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This paper describes a new vibration damping technique based on Integral Force Feedback (IFF). Classical
IFF utilizes a force sensor and integral controller to damp the resonance modes of a mechanical system.
However, the maximum modal damping depends on the frequency difference between the system’s poles
and zeros. If the frequency difference is small, the achievable modal damping may be severely limited.
The proposed technique allows an arbitrary damping ratio to be achieved by introducing an additional
feed-through term to the control system. This results in an extra degree of freedom that allows the
position of the zeros to be modified and the maximum modal damping to be increased. The second con-
tribution of this paper is a structured PI tracking controller that is parameterized to cancel the additional
pole introduced by integral force feedback. The parameterized controller has only one tuning parameter
and does not suffer from reduced phase margin. The proposed techniques are demonstrated on a piezo-
electric objective lens positioner. The results show exceptional tracking and damping performance while
maintaining insensitivity to changes in resonance frequency. The maximum bandwidth achievable with a
commercial PID controller is 26.1 Hz. In contrast, with the proposed damping and tracking controller, the
bandwidth is increased to 255 Hz.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

High-speed precision positioners are widely used in applica-
tions such as confocal microscopes [1], scanning probe microscopy
[2,3], nanofabrication [4] and electrical characterization of
semiconductors [5]. A typical nanopositioning system is illustrated
in Fig. 1. One difficulty with nanopositioning systems is the
mechanical resonances that arise from the interaction between
the platform mass and flexures, mechanical linkages and actuators.
As a result, the frequency of the driving signal for instance a
triangular reference is commonly limited to 1–10% of the reso-
nance frequency to avoid excitation of the mechanical resonance.
In commercial nanopositioning systems the most common type
of control is sensor-based feedback control using proportional
integral or integral controllers. The benefits of these controllers
include robustness to modelling error, simplicity of implementa-
tion and reduced piezoelectric non-linearity due to a high loop gain
at low frequency. However, the bandwidth of an integral tracking
controller CtðsÞ ¼ K=s is limited by the presence of highly resonant
modes. In Refs. [6,7] it was shown that the maximum closed-loop
bandwidth is 2fxn, where f is the damping ratio and xn is the
natural frequency. Since the damping ratio is usually in the order
of 0.01, the maximum closed-loop bandwidth is less than 2% of
the resonance frequency.

To improve the closed-loop bandwidth of nanopositioning
systems, techniques such as notch filters or plant inversion filters
can be implemented [8]. Such techniques can provide significantly
improved closed-loop bandwidth provided an accurate model of
the system is available. Therefore, notch or plant inversion filters
are most practical in systems with stable resonance frequencies
or where the feedback controller can be continually recalibrated.
On the other hand, model-based control such as robust H1
controllers [9] and LMI based controllers [10] have also been
successfully applied to control such systems.

An alternative method to improve the closed-loop response is
damping control. Damping controllers have the advantage of being
insensitive to variations in resonance frequency. Furthermore, it
has been shown that damping controllers provide better external
disturbance rejection than inversion-based systems [11]. A number
of techniques for damping control have been successfully
itioner.
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Fig. 1. Single-degree-of freedom positioning stage.

Fig. 2. Mechanical diagram of a single-degree-of freedom positioner where Fs is the
measured force acting between the actuator and the mass of the platform in the
vertical direction.
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demonstrated in the literature. These include Positive Position
Feedback (PPF) [12], polynomial based control [13], acceleration
feedback [14], shunt control [15,16], resonant control [17], and
Integral Resonance Control (IRC) [18,19]. Among these techniques,
PPF controllers, velocity feedback controllers, force feedback con-
trollers, and IRC controllers have been shown to guarantee stability
when the plant is strictly negative imaginary [20].

Integral force feedback (IFF) a damping control technique
described in Refs. [6,21–25]. The advantages of IFF are the simplic-
ity of the controller, guaranteed stability and excellent perfor-
mance robustness. Furthermore, IFF can also be implemented
using an analog filter. However, one of the limitations of IFF is that
the maximum modal damping depends on the frequency differ-
ence between the system’s poles and zeros. If the frequency differ-
ence is small, the achievable modal damping may be severely
limited. Furthermore, when the IFF system is enclosed in a tracking
loop, the closed-loop performance is limited by an additional pole
introduced by the integral force feedback controller.

