air (A0)
is determined by the driving signal amplitude, the cantilever
spring constant, and the quality (Q) factor of the cantilever’s
resonance. The magnitude of cantilever oscillations when tap-
ping the sample [A(t)] is typically measured using the optical
lever method which involves reflecting a laser beam off the can-
tilever onto a photodiode sensor. Any change in position of the
reflected laser spot on the sensor represents tip displacement.
The ac signal obtained is then converted to a dc value using
an rms-to-dc converter. This dc signal is sent to the Z-axis
feedback controller (refer to Fig. 2) which controls the vertical
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Fig. 2. Z-axis feedback control loop. The controller maintains the cantilever
oscillation amplitude at the set point. The output of the controller provides an
estimate of the sample topography.

distance between the cantilever base and the sample when
scanning to maintain A(t) at the set-point amplitude (Aset).
To keep the tapping force on the sample to a minimum, Aset

is chosen to be slightly less than A0. As the probe is scanned
across the sample, the feedback control signal provides an
accurate representation of the sample topography.

As the tip is in intermittent contact with the sample, the
lateral dragging forces are reduced, compared to contact-mode
imaging [10], [12]. This has made tapping mode popular for
imaging soft biological samples [12]–[14] and samples which
are held loosely to their substrate.

Current commercially available AFMs are capable of imag-
ing biological samples at a rate of 5 s per image frame which is
too slow to observe dynamic biological processes which occur
in milliseconds. The main limitation to scan speed when the
AFM is operating in tapping mode is the speed of the Z-axis
feedback loop. The faster the Z-axis feedback controller can
respond to changes in the sample topography, the faster the
sample may be scanned. The speed of the Z-axis feedback loop
is limited by the bandwidth of the scanner in the Z-direction,
the speed of the rms-to-dc converter, the error signal saturation,
and the cantilever transient response.

The aim of this work is to present a new method of mod-
ifying the cantilever transient response which will enable in-
creased scan speeds of an AFM operating in tapping mode.
In Section II, the relationship between the cantilever tran-
sient response and the scan speed is discussed. The effect of
piezoelectric shunt control on the cantilever Q factor is then
analyzed in Section III. The design of a synthetic impedance
for realization of piezoelectric shunt circuits is outlined in
Section IV. Experimental results are presented in Section V,
followed by conclusions and further work in Section VI.

II. CANTILEVER TRANSIENT RESPONSE

A. Q Factor Versus Scan Speed

To faithfully reproduce the sample topography, the response
of the Z-axis feedback controller must be fast enough to ensure
that the tip maintains contact with the sample. Ideally, when the
sample contains a sharp drop, the error signal (e(t) = A(t) −
Aset) of the feedback controller should have a magnitude that is
proportional to the size of the drop. The slow transient response
of the cantilever prevents this from happening. Fig. 3 shows the
cantilever deflection when a sharp drop in the sample is encoun-
tered. When the drop is encountered, the tip loses contact with
the sample. The transient response of the cantilever results in

a delay before the error signal reaches its maximum value. The
reduced error signal during this delay leads to a slower feedback
response, increasing the time in which the tip is not in contact
with the sample. Whenever the tip is not in contact with the
sample, the sample topography cannot be recorded accurately.
The increased time needed for the Z-axis feedback controller to
respond to a sharp drop in the sample means that the scan speed
must be reduced to maintain tip–sample contact.

To explain the difficulties related to transient response, the
AFM cantilever may be modeled as a mass–spring–damper
system. The equation of motion for a single mode is

md̈(t) + bḋ(t) + kd(t) = F (t) (1)

where m is the effective mass of the cantilever, d is the vertical
tip displacement, b is the damping coefficient, k is the spring
constant, and F (t) is the sum of external forces acting on the
cantilever. In the Laplace domain, the transfer function from
F (s) to D(s) is

D(s)
F (s)

=
βω2

n

s2 + 2ζωns + ω2
n

(2)

where ωn is the natural frequency (ωn =
√

k/m), ζ is the
damping ratio (ζ = b/2mωn), and β is the steady-state gain.

