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Recovering the spectrum of a low level signal from two noisy
measurements using the cross power spectral density
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The article describes a method for estimating the spectrum or RMS value of a low-level signal cor-
rupted by noise. If two identical sensors can be employed simultaneously and the additive noise
sources are uncorrelated, the cross power spectrum can recover the power spectrum of the underlying
signal. When using the Welch method to estimate the cross power spectrum, the estimation process
is shown to be biased but consistent, with a variance that is inversely proportional to the number of
data sets. The proposed technique is demonstrated experimentally to recover the vibration spectrum
of a piezoelectric cantilever. The dual sensor method reduces the effective noise floor by three orders
of magnitude and recovers spectral features that were otherwise lost in noise. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4815982]

I. INTRODUCTION

The power spectrum is used ubiquitously throughout
science and engineering to characterize the frequency con-
tent of time series data.1, 2 Application examples include
biomedical EEG processing,3 radar processing,4 geophysical
monitoring,5 astronomy,6 ocean wave characterization,7 pre-
diction of control system resolution,8, 9 and calibration of sin-
gle molecule manipulators.10 In such applications, the power
spectrum must be estimated from a finite length of potentially
noisy data. Due to the breadth of applications, a diverse range
of estimation techniques have also evolved.11, 12 These meth-
ods can be grouped into either parametric and non-parametric
estimation categories.13 Parametric methods fit a model to the
measured data and are most useful when the model structure
is at least partially known. Nonparametric methods do not as-
sume a fixed model structure and estimate the power spectrum
directly from measured data. Although this work focusses on
nonparametric estimation, the concept is also applicable to
parametric methods.

When estimating the spectrum of small signals, the mea-
surement noise can be a prohibitive limitation. Consider the
signal {dt} illustrated in Figure 1(a) which is corrupted by the
additive noise process {et}. The power spectrum of the mea-
surement {yt} is

�y(ω) = �d (ω) + �e(ω), (1)

where �y(ω) is the power spectrum of {yt}. Equation (1)
can be rearranged to reveal �d, however, this requires exact
knowledge of the noise spectrum �e(ω) which is impractical.
If the noise spectrum is unknown, the spectrum of {yt} cannot
be recovered, especially if the noise is of comparable ampli-
tude to the signal.

This article describes a dual sensor method for recov-
ering the power spectrum of a signal lost in measurement
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noise. This method is applicable when the underlying signal
{dt} can be measured simultaneously using two sensors with
uncorrelated noise processes as illustrated in Figure 1(b). In
Sec. III, the spectrum of {dt} is shown to be equal to the cross
power spectrum of two noisy measurements. Therefore, the
spectrum can be fully recovered if the noise processes are un-
correlated.

When a finite number of samples are available, the
Welch method is defined in Sec. V for estimating the cross
power spectrum. The mean and variance of the dual sensor
method is examined in Sec. VI. The dual sensor method is
shown be a consistent estimator with a bias and variance
that are both inversely proportional to the length of data
available. Therefore, the spectrum of the underlying signal
can be recovered to arbitrary accuracy given sufficient data
length.

Not all applications allow for a second independent sen-
sor, however, multiple sensors are routinely used in many pre-
cision measurement applications.14–17 Although these appli-
cations do not typically use two identical sensors, there is
scope to do so.

The dual sensor method for estimating power spectrum is
straightforward to implement in practice and provides a new
tool for recovering the spectrum of small signals otherwise
lost in measurement noise. It complements other signal re-
covery methods such as the lock-in amplifier that require a
synchronous modulation of the measured variable.18, 19

II. QUASI-STATIONARY SIGNALS

In general, the signals {dt}, {et}, {vt }, {yt}, and {ut} in
Figure 1 may contain both deterministic and stochastic com-
ponents. To address this situation, note that a signal {xt} is
quasi-stationary20 if it satisfies

E {xt } = x, (2)

E {(xt − x)(xt−τ − x)} = Rx(τ ), (3)
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FIG. 1. The additive sensor noise of a single sensor (a) and dual sensor (b).
The sensor contribution is shaded.