In this work, we proposed a technique that allows an arbitrary
damping ratio to be achieved by introducing an additional feed-
through term to the control system. This allows the position of
the zeros to be modified, hence, increasing the maximum modal
damping. Furthermore, we identified the additional pole that is
introduced by the integral force feedback controller and compen-
sate it by parameterising the tracking controller with a zero that
cancels the additional pole.

The remainder of the paper is organized as follows. In Section 2,
the modelling of a single-degree-of-freedom positioning system is
shown. Section 3 compares the proposed damping control tech-
nique with classical integral force feedback control. The tracking
controller designs are discussed in Section 4. A simulation example
is shown Section 5 follow by the experimental result on a commer-
cial objective lens positioner in Section 6.
2. Modelling a nanopositioning system

The single-degree-of-freedom positioner illustrated in Fig. 2 can
be represented by a second-order mechanical system. The equation
of motion for this system is

Mp
€dþ cf

_dþ ðKa þ kf Þd ¼ Fa; ð1Þ

where Mp is the mass of the platform and the stiffness and damping
coefficient of the flexures are denoted by kf and cf respectively. The
force applied by the actuator is Fa and the actuator stiffness is Ka. A
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force sensor is collocated with the actuator and measures the load
force, Fs.

The configuration of the system is such that the actuator and
flexure appear mechanically in parallel, hence, the stiffness coeffi-
cients can be grouped together, k ¼ Ka þ kf which simplifies the
equation of motion (1) to

Mp
€dþ cf

_dþ k ¼ Fa: ð2Þ

The transfer function from actuator force, Fa, to the displacement of
the platform, d is

GdFaðsÞ ¼
d
Fa
¼ 1

Mps2 þ cf sþ k
: ð3Þ

The sensor force, Fs, can be written as

Fs ¼ Fa � dKa;

¼ Fa � KaFaGdFaðsÞ;
¼ Fa 1� KaGdFa sð Þð Þ: ð4Þ

The transfer function between the applied force, Fa, and measured
force, Fs, is found by rearranging (4).

GFsFa ðsÞ ¼
Fs

Fa
¼ 1� KaGdFa sð Þ: ð5Þ

The force developed by the actuator, Fa, is

Fa ¼ Kad ð6Þ

where d is the unconstrained piezo expansion.
Substituting (6) into (5), we obtain the transfer function from

the unconstrained piezo expansion d to the force of the sensor Fs

GFsd ¼
Fs

d
¼ Ka

Fs

Fa
¼ Ka 1� KaGdFa sð Þð Þ: ð7Þ

A valid assumption is that the effect of the damping in the flexure,
cf , is small and thus negligible. The frequency of the open-loop
poles x1 and zeros z1 of (5) are

x1 ¼

ffiffiffiffiffiffiffi
k

Mp

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka þ kf

Mp

s
z1 ¼

ffiffiffiffiffiffiffi
kf

Mp

s
: ð8Þ
3. Damping control

Integral Force Feedback (IFF) is a popular method for damping
control, as described in Refs. [6,21–25]. This technique utilizes a
force sensor and integral controller to directly augment the damp-
ing of a mechanical system. The major advantages of IFF is the sim-
plicity of the controller, guaranteed stability, excellent
performance robustness, and the ability to damp a large number
nd structured PI tracking control: Application for objective lens positioner.
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Fig. 4. Typical frequency response of GFs Fa ðsÞ.
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of resonance modes with a first order controller. Moreover, a pie-
zoelectric force sensor has significantly lower noise density as
compared to inductive or resistive strain sensors [26].

3.1. Classical integral force feedback

The technique of Classical Integral Force Feedback (CIFF) has
been widely applied for augmenting the damping of flexible struc-
tures. The feedback law is simple to implement and, under com-
mon circumstances, provides excellent damping performance
with guaranteed stability.

The open loop transfer function between the unconstrained
piezo expansion d to the sensor force Fs is adapted from Ref. [22]

GFsdðsÞ ¼
Fs

d
¼ Ka 1�

Xn

i¼1

v i

1þ s2=x2
i

( )
; ð9Þ

where the sum extends to all the modes, xi is the natural frequency
of the system and v i is the fraction of modal strain energy for the ith
mode. The corresponding zeros of each mode is given as
z2

i ¼ x2
i ð1� v iÞ [22].