The time response of (2) when F (t) contains a step input will
contain an exponentially decaying transient before reaching a
steady-state value. In the case where the cantilever is being
oscillated on a surface containing a sharp drop, as shown in
Fig. 3, the time response of e(t) is

e(t) = (A0 − Aset)(1 − e−ζωnt). (3)

The rate at which e(t) increases to reach its maximum
value is determined by σ = ζωn (the distance of the poles
from the imaginary axis). The further from the imaginary axis
the poles lie, the faster e(t) will increase. The parameter σ
may be expressed in terms of the Q factor of the cantilever.
Given that

Q =
1
2ζ

(4)

we may write

σ =
ωn

2Q
. (5)

In a probe with a high Q factor, it will take longer for e(t) to
increase after a sharp drop in the sample topography, as shown
in Fig. 3(a) and (b), resulting in slower scan speeds to accurately
capture the sample topography. Scan speed may be increased by
using a cantilever with a low Q factor or artificially reducing the
Q factor of the cantilever.

B. Q Factor Versus Feedback Controller Gain

As the sample is scanned below the cantilever tip, the sam-
ple topography acts as a disturbance to the Z-axis feedback
loop, as shown in Fig. 2. When the tracking error is low,
the controller output is proportional to this disturbance and is
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Fig. 3. Cantilever deflection as it is scanned over a sample with a sharp downward step, with the Z-axis feedback controller turned off. The cantilever with the
lower Q factor responds faster to the change in sample topography. (a) High Q factor. (b) Low Q factor.

therefore used to represent the sample height when imaging.
The response speed of the feedback loop to disturbances must
be increased as the scan rate is increased in order to accurately
track topographic features of the sample. Increasing the gain
of the feedback loop will increase the response speed of the
system. The feedback loop gain is limited by the gain margin of
the loop. Increasing the gain margin of the feedback loop will
allow for a higher controller gain and therefore improved image
quality at higher scan rates.

In many AFMs, the Z-axis controller is an integral controller.
The gain margin of the Z-axis feedback loop is determined by
the transfer function of this integral controller in cascade with
the transfer function from the cantilever input to the rms-to-
dc converter output (A). Mertz et al. [15] modeled the transfer
function from the cantilever input to the rms-to-dc converter
output as a low-pass filter with a −3-dB frequency of

Ω3 dB =
ωn

2Q
. (6)

The gain margin of the loop is increased by increasing
Ω3 dB, which may be achieved by reducing the Q factor of the
cantilever.

C. Q Factor Versus Tapping Force

The average tip–sample force (FTS) is a function of the Q
factor, Aset, and A0 as shown by [16]

FTS ∝ k

Q

√
(A2

0 − A2
set). (7)

Reducing the cantilever Q factor, to increase the scan speed,
will increase the tip–sample force, resulting in a reduction in
the force sensitivity (image resolution) of the cantilever and an
increase in the risk of damage to the sample. Maintaining A0

close to Aset will reduce the tip–sample force. However, (3)
shows that this will reduce the magnitude of the error signal
sent to the Z-axis feedback controller.

Most AFM cantilevers designed for tapping mode have a
higher Q factor than is needed for the desired resolution when
scanning in air. To increase the scan speed, it is therefore desir-
able to decrease the Q factor of the cantilever. When scanning
in liquid, the Q factor is significantly reduced by hydrodynamic
forces. As a result, it may be desirable to increase the Q factor
to increase the cantilever force sensitivity.

One developing application of the AFM is real-time imaging
of biological processes. Ando et al. [17] have designed high-
speed AFMs using new instrumentation and control techniques

to observe processes such as the motion of myosin V mole-
cules along an actin filament [18] and the structural changes
occurring in bacteriorhodopsin when exposed to light [19]. To
provide a sufficiently high scan rate for dynamic biological
processes, the Q factor of the cantilever must be modified to
suit the imaging environment.