where E {·} is the time averaged expectation

E {xt } � lim
N→∞

1

N

N∑
t=1

E {xt } (4)

and E {·} is the usual stochastic expectation operator. This
definition allows stochastic and deterministic signals to be
treated in the same manner. The associated power spectral
density is defined as

�x(ω) =
∞∑

τ=−∞
Rx(τ )e−jωτ . (5)

Two signals {yt} and {ut} are known as jointly quasi-
stationary if they are both stationary and the following cross-
covariance function also exists20

E {(yt − y)(ut−τ − u)} = Ryu(τ ). (6)

The cross power spectral density of two jointly quasi-
stationary signals is defined as20

�yu(ω) =
∞∑

τ=−∞
Ryu(τ )e−jωτ . (7)

If {xt} is a wide sense stationary stochastic process, then
via the above definitions

x = E {xt } = E {xt } , (8)

E {(xt − x)(xt−τ − x)} = E {(xt − x)(xt−τ − x)} . (9)

And hence the quasi-stationary mean, covariance, and power
spectral density revert to the usual ones. However, consider
the purely deterministic process

xt = cos ω0t. (10)

Then clearly

E {xt } = 0, (11)

and

E {xtxt−τ } = lim
N→∞

1

N

N∑
t=1

cos ω0t cos ω0(t − τ ) (12)

= 1

2
lim

N→∞
1

N

N∑
t=1

cos ω0τ + cos(2ω0t − ω0τ )

(13)

= 1

2
cos ω0τ (14)

and hence

�x(ω) = lim
N→∞

N∑
τ=−N

1

2
cos ω0τe−jωτ = π

2
δ(ω ± ω0). (15)

III. DUAL SENSOR METHOD

If the signal {dt} can be measured simultaneously by two
identical sensors, the signal path is illustrated in Figure 1(b).
In this configuration, both sensors measure the same displace-
ment but have uncorrelated additive noise sources {et} and
{vt }, that is,

yt = dt + et , (16)

ut = dt + vt . (17)

If {dt} is quasi-stationary and {et} and {vt } are zero mean
stationary processes, the cross-correlation of {yt} and {ut} is

Ryu(τ ) = E {ytut+τ } , (18)

which is equal to

Ryu(τ ) = E {(dt + et )(dt+τ + vt+τ )} (19)

= E {dtdt+τ + dtvt+τ + etdt+τ + etvt+τ } . (20)

If the signals are uncorrelated, that is, if the cross-covariance
is zero, Ryu(τ ) reduces to the covariance of {dt}, that is

Ryu(τ ) = E {dtdt+τ } = Rd (τ ). (21)

By taking the Fourier transform of (21), the cross power spec-
tral density of {yt} and {ut} is equal to the power spectral
density of the underlying signal {dt}, that is,

�yu(ω) = �d (ω). (22)

Thus, by using two independent sensors, the power spectral
density of an underlying signal can be recovered from the
cross-correlation or cross power spectral density of two noisy
measurements. This is a convenient result as the cross power
spectral density or cross-correlation can be readily measured
in practice by a standard spectrum analyzer or from time do-
main recordings.

IV. ROOT-MEAN-SQUARE VALUE

In some situations, only the Root-Mean-Square (RMS)
value (or standard deviation) of a low-level signal is of in-
terest. If the previous assumptions hold, the RMS value
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of {dt} is

σd = √
Ryu(0), and σd =

√
E {ytut }. (23)

Therefore, the RMS value of {dt} can be estimating from the
time average of {yt} × {ut}.

V. WELCH ESTIMATE OF CROSS
SPECTRAL DENSITY

Practical application of Eq. (22) requires estimation of
the cross power spectral density from a finite number of dis-
crete time samples. The Welch estimate of spectral density
involves averaging the spectrum of multiple windowed data
records.21, 22 If a data record of yt is split into M sets of length
N, the data are denoted yi

k where k = 1, 2, . . . , N and i = 1, 2,
. . . , M. Using this notation, the windowed DFT of the ith data
set of {yt} and {ut} is

Yi(ω) = 1

N

N−1∑
k=0

yi
kwke

−jωk, (24)