For the positioning application the first resonance mode is of
significant interest, this reduce (9) to a second order system (7).
The feedback diagram of an IFF damping controller is shown in
Fig. 3(a). The frequency response of GFsFa is shown in Fig. 4. A key
observation of the system GFsFa is that its phase response lies
between 0� and 180�. This is a general feature of flexible structures
with inputs and outputs proportional to applied and measured
forces. A unique property of such systems is that integral control
can be directly applied to achieve damping, i.e.

Cd1ðsÞ ¼
Kd1

Kas
; ð10Þ

where Kd1 is the damping control gain. As the integral controller has
a constant phase lag of 90�, the loop-gain phase lies between �90
and 90�. That is, the closed-loop system has an infinite gain margin
and phase margin of 90�. Simplicity and robustness are two out-
standing properties of systems with CIFF.

A solution for the optimal feedback gain has already been
derived in [22]. These results can be directly adapted for the sys-
tem considered in this study. The method makes the valid assump-
tion that system damping coefficients are small and can be
Fig. 3. Damping control: Integral f
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neglected. With these assumptions, the maximum modal damping
is [22]
fmax
i ¼ xi � zi

2zi
; ð11Þ
and is achieved for
Kd1 ¼ xi

ffiffiffiffiffiffi
xi

zi

r
: ð12Þ
The root locus plot corresponding to CIFF is shown in Fig. 5(a). Note
that a key characteristic of this system is that the position of the
poles and zeros alternates. The main limitation of the classical
method is that the maximum modal damping (11) depends on
the distance between the system poles xi and modal zeros zi. If
the distance between the pole and zero is small, the maximum
modal damping achievable with CIFF is reduced. This means that
some systems can be critically damped using CIFF while other
systems exhibit insufficient damping.
orce feedback block diagrams.

nd structured PI tracking control: Application for objective lens positioner.
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Fig. 5. Damping control: Typical root locus plots.
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Fig. 7. Pole-zero map of the damping loop.

4 Y.R. Teo et al. / Mechatronics xxx (2014) xxx–xxx
3.2. Optimal integral force feedback

Here, we discuss an extension to the classical technique of inte-
gral force feedback that allows an arbitrary damping ratio to be
achieved for any system. A new feed-through term b is introduced
into the system as shown in Fig. 3(b). The location of the modal
zeros is given as

bziðbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i 1� Ka

Ka þ b
Ka

k

� �s
: ð13Þ

This results in an extra degree of freedom that allows the position of
the zeros to be modified. As b decreases, the zeros of the system will
move closer to the real axis, under the condition that
Kaðv i � 1Þ < b < 0 is satisfied. The new maximum damping ratio
of the system is given as

bfmax
i ¼ xi � bziðbÞ

2bziðbÞ
; ð14Þ

The controller is given as

Cd2ðsÞ ¼
Kd2

ðKa þ bÞs : ð15Þ

The corresponding optimal gain is given as

Kd2 ¼ xi

ffiffiffiffiffiffiffiffiffiffiffi
xibziðbÞ

s
: ð16Þ

Given a desired damping ratio fd < 1, the expression for b is found
by replacing (13) into (14) and rearranging the equation as

b ¼ �Ka þ
Kav ið2fd þ 1Þ2

4fdð1þ fdÞ
; ð17Þ

where v i ¼ Ka=k for the nanopositioning system in Section 2. The
typical root locus plot corresponding to OIFF is given in Fig. 5(b).
Note that the zero location changes with respect to b. The equiva-
lent controller bCdðsÞ can be written as

bC dðsÞ ¼
Cd2ðsÞ

1þ Cd2ðsÞb
; ð18Þ

as shown in Fig. 3(c). The modification amounts to replacing the
integral controller with a first-order low-pass filter. Although the
Fig. 6. Tracki
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additional complexity is negligible, the damping performance is
significantly improved. This result allows integral force feedback
control to be applied to systems that were not previously suited.

4. Tracking control

4.1. Integral control with displacement feedback

The most straightforward technique for achieving displacement
tracking is to simply enclose the system in an integral feedback
loop, as depicted in Fig. 6. The tracking controller Ct1ðsÞ is simply

Ct1ðsÞ ¼
Kt1

s
: ð19Þ

In this strategy, the displacement, d, must be obtained with a phys-
ical displacement sensor such as a capacitive, inductive, or optical
sensor [26]. However, from the pole-zero map shown in Fig. 7,
the damped system contains a pair of resonance poles, plus an addi-
tional real axis pole due to OIFF. The additional pole unnecessarily
increases the system order and reduces the achievable tracking
bandwidth due to low-phase margin.