D. Modification of the Cantilever Q Factor

Mertz et al. [15] developed a method of modifying the
effective Q factor of an AFM cantilever probe termed “active
Q control.” This method has been used in some commercially
available AFMs. The probe displacement signal measured by
the photodiode sensor is phase shifted by π/2, to obtain the
probe velocity. This velocity signal is then multiplied by a
gain G and added to the probe actuation signal to modify the
effective Q factor Q∗ of the cantilever probe. The desired Q
factor of the probe is set prior to scanning, by setting the value
of G, to either increase the scan speed or reduce the tapping
forces of the probe.

The equation of motion for a forced cantilever with an
additional force Gḋ(t) is

md̈(t) + bḋ(t) + kd(t) = F0 cos(ωdt) + FTS(t) + Gḋ(t)
(8)

or equivalently

md̈(t) + (b − G)ḋ(t) + kd(t) = F0 cos(ωdt) + FTS(t) (9)

where F0 is the probe actuation signal amplitude, ωd is the
damped natural frequency of the probe (ωd = ωn

√
1 − ζ2),

and FTS(t) is the force due to the tip–sample interaction.
Equation (9) expressed in terms of ωn and Q∗ is

d̈(t) +
ωn

Q∗ ḋ(t) + ω2
nd(t) = F0 cos(ωdt) + FTS(t) (10)

where

Q∗ =
mωn

(b − G)
. (11)

Orun et al. [20] and Sahoo et al. [21] designed state feed-
back controllers based on the “active Q control” methodology
which makes it possible to modify both ωn and Q, allowing
more freedom in obtaining the desired scan speed and image
resolution.

The equation of motion for a forced cantilever with addi-
tional forces Gḋ(t) and Hd(t), where H is the displacement
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feedback gain, is

md̈(t) + bḋ(t) + kd(t) = F0 cos(ωdt) + FTS(t)

+ Gḋ(t) + Hd(t) (12)

or equivalently

md̈(t) + (b − G)ḋ(t) + (k − H)d(t)

= F0 cos(ωdt) + FTS(t). (13)

Equation (13) expressed in terms of the effective natural fre-
quency ω∗

n and Q∗ is

d̈(t)+
ω∗

n

Q∗ ḋ(t) + ω2
nd(t) = F0 cos(ωdt) + FTS(t) (14)

where

Q∗ =
mω∗

n

(b − G)
(15)

ω∗
n =

√
(k − H)

m
. (16)

The method used to obtain velocity in active Q control, phase
shifting of the displacement signal, introduces a time delay
to the velocity signal and therefore cannot be used with the
state feedback controller as both displacement and velocity are
used by the controller. Sahoo et al. [21] used a state observer
to obtain the velocity signal from the measured displacement
signal.

Sahoo et al. [22] also introduced transient force AFM (TF-
AFM). TF-AFM is a method of obtaining images with an AFM
operating in tapping mode where the scan speed is not reliant
on the Q factor of the cantilever probe. This method compares
the output of an observer-based model of the cantilever to the
output of the cantilever, and any difference between the model
and the cantilever is measured and recorded. Any mismatch
between the two outputs is due to the interaction between the
probe and the sample, as the sample affects the cantilever but
not the model. The difference in output between the model
and the cantilever, due to sample interaction, occurs during
transients, which means that there is no need to wait for the
probe to achieve steady state.

The aforementioned methods have proven to be effective in
obtaining the desired scan speed/resolution when operating in
tapping mode. However, these control systems have several
drawbacks as follows.

1) Implementation requires significant modification to the
AFM.

2) The cantilever may be driven into unstable operation,
leading to sample or tip damage.

3) The feedback signal relies on an optical sensor which is
prone to noise.

The availability of self-actuating piezoelectric microcan-
tilevers has made it possible to introduce a new technique of Q
control that alleviates some of the aforementioned difficulties;
this is discussed in the following.

Fig. 4. Schematic of the DMASP microcantilever.