Ui(ω) = 1

N

N−1∑
k=0

ui
kwke

−jωk, (25)

Di(ω) � 1

N

N−1∑
k=0

di
kwke

−jωk, (26)

and we define

W � 1

N

N−1∑
k=0

w2
k . (27)

We then define the Welch estimate of the cross spectral den-
sity �yu(ω) according to

�̂yu(ω) = 1

M

M∑
i=1

Ii, Ii(ω) � N

W
Yi(ω)U�

i (ω). (28)

VI. PROPERTIES OF THE WELCH CROSS
SPECTRUM ESTIMATE

A. Mean of the estimate

First,

E {Ii(ω)}

= 1

W

N−1∑
k=0

N−1∑
t=0

wkwtE
{
yi

ku
i
t

}
ejω(t−k) (29)

= 1

W

N−1∑
k=0

N−1∑
t=0

wkwt

(
1

2π

∫ π

−π

�yu(λ)ej (k−t)λ dλ

)
ejω(t−k)

(30)

= 1

2Wπ

∫ π

−π

�yu(λ)

∣∣∣∣∣
N−1∑
k=0

wke
−jk(ω−λ)

∣∣∣∣∣
2

dλ. (31)

Therefore,

E{�̂yu(ω)} = 1

M

M∑
i=1

E {Ii} = 1

2π

∫ π

−π

�yu(λ)h(ω − λ) dλ,

(32)
where

h(λ) � 1

MW

∣∣∣∣∣
N−1∑
k=0

wke
−jkλ

∣∣∣∣∣
2

. (33)

Therefore, the Welch estimate is a biased one, with the bias
decreasing as the data length N grows. The bias is due to
a convolution of the true power spectrum and frequency re-
sponse of the window function, which is identical to the stan-
dard Welch estimate.21

B. Variance of the estimate

Since both {yk} and {uk} are quasi-stationary processes,
then for any fixed ω, {Ii(ω)} must also be a quasi-stationary
process20 with respect to the index i. The associated covari-
ance function is defined according to

cτ = Cov {Ii, Ii+τ } . (34)

In this case, with I i � E {Ii}, and .* indicating the complex
conjugate,

Var{�̂yu} = E

⎧⎨
⎩

∣∣∣∣∣ 1

M

M∑
i=1

Ii − I i

∣∣∣∣∣
2
⎫⎬
⎭ (35)

= 1

M2

M∑
i=1

M∑

=1

E
{
(Ii − I i)(I
 − I 
)�

}
(36)

= 1

M2

M∑
i=1

M∑

=1

ci−
 (37)

= 1

M

M−1∑
τ=1−M

(
1 − |τ |

M

)
cτ . (38)

The sum is the well-known Cesàro mean of the sequence
{cτ }, for which a standard result23 is that

lim
M→∞

M−1∑
τ=1−M

(
1 − |τ |

M

)
cτ =

∞∑
τ=−∞

cτ � κ (39)

provided this latter limit κ exists. Assuming it does, then we
have just established

lim
M→∞

M.Var{�̂yu} = κ (40)

and hence we can expect the absolute error to satisfy

|�̂yu − E{�̂yu}| = O

(
1√
M

)
. (41)

That is, the absolute error is inversely proportional to the
square root of the number of data sets M.
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FIG. 2. The piezoelectric cantilever with base mounted strain gauges.

VII. EXPERIMENTAL DEMONSTRATION

In this section, the cross power spectrum is employed to
recover the vibration spectra of the piezoelectric cantilever
pictured in Figure 2. The cantilever is a two-layer brass-
reinforced bimorph bender from Piezosystems Inc. (Q220-
A4-503YB). An applied voltage of ±90 V results in a de-
flection of ±1.25 mm at the tip.