The characteristic equation of the closed-loop transfer function
is given by the numerator of

1þ Kt1Kd1

c4s4 þ c3s3 þ c2s2 þ c1s1 ; ð20Þ

where

c4 ¼ KaMp þMpb; ð21Þ

c3 ¼ cf Ka þ KaKd1Mp þ cf bþ Kd1Mpb; ð22Þ

c2 ¼ kKa þ cf KaKd1 þ kbþ cf Kd1b; ð23Þ

c1 ¼ kKaKd1 � K2
aKd1 þ kKd1b: ð24Þ
ng loop.

nd structured PI tracking control: Application for objective lens positioner.

http://dx.doi.org/10.1016/j.mechatronics.2014.04.004


c
o
n
d
s−1

)

2

3

4

5
x 10

4

Y.R. Teo et al. / Mechatronics xxx (2014) xxx–xxx 5
Proposition 1. Let Kd1 and Kt1 be the OIFF damping and integral
tracking gain respectively. For a closed-loop system as implemented in
Fig. 6 to be stable, the gains must obey the following inequality:

Kd1Kt1 <
ðK2

að�K2
a þ kðKa þ bÞÞÞ

ðMpðKa þ bÞÞ : ð25Þ
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Fig. 8. Example system: Root locus comparison between CIFF and OIFF.
Proof. In order to check the stability of the closed-loop transfer
function, the zeros/numerator of (20) should be evaluated. The
system is stable if all the zeros have negative real parts. Assuming
that damping in the system is negligible, all necessary and
sufficient conditions for stability are met if (1) all the coefficients
of (20) are positive and (2) all the elements of the first column of
the Routh-Hurwitz table are positive. The condition of stability is
given as

K3
d1Kt1MpðKaþbÞðKaMpþMpbÞþK2

d1MpðKaþbÞðK4
a �kK2

aðKaþbÞÞ<0:

ð26Þ

Rearranging (26) for Kt1Kd1 results in the expression (25). h
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Fig. 9. Example system: The relationship between b and f for OIFF.
4.2. Structured PI control with displacement feedback

The location of the additional pole can be found by examining
the characteristic Eq. (20) of the damped system. For the system
under consideration, the roots of the characteristic equation con-
tain a complex pair and a pole on the real axis as shown before.

To eliminate the additional pole from the tracking loop, the con-
troller can be parameterised so that it contains a zero at the same
frequency. A controller that achieves this is

Ct2ðsÞ ¼
Kt2ðsþ pÞ

sp
; ð27Þ

where p is the location of the additional pole identified by finding
the roots of (20) using Cardano’s method [27],

p ¼ � Aþ B� a=3ð Þ;

a ¼ Kd2 þ
cf

Mp
;

b ¼ kþ cf Kd2

Mp
;

c ¼
Kd2 �K2

a þ kðKa þ bÞ
� �

MpðKa þ bÞ ;

Q ¼ a2 � 3b
9

; R ¼ 2a3 � 9abþ 27c
54

;

A ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Q 32

q
3

r
; B ¼ Q=A:

The integral gain is chosen in the normal way to provide the desired
stability margins. The form of this controller is identical to a PI con-
troller except that the zero location is fixed. This is advantageous
since the controller has only one free tuning parameter.

5. Example system

Here, we examine a single degree of freedom positioner based
on the mechanical diagram shown in Fig. 2 with mass
Mp ¼ 250 g, flexure stiffness kf = 300 N/lm, actuator stiffness
Ka ¼ 100 N=lm and flexure damping cf = 10 N/m s�1. The
frequency of the open-loop poles and zeros of the system are

x1 ¼ 6:37 kHz z1 ¼ 5:5 kHz: ð28Þ

The optimal gain and maximum damping ratio for the example sys-
tem using CIFF is Kd1 ¼ 4:3� 104 and fmax

1 ¼ 0:077. The numerically
Please cite this article in press as: Teo YR et al. Optimal integral force feedback a
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obtained optimal gain is 4:57� 104 and the damping ratio is 0:077.
These values are obtained from the root-locus plot shown in Fig. 8
and correlate closely with the predicted values which supports
the accuracy of the assumptions made in deriving the optimal gain.
With OIFF, the relationship between b and f is described in (17) and
plotted in Fig. 9. The maximum modal damping with CIFF is 0.077;
however, with OIFF, the maximum modal damping can be varied
from 0.077 to 1 at different values of b.