III. PASSIVE PIEZOELECTRIC SHUNT CONTROL

The ability of piezoelectric materials to transform mechan-
ical energy into electrical energy and vice versa has led to
their use in damping undesired vibration in flexible structures
such as snowboards [23], automobile bodies [24], flexible space
structures [25], and aircraft [26]. Piezoelectric shunt damp-
ing involves bonding a piezoelectric transducer to a structure
and connecting an electrical impedance to its terminals [27].
Shunt damping was first introduced by Forward [28] with an
experimental demonstration of the technique. An analytical
description of shunt damping was later presented by Hagood
and von Flotow [29] in which the shunt circuit is shown to be
analogous to a mechanical proof mass damper.

Piezoelectric shunt damping has been used to increase the
bandwidth of AFM scanners by damping the first resonant
mode of the scanner. This was demonstrated in [30] and
[31] with a piezoelectric tube scanner and in [32] with a
piezoelectric-stack-actuated flexure-based scanner.

The aim of this work is to show that the technique of
piezoelectric shunt control is an effective way of modifying
the Q factor of a piezoelectric AFM microcantilever. Passive
piezoelectric shunt control has several advantages as follows.

1) When the shunt impedance is passive, system stability is
ensured.

2) Feedback sensors are not required; therefore, the mea-
surement noise and bandwidth constraints of optical sen-
sors are avoided.

3) The system implementation is inexpensive, and minimal
modification is required to existing microscopes.

The microcantilever used in this work is the DMASP AFM
microcantilever available from Bruker AFM Probes [33]. A
schematic of the DMASP cantilever is shown in Fig. 4. The
cantilever has a length of 120 μm and a width of 55 μm
with a thin layer of piezoelectric ZnO material deposited on
the bottom surface. A layer of Ti/Au is bonded above and
below the ZnO layer acting as electrodes. Applying a voltage
to the electrodes causes the piezoelectric layer to expand or
contract, depending on the polarity of the voltage, resulting in
flexure of the cantilever. A sinusoidal voltage is applied to the
electrodes to oscillate the cantilever tip when operating in tap-
ping mode. The piezoelectric transducer may be modeled as a
strain-dependent voltage source vp in series with a capacitance
Cp [34]. When a shunt impedance Z(s), consisting of a resistor
R and an inductor L, is placed in series with the driving voltage
source vs, an LRC circuit is obtained, as shown in Fig. 5.
This LRC circuit is tuned to the mechanical resonance of the
cantilever, resulting in a damped electrical resonance, which
decreases the Q factor of the probe. Varying the value of R in
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Fig. 5. Piezoelectric AFM microcantilever with attached shunt circuit.

Fig. 6. Piezoelectric cantilever model describing the tip displacement (d) and
the generated charge (q) in response to an applied voltage (v) and disturbance
(w).

Fig. 7. Block diagram of the shunted system.

the circuit will vary the amount of electrical damping; therefore,
the probe Q factor may be tuned by varying the value of R
in the circuit.

A. System Modeling

The piezoelectric cantilever may be modeled by the system
G, as shown in Fig. 6, where w is a disturbance strain on the
cantilever due to a change in the sample topography, d is the
displacement of the cantilever tip, v is the voltage across
the piezoelectric transducer terminals, and q is the charge
generated by the piezoelectric transducer. The electrical and
mechanical system shown in Fig. 5 may be represented by
the block diagram in Fig. 7, where vz is the voltage across
the shunt impedance, α is the actuator voltage-to-displacement
coefficient (α = vp/d), dw is the initial displacement due to a
sample perturbation, Gdv(s) is the transfer function from v(s)

to d(s), and Gdww(s) is the transfer function from ω(s) to
dw(s). In the standard second-order transfer function form

Gdv(s) =
d(s)
v(s)

=
βvω2

n

s2 + 2ζωns + ω2
n

(17)

Gdww(s) =
dw(s)
w(s)

=
βwω2

n

s2 + 2ζωns + ω2
n

(18)

where βv and βw are the steady-state gains of Gdv(s) and
Gdww(s), respectively.