Since the tip displacement of a cantilever beam is pro-
portional to the base strain, the deflection can be estimated
by mounting a strain gauge bridge at the base. Two iden-
tical strain gauge bridges are mounted on the left and right
side of the bender. The left-side strain gauge circuit is illus-
trated in Figures 3(b) and 3(c). The bridge is completed with
a 90◦ rosette (Omega SGT-4/350-XY11) on the top surface
(gauges 1 and 2) and another on the bottom surface (gauges 3
and 4). A downward tip displacement increases the resis-
tance of gauges 1 and 3, and slightly reduces the resistance of
gauges 3 and 4. A practical signal amplitude was achieved by
amplifying the differential strain signal by 5000. The result-
ing sensitivity was 0.44 mm/V. Although the two strain gauge
bridges generate a significant magnitude of thermal noise,24

the noise processes are uncorrelated.
To create a known vibration spectrum, the piezoelectric

bender is excited with a ±10 V triangular signal with a fre-
quency of 11 Hz. This excitation creates a decaying vibration
spectrum consisting of odd-harmonics, that is, the frequency
components will be 11 Hz, 33 Hz, 55 Hz, 77 Hz, etc. The
direct power spectrum estimate obtained from a spectrum an-
alyzer is plotted in Figure 4. The noise floor of the sensor
is approximately 3.8 × 10−6 V2/Hz, which is equivalent to
8.5 μm/

√
Hz. Only the first five harmonics are clearly dis-

tinguishable; furthermore, the peak magnitudes are overesti-
mated due to the high additive noise density.

With an identical number of averages (M = 100), the
cross power spectral density reduces the noise floor by two
orders of magnitude. This permits all of the harmonics to be
clearly distinguished in addition to peaks resulting from am-
bient building vibration at 50 Hz and 150 Hz. A minor peak
at 90 Hz is also visible which is due to the acoustic noise gen-
erated by a nearby power supply fan.

When the input signal is reduced to ±1 V the direct
power spectrum, plotted in Figure 5(a), becomes dominated
by the sensor noise. Only the first and fourth harmonics are

FIG. 3. The piezoelectric bender (a) and the left-side strain gauge bridge
(b and c).

clearly distinguishable. However, the lower noise floor of
the dual sensor method allows the first six harmonics to be
clearly identified but the higher harmonics remain lost in
noise. By increasing the number of averages from to 1000 in
Figures 5(b) and 10 000 in 5(c), the noise floor is reduced
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FIG. 4. A comparison between the direct power spectrum estimate and
the cross power spectrum estimate. Both measurements used 100 averages
(M = 100).
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FIG. 5. A comparison between the direct power spectrum and cross power
spectrum for (a)100, (b)1000, and (c) 10 000 averages.

and all of the harmonics are identifiable. As predicted in
Sec. VI B, the estimate variance is observed to be inversely
proportional to

√
M . That is, by increasing the number of av-

erages by a factor of 100, the effective noise floor is reduced
by a factor of 10.

With 10 000 averages, the effective noise floor of the
cross power spectrum is approximately 3.8 × 10−9 V2/Hz,
or three orders of magnitude better than the direct power
spectrum estimate. The equivalent position noise floor is
270 nm/

√
Hz which is an exceptional result considering that

the only difference to a standard measurement is the addition
of an auxiliary strain gauge.

VIII. CONCLUSIONS

This article reports a simple technique for recovering the
power spectrum of a signal from two noisy measurements. If
the noise from each measurement is uncorrelated, the power
spectral density of the underlying signal can be estimated by
computing the cross power spectral density of the two mea-
surements.

The Welch technique was considered as an estimator for
the cross power spectral density. This approach is shown to
provide a biased but consistent estimate of the underlying
spectrum. In addition, the variance of the estimate was shown
to be inversely proportional to the square-root of data sets
available. The effective noise floor can be reduced arbitrarily
by increasing the number of recorded data sets (averages).

The proposed technique was applied experimentally to
estimate the vibration spectrum of a piezoelectric cantilever.
By using two sensors and 10 000 data sets, the effective res-
olution of the power spectrum was increased by three orders
of magnitude. In effect, the vibration spectrum obtained from
two low-cost strain sensors was comparable in resolution to a
state-of-the-art capacitive or optical position sensor.

The dual sensor technique could potentially be applied to
a wide range of scientific and industrial signal recovery prob-
lems where an additional sensor is feasible. A reduction of the
estimate variance by three orders of magnitude could poten-
tially reveal new discoveries in astrophysical measurements,
chemical analysis, and geological surveying.
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