The root locus of the system is shown in Fig. 8. The optimal
feedback gain, maximum damping ratio and corresponding value
of b is given in Table 1. These values can be validated by the
numerical root-locus plot in Fig. 8 and are summarized in Table 1.

If a disturbance, w, is added into the system. The transfer func-
tion from the disturbance, w, to the sensor force, Fs, is

GFswðsÞ ¼
Fs

w
¼ GFsd

1þ CdGFsd
; ð29Þ

where Cd ¼ Cd1 for CIFF and Cd ¼ bCd for OIFF. The simulated open-
loop and closed-loop frequency responses of (29) are plotted in
Fig. 10 for both CIFF and OIFF. The transfer function from the distur-
bance w to the displacement of the platform d are given as

GdwðsÞ ¼
d
w
¼ KaGdFa

1þ CdGFsd
: ð30Þ
nd structured PI tracking control: Application for objective lens positioner.
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Table 1
Comparison between analytic and numerically obtained damping ratio fmax and
feedback gain Kd2 for the example system.

b Analytic Numerical

fmax Kd2 fmax Kd2

�6:67� 107 0.500 5:65� 104 0.501 5:57� 104

�6:98� 107 0.707 6:21� 104 0.708 6:23� 104

�7:13� 107 0.900 6:69� 104 0.902 6:70� 104 −100
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The simulated open-loop and closed-loop frequency responses of
(30) for both cases are shown in Fig. 11. For the OIFF case, the
closed-loop transfer function measured from the reference, r, to
the sensor force, Fs, is

GFsrðsÞ ¼
Fs

r
¼ CdGFsd

1þ CdGFsd
; ð31Þ

when s ¼ 0

GFsrð0Þ ¼
CdGFsdð0Þ

1þ CdGFsdð0Þ
¼ GFsdð0Þ

GFsdð0Þ þ b
: ð32Þ

This shows that the DC gain of the closed-loop increases as b is
decreased. Recall that the maximum damping ratio of the
closed-loop system increases as b is decreased.

In addition, the effect of control action with respect to input
disturbance is examined. The transfer function between the input
disturbance w to the control action u is

GuwðsÞ ¼
u
w
¼ CdGFsd

�1� CdGFsd
: ð33Þ

The frequency response of this transfer function is shown in Fig. 12.
The sensitivity of the control action toward input disturbance
increases as the desired damping ratio is increased.

We now examine the performance of the tracking controllers.
The example system is damped using OIFF with a desired damping
ratio of 0.707. With the basic integral tracking control, the closed-
loop bandwidth of the system is 400 Hz with a gain margin of
20 dB. As expected, the closed-loop bandwidth is limited by low-
phase margin. The corresponding damping and tracking gain are
6:21� 104 and 4:0� 1010. The product of the two gains satisfies
the stability condition given in (25). However, with the structured
PI tracking controller, the closed-loop bandwidth of the system is
increased to 1200 Hz with a phase-margin of 60�. This shows an
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improvement of threefold just by cancelling an additional real pole
induced by the inner damping loop. Fig. 13 shows the closed-loop
frequency response of the system using the two tracking control
architecture discussed previously.

To examine the constant velocity tracking performance, a trian-
gular waveform was applied as a reference with a frequency of
200 Hz. Fig. 14(a) shows the displacement of the system. The track-
ing error is plotted in Fig. 14(b), The optimal force feedback
controller can be observed to heavily reduce the tracking error.
5.1. Effect of higher order modes

So far, only a single degree of freedom system has been consid-
ered. Although this is appropriate for modelling the first resonance
mode, it does not capture the higher order modes that occur in dis-
tributed mechanical systems. However, the higher order modes do
not disturb the zero-pole ordering of the transfer function from the
applied actuator voltage to the measured force. To illustrate this
concept, we augment the open-loop system with an additional
second-order system at five times the resonance frequency of the
first mode. Fig. 15 shows the closed-loop frequency responses of
the system. Note that the second mode does not affect the
performance of the system.
nd structured PI tracking control: Application for objective lens positioner.
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the displacement of the platform d of the system.
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Fig. 14. Example system: Constant velocity tracking with triangular wave.
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Fig. 15. Example system: Closed-loop frequency responses from the reference r to
the displacement of the platform d of the system with higher order model.