B. Modeling the Transfer Function From Actuating Voltage to
Tip Displacement

From the block diagram in Fig. 7, the transfer function from
vs to v may be derived as

Gvvs
(s) =

v(s)
vs(s)

=
1

1 + sZ(s)Gqv(s)
(19)

where Gqv(s) is the transfer function from v(s) to q(s) repre-
sented by

Gqv(s) =
q(s)
v(s)

= αCpGdv + Cp. (20)

Substituting (20) into (19), we obtain the transfer function from
vs(s) to v(s)

Gvvs
(s) =

1
1+sZ(s)Cp

1 + sZ(s)CpαGdv(s)
1+sZ(s)Cp

. (21)

To simplify (21), let

H(s) =
1

1 + sZ(s)Cp
(22)

K(s) =
sZ(s)Cpα

1 + sZ(s)Cp
(23)

then

Gvvs
(s) =

H(s)
1 + K(s)Gdv(s)

. (24)

The transfer function from vs to d, when the shunt is applied, is
now found to be

Gdvs
(s) = Gvvs

(s)Gdv(s) =
H(s)Gdv(s)

1 + K(s)Gdv(s)
. (25)

Gdvs
may be viewed as a negative feedback loop with a filter

H(s) (which is due to the electrical dynamics of the shunt
impedance) in the feedforward path as shown in Fig. 8. H(s)
adds a filter in the cantilever transfer function from vs to d.
For accurate tracking, the driving signal must be prefiltered by
H−1(s) to compensate for H(s). When operating in tapping
mode, the driving signal is a single frequency sinusoid. The
effect of H(s) on this signal is a modification of magnitude
and phase. The change in magnitude can easily be compensated
for by varying the amplitude of the drive signal. The change in
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Fig. 8. Equivalent feedback system from vs to d.

phase will not affect the operation of the device, so there is no
need to compensate for this.

C. Modeling the Transfer Function From a Perturbation in
Sample Topography to Tip Displacement

To obtain the transfer function from a perturbation in sample
topography to the tip displacement, vs(s) is first set to zero.
From Fig. 7, it is observed that

v = − vz(s) (26)

vz(s) = sq(s)Z(s) (27)

where q(s) is given by

q(s) = −vz(s)Cp − vz(s)αCpGdv(s) + dw(s)αCp. (28)

Substituting (28) into (27) gives

vz(s) = (−vz(s)Cp − vz(s)αCpGdv(s) + dw(s)αCp) sZ(s).
(29)

Substituting (26) into (29) results in the transfer function

Gvdw
(s)=

v(s)
dw(s)

=
−αsZ(s)Cp

1+ sZ(s)Cp+ αsZ(s)CpGdv(s)
. (30)

From Fig. 7, it is observed that

d(s) = Gvdw
(s)Gdv(s)dw(s) + dw(s). (31)

Substituting (30) into (31) results in the transfer function

Gddw
(s)=

d(s)
dw(s)

=
1

1 + αsZ(s)CpGdv(s)
1+sZ(s)Cp

=
1

1 + K(s)Gdv(s)
.

(32)

Combining (32) and (18) results in the transfer function

Gdw(s) = Gddw
(s)Gdww(s) =

Gdww(s)
1 + K(s)Gdv(s)

. (33)

Note that the transfer function Gdww(s) has the same poles as
Gdv(s), with the only difference being the steady-state gain βw.
The transfer function Gdw(s) may be written as

Gdw(s) =
λGdv(s)

1 + K(s)Gdv(s)
(34)

as shown in Fig. 9, where λ = βw/βv . Therefore, it can be
seen that the transfer function from a perturbation in the sample
topography to the tip displacement may be viewed as a negative

Fig. 9. Feedback interpretation transfer function from disturbance to
displacement.