Fig. 16. Queensgate OSM-Z-100B objective lens positioner (Left) and Olympus 4�,
40� and 100� objective lens (Right).
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The transfer function of a generalized mechanical system with a
discrete piezoelectric transducer and collocated force sensor is
guaranteed to exhibit zero-pole ordering as shown in [22]. That
is, the transfer function GFsFa will always exhibit zero-pole order-
ing. As the zero-pole ordering of the system is guaranteed, it
Please cite this article in press as: Teo YR et al. Optimal integral force feedback a
Mechatronics (2014), http://dx.doi.org/10.1016/j.mechatronics.2014.04.004
follows that the controller discussed in the previous section will
also guarantee the stability of systems with multiple modes.

6. Application to objective lens positioner

The experiment was conducted on a Queensgate OSM-Z-100B
objective lens positioner with 3 different objective loads as shown
in Fig. 16. This single-axis lens positioner has a range of 100 lm
and a static stiffness of 1.5 N/m. The inner loop damping controller
is implemented using analog electronics. The outer tracking loop is
implemented using a Queensgate NPS4110 controller. The block
diagram of the experimental setup is shown in Fig. 17.

By referring to set-up in Fig. 17, the open-loop frequency
response of the positioner with 100� objective was measured from
the voltage amplifier input u2 which is proportional to the internal
actuator force, Fa, to the force sensor, Fs, and position sensor out-
put, d, with an excitation of 100 mVpp random noise signal. The
open-loop frequency responses are shown in Fig. 18 which exhibits
a resonance frequency at around 383 Hz. The first two modes are
relatively close in frequency. The system can be approximated by
a second-order transfer function given as

GFsFa ðsÞ ¼
2:141s2 þ 736:4sþ 6:072� 106

s2 þ 214sþ 5:606� 106 : ð34Þ
nd structured PI tracking control: Application for objective lens positioner.
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Fig. 17. Block diagram of the experimental setup.
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Fig. 18. Experimental results: Open-loop and closed-loop frequency responses
using CIFF and OIFF.
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6.1. Damping controller design

The optimal gain and maximum damping ratio of system (34)
using CIFF are Kd1 ¼ 1500 and fmax

1 ¼ 0:3. These values can also
be obtained numerically from the root locus plot in Fig. 19. The
numerically found optimal gain is 1700 and the corresponding
damping ratio is 0.33. Fig. 19 also includes the root locus plots of
the system using OIFF with different feed-through terms b. The
relationship between b and fmax (shown in Fig. 20) was numerically
obtained from the root locus plot and summarized in Table 2. The
maximum damping ratio is increased from 0.33 (CIFF) to 0.85 by
just adjusting the value of b. Fig. 18 includes the closed-loop
Please cite this article in press as: Teo YR et al. Optimal integral force feedback a
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frequency responses of the system using OIFF with b ¼ �0:6. The
closed-loop frequency responses are measured using the same pro-
cedure as the open-loop responses. The closed-loop response
shows that the first and second resonance modes have been
effectively eliminated. The higher frequency modes have also been
damped by up to 5 dB.
6.2. Tracking control design

The performance of the commercial PID controller was tuned
experimentally to minimized the settling time due to a step input
reference. The implemented PID controller has the following
structure
nd structured PI tracking control: Application for objective lens positioner.
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Table 2
Experimental results: Numerically obtained data for OIFF.

b fmax
i Kd2 b fmax

i Kd2

0.0 0.33 1700 �0.4 0.49 2350
�0.1 0.36 1840 �0.5 0.57 2500
�0.2 0.39 2060 �0.6 0.68 2840
�0.3 0.44 2160 �0.7 0.85 3300

−40

−20

0

20

M
a
g
n
it
u
d
e

(d
B

)

10 2 10 3

−400

−300

−200

−100

0

P
h
a
s
e

(d
e
g
)

Frequency (Hz)

Commercial PID Control
OIFF + Structured PI Control

Fig. 22. Experimental result: Closed-loop frequency response of the tracking loop
measured from r to the position sensor output d, scaled to l/V.

Table 3
Experimental results: Influence of objective mass on performance.

4� 100� 40� + mass

Mass 47.8 g 88.8 g 163.3 g
Resonance Freq. 412 Hz 378 Hz 264 Hz
Force Feedback BW 500 Hz 398 Hz 326 Hz
Tracking BW (PID) 31.6 Hz 26.1 Hz 21.5 Hz
Tracking BW (OIFF) 167 Hz 255 Hz 212 Hz
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CtðsÞ ¼ kp þ
ki

s
þ kds

sdsþ 1
; ð35Þ

where kp ¼ 0:01; ki ¼ 2000; kd = 1 � 10�6 and sd = 1.25 � 10�7. The
derivative component is an approximation that facilitates practical
implementation. The approximation acts as a derivative at low
frequency, while reducing the gain at high frequency with an
additional pole [28]. The term sd limits the gain, hence, the high-fre-
quency signal is amplified at most by a factor of kd=sd ¼ 8.

The structured PI controller is

CtðsÞ ¼
700ðsþ 2914Þ

2914s
; ð36Þ

where s ¼ �2914 is the location of the additional pole. The only
tuning parameter here is Kt which was tuned to provide acceptable
stability margins. The loop return ratio plot of the controllers are
shown in Fig. 21. The gain and phase margin of the system with
commercial PID control is 3.2 dB and 86� respectively. The gain
and phase margin of the system with Optimal Integral Force
Feedback and Structured PI control is 17.3 dB and 75� respectively.

The closed-loop frequency responses of the standard commer-
cial controller and the proposed controller are plotted in Fig. 22.
The achievable tracking bandwidth of the commercial PID control-
ler is 26.1 Hz compared to 255 Hz with the proposed controller.

6.3. Sensitivity to variations in resonance frequency

The force feedback loop was initially tuned for the 100� objec-
tive which has a nominal mass of 88.8 g. In order to show the
insensitivity to variation in resonance frequency, other objectives
were considered without retuning the tracking loop. The objectives
are 4� objective (47.8 g) and a modified 40� objective (163.3 g).
The variations in resonance frequency and performance are sum-
marized in Table 3. The open-loop and force feedback response
of the stage with different loads are plotted in Figs. 23 and 24. It
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Feedback and Structured PI Control (dashed line).
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can be observed that the tuning of the force feedback loop is not
sensitive to changes in resonance frequency. The tracking
controller frequency responses with, and without force feedback
are plotted in Figs. 25 and 26. As expected from the results in
Fig. 24, the only significant change in the force feedback response
is the bandwidth, which is proportional to the resonance
frequency.

6.4. Constant velocity tracking and step response

To examine the constant velocity tracking performance, a
80 lm sawtooth waveform was applied as a reference with a
frequency of 3 Hz and at 95% duty cycle. Fig. 27(a) shows the dis-
placement of the system. The tracking error is plotted in Fig. 27(b),
The optimal force feedback controller can be observed to reduce
the tracking error by up to 65%.
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Fig. 24. Experimental results: Closed-loop frequency response of the damping loop
measure from u1 to the output of the position sensor output d, scaled to l/V with
different objectives.
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Fig. 25. Experimental results: Closed-loop frequency response of the tracking loop
measured from r to the output of the position sensor output d, scaled to l/V, with a
commercial PID controller.
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Fig. 27. Experimental results: Constant velocity tracking of a 80 lm sawtooth
waveform with a frequency of 3 Hz and at 95% duty cycle.
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The step responses for different objective masses are also plot-
ted in Fig. 28. The heavier objective requires a proportionally
longer settling time. The settling time of the system with the pro-
posed damping and tracking controller is greatly improved com-
pared to the standard PID controller.
Please cite this article in press as: Teo YR et al. Optimal integral force feedback a
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7. Conclusions

The maximum damping achievable with classical integral force
feedback control is limited by the frequency difference between
the systems poles and zeros. This paper describes a novel improve-
ment that allows an arbitrary damping ratio to be achieved for any
nd structured PI tracking control: Application for objective lens positioner.
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system by introducing an additional feed-through term. For sys-
tems with closely spaced poles and zeros, the damping perfor-
mance may be significantly improved.

The second contribution is a structured PI controller for tracking
loop of systems with force feedback. The proposed tracking con-
troller is parameterized so that it contains a zero that cancel the
additional pole due introduced by the damping controller. This
approach improves the system phase margin and closed-loop servo
bandwidth.

The proposed techniques are demonstrated on an objective lens
positioning system. With a commercial PID controller, the maxi-
mum tracking bandwidth is 26.1 Hz. However, with the proposed
tracking and damping controller, the tracking bandwidth is
increased to 255 Hz.
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