Fig. 10. Frequency response of (- -) the first cantilever mode and (—) the
fitted model.

feedback system. The controller K(s) may be designed using
standard feedback control techniques, allowing the poles of
Gdw(s) to be placed according to the desired performance
objectives.

D. System Model Parameters Obtained From
Experimental Results

To determine the optimal values for L and R, mathematical
models of Gdv(s) and K(s) must be obtained and analyzed. A
frequency response of Gdv(s) was obtained by using a micro-
scope scanning laser Doppler vibrometer (Polytec MSV 400).
The cantilever was excited by applying a pseudorandom signal,
and the resulting tip displacement was measured. The frequency
response of Gdv(s) is shown in Fig. 10. A mathematical model
of Gdv(s) obtained by system identification is also shown in
Fig. 10.

Note from (23) that α and Cp are properties of the cantilever
and must be determined in order to design K(s). Cp was mea-
sured at 23 pF using an Agilent E4980A LCR meter. The value
of α was determined by measuring the frequency response of
the admittance Giv(s) and obtaining a model through system
identification. Rearranging (20) results in the transfer function

Giv(s) =
i(s)
v(s)

=
q(s)s
v(s)

= αCpGdv(s)s + Cps. (35)

The only unknown in (35) is α which was obtained by equating
(35) to the model obtained through system identification. α ≈
2 × 104.

E. Optimal Shunt Impedance Parameters

1) Inductance: For a series LCR circuit, the undamped
resonance frequency is given by

ωr = 2πfr = 1/
√

LCp. (36)
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Fig. 11. H2 norm of Gdw versus R.

From the frequency response shown in Fig. 10, it can be seen
that the resonance frequency (fr) of the first mode occurs
at 53 580 Hz. Note that the resonance frequency will change
from fr to fd when the shunt circuit is connected, altering the
required value of L. As the Q factor is significantly high, it
may be assumed that fd ≈ fr; therefore, the change in L will
be insignificant. Substituting the values for fr and Cp into (36)
gives a value for L of 377 mH.

2) Resistance: The H2 norm of the transfer function
Gdw(s) was used to determine the lowest Q factor which
can be obtained with the DMASP cantilever using passive
piezoelectric shunt control. The H2 norm of a system represents
the variance of the output given a white-noise input. When the
H2 norm of the system is minimized, the system damping is
at a maximum since the area under the magnitude curve of
the frequency response is minimized. The H2 norm of Gdw(s)
was obtained using the command norm in Matlab. A plot of
the H2 norm of Gdw(s) for a varying resistance is shown in
Fig. 11. From the plot, it can be seen that the value of R which
minimizes the H2 norm is R = 2335 Ω. Using this value of R in
the shunt impedance will give the minimal Q factor obtainable
using passive shunt control.

IV. SYNTHETIC IMPEDANCE

The resonance modes of the cantilever may change with
environmental conditions (for example, temperature and air
pressure). The resonance modes will also differ from cantilever
to cantilever due to manufacturing tolerances and material
imperfections. It is therefore desirable to be able to fine tune
the parameters of the impedance online. Implementing synthet-
ically the shunt impedance allows online fine tuning of shunt
impedance parameters.

An arbitrary impedance Z(s) may be implemented synthet-
ically [35] by measuring the terminal voltage vz(s) and con-
trolling the terminal current iz(s) according to the relationship
vz(s)/iz(s) = Z(s) or iz(s) = vz(s)Y (s).

A simple RC filter and a voltage-controlled current source,
as shown in Fig. 12, are used to implement an impedance
Z(s) = Ls + R. The complete circuit in Fig. 12 is equivalent
to the shunt impedance circuit shown in Fig. 5. From Fig. 12, it
is observed that

vout(s)
vz(s)

=
1

RfCfs + 1
(37)

iz(s) =
vout(s)

Rc
. (38)

Fig. 12. LRC circuit implemented with a synthetic impedance.

The resulting impedance is now found to be

Z(s) =
vz

i(s)
=

vz(s)Rc

vout(s)
= RcRfCfs + Rc (39)

where

L =RcRfCf (40)

R =Rc. (41)

By varying Rc and Rf , using potentiometers, the values of L
and R may be modified accordingly.

The operational amplifiers used in the circuit are Linear
Technology LT1468 operational amplifiers [36]. This opera-
tional amplifier was chosen due to its high gain–bandwidth
product (90 MHz) and its low input bias current (10 nA).

V. EXPERIMENTAL RESULTS

To test the effectiveness of the shunt, the frequency response
and the step response of Gdw(s) are desired. To test Gdw(s), a
piezoelectric shaker is placed under the cantilever, and the re-
sponse was observed with the Polytec MSV 400. Two problems
arose when undertaking these experiments as follows.

1) The mounting on which the cantilever was placed added
additional dynamics to the system.

2) It is difficult to find a shaker with resonance modes higher
than those of the DMASP microcantilever, to ensure that
these resonances do not affect the measurement.

Due to the difficulties encountered when obtaining the fre-
quency response of the transfer function Gdw(s), Gdvs

(s) was
used as a performance indicator.

Equation (25) shows that Gdvs
(s) = H(s)Gdv(s)/1 +

K(s)Gdv(s), and (34) shows that Gdw(s) = λGdv(s)/1 +
K(s)Gdv(s). Equating (25) and (34) gives

Gdw(s) = λH(s)−1Gdvs
(s) (42)

where

H(s)−1 = 1 + sZCp = s2 +
Rs

L
+

1
LCp

. (43)

Therefore, to test the effectiveness of the shunt-controlled sys-
tem on Gdw(s), it is sufficient to test H(s)−1Gdvs

(s). Note that
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Fig. 13. (+) Open- and (x) closed-loop pole locations of the piezoelectric-
shunt-controlled cantilever.

Fig. 14. Frequency response of (- -) Gdvs (s) with the cantilever in open loop
and (—) H(s)−1Gdvs (s) with the cantilever in closed loop. A reduction of 13
dB in the resonance peak can be observed.

the gain λ will have no effect on the closed-loop poles of the
system, so it can be ignored.

The synthetic impedance consisting of a voltage-controlled
current source and a passive RC filter, as shown in Fig. 12,
was used to implement Z(s). The input vs(s) was prefiltered by
H(s)−1 before being applied to the circuit. The Polytec MSV
400 was used to obtain the frequency response and the step
response of H(s)−1Gdvs

(s).
Fig. 13 shows the open- and closed-loop pole locations of the

cantilever. It is clear from this figure that the introduction of the
shunt impedance has significantly shifted the poles of the can-
tilever further into the left half-plane, increasing the damping
of the cantilever. Fig. 14 shows the frequency response plot of
Gdvs

(s) with the cantilever in open loop and H(s)−1Gdvs
(s)

with the cantilever in closed loop. A 13-dB reduction of the
resonance peak is observed from open loop to closed loop.

The response of Gdvs
(s) to a step of 2.6 V with the cantilever

in open loop is shown in Fig. 15, and the step response of
H(s)−1Gdvs

(s) with the cantilever in closed loop is shown in
Fig. 16. It can be seen that the addition of the shunt impedance
has reduced the settling time from 9 to 2 ms.

This reduction in transient settling time of 7 ms means that
the scan speed of the AFM may be increased without distorting
the image obtained.

The effective Q factor of the cantilever probe may be deter-
mined from an analysis of the step response. Note from (5) that
the exponential decay rate is σ = ωn/2Q. The exponential de-

Fig. 15. Step response of Gdvs (s) in open loop.

Fig. 16. Step response of H(s)−1Gdvs (s) in closed loop.

cay rate may be defined as the time taken for the step response
to decay to 36.79% of its peak amplitude. ωn is measured from
the frequency response in Fig. 14, and σ is measured from the
step responses in Figs. 15 and 16. The effective Q factor with
the cantilever in open and closed loops can now be calculated
from (5). A reduction in the effective Q factor from 297.6 in
open loop to 35.5 in closed loop was observed.

Images of an NT-MDT TGZ1 [37] calibration grating
were obtained with an NT-MDT NTEGRA AFM [37] that
was instrumented with the Q-controlled microcantilever. The
NT-MDT TGZ1 calibration grating consists of a periodic step
formed from silicon dioxide with a period of 3 ± 0.05 μm and
a step height of 18.5 ± 1 nm.

Scans were obtained with the damped and undamped can-
tilevers on a 10 μm × 10 μm section of the calibration grating
at a scan speed of 20 μm/s. The Z-axis feedback controller gain
(KI) was increased until the loop became unstable. KI was
then reduced slightly to ensure loop stability. The maximum
value of KI obtainable using the undamped cantilever was
0.02 compared to a value of 0.2 using the damped cantilever.
This increase in feedback gain by a factor of ten significantly
reduced the distortion of the image obtained, as shown in
Fig. 17. This demonstrates that piezoelectric shunt control can
significantly improve the Z-axis feedback bandwidth, which
improves the image quality or imaging speed.

VI. CONCLUSION/FURTHER WORK

When using tapping mode to obtain an image of a sample, it
may be desired to modify the Q factor of the cantilever accord-
ing to the sample being imaged and the imaging environment.
Reducing the Q factor of the cantilever will enable an increase
in scan speed. Increasing the Q factor of the cantilever will
reduce the tip–sample interaction force, resulting in increased
force sensitivity and a reduction in the risk of sample damage.

Passive piezoelectric shunt control is presented in this work
as a new method for reducing the Q factor of a self-actuating
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Fig. 17. Images of the NT-MDT TGZ1 calibration grating obtained at a scan speed of 20 μm/s. In each case, the maximum value of KI , which ensured
loop stability, was used. The use of piezoelectric shunt control to damp the cantilever increased the cantilever response speed and allowed a higher feedback
gain and, consequently, reduced image distortion. (a) Two-dimensional image without shunt control. (b) Three-dimensional image without shunt control.
(c) Two-dimensional image with shunt control. (d) Three-dimensional image with shunt control.

piezoelectric AFM microcantilever. It has been shown that a
passive shunt impedance can reduce the effective Q factor by a
factor of eight. This results in an improvement of either image
quality or scan speed.

It is shown that the transfer function from a disturbance,
due to a sample feature, to tip displacement is equivalent to a
negative feedback loop when a shunt impedance is added to the
cantilever oscillation circuit. This representation allows the use
of standard control design techniques to place the poles of the
shunted microcantilever in arbitrary locations to achieve desired
performance objectives.

Increasing the Q factor of the cantilever, to increase force
sensitivity and reduce the risk of sample damage, is not possible
with a passive impedance. If an increase in Q factor is required,
an active impedance [38] may be designed using techniques
such as the pole-placement method to increase the Q factor.
There is a limit on how far the Q factor of the cantilever
may be minimized using a passive shunt circuit. The use of
an active impedance will also allow further reductions in the
Q factor of the cantilever. The authors are currently working
on the implementation of an active impedance using a field-
programmable analog array (FPAA).

Future work includes reducing error saturation [39] through
adaptive shunt control [40], [41]. Error saturation occurs when
the tip loses contact with the sample after the cantilever ap-
proaches a sharp drop in the sample and the cantilever oscilla-
tion amplitude reaches its free-air limit of A0 before the Z-axis
feedback controller can restore the tip–sample contact. This
means that the feedback error signal has saturated, reducing the
response time of the scanner in the vertical direction, resulting
in a distorted image. Momentarily increasing the probe Q factor
when saturation occurs will lead to an increase in A0, prevent-
ing error saturation [42]. By implementing shunt control with
an FPAA, it will be possible to switch the shunt impedance with
a short circuit when A approaches A0. This will momentarily
increase A0, allowing a higher feedback error signal, therefore
reducing distortion in the image.
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