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Abstract—Positive Velocity and Position Feedback (PVPF)
is a widely used control scheme in lightly damped resonant
systems with collocated sensor actuator pairs. The popularity
of PVPF is due to the ability to achieve a chosen damping
ratio by repositioning the poles of the system. The addition of
a necessary tracking controller causes the poles to deviate from
the intended location and can be a detriment to the damping
achieved. By designing the PVPF and tracking controllers
simultaneously, the optimal damping and tracking can be
achieved. Simulations show full damping of the first resonant
mode whilst also achieving bandwidth greater than the natural
frequency of the plant, allowing for high speed scanning with
accurate tracking.

I. Introduction

Highly resonant systems suffer from harmonic excitation
which can lead to performance degradation and even struc-
tural damage. Previous research suggests myriad of options
to manage the behaviour of such systems. Theses generally
fall into one of two categories: open- and closed-loop. Open-
loop control mechanisms are simple to implement and use
as no sensing equipment is necessary. However, open-loop
control is highly sensitive to perturbations in system dynam-
ics, so a sufficiently accurate model is required. Closed-loop
controllers, on the other hand, display excellent robustness
making them the preferred choice [1].
A number of closed-loop damping controllers have been

developed for such highly resonant systems, including Inte-
gral Resonant Control [2], Integral Force Feedback [3], Reso-
nant Control [4], Positive Position Feedback [5] and Positive
Velocity and Position Feedback (PVPF) [6]. These con-
trollers have a wide range of different applications, including
robotic manipulators [7], disk-drives [8], aircraft wings [9],
nanopositioning stages [10], scanning probe microscopes
[11], MEMS / NEMS [12] and high-density memory storage
devices [13].
In this work, a nanopositioner will be used as an example

system, though the proposed control design is equally appli-
cable to other applications. Nanopositioning platforms have
a dominant resonant mode at a relatively low frequency. The
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speed at which a nanopositioner can accurately trace a raster
scan input is limited to approximately one hundredth of its
dominant resonant frequency [14]. This presents a problem
in applications requiring high scanning speeds.
Another major detriment to the performance of nanopo-

sitioning platforms is the nonlinear behaviour exhibited by
the piezoelectric actuators. Hysteresis, creep and thermal
drift can be observed during open-loop operation causing
positioning errors. To minimize these errors some form of
reference tracking is generally incorporated [15]. The use of
an integral tracking controller to reduce positioning errors
due to nonlinear effects has been experimentally verified in
numerous works [4], [6], [10].
Traditionally, control schemes for nanopositioning are

developed by first designing a damping controller to damp
the first resonant mode of the system, and then adding a
tracking controller and tuning its gain to achieve the best
tracking performance. However, this methodology is flawed.
The addition of the tracking controller causes the damped
poles to move from their original desired location and alters
the damping characteristics of the system. It is, therefore,
imperative that the damping and tracking controllers are
designed simultaneously to achieve the necessary damping
and tracking performance.

A. Objective
The objective of this paper is to provide a method for

choosing optimal controller parameters for positioning ap-
plications. The desired outcome is a closed-loop frequency
response which exhibits a flat response at low frequencies
and rolls off at higher frequencies. The reason for this is
the major harmonic excitation, during scanning, is observed
in the axis which receives a triangle wave input. A flat
band response at low frequencies will preserve the harmonics
which define the triangular shape, and the roll off of high
frequencies will reduce the effects of higher order dynamics
and noise.

B. Structure of the paper
The paper is structured as follows, Section II provides

an overview of PVPF. Section III outlines the method for
choosing the optimal controller parameters. This is based
on a process of selective pole placement. In Section IV,
simulations are provided to show the effectiveness of the
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Fig. 1. Measured Frequency Response Fuction (FRF) of the nanopositioning platform (blue) and the derived second-order model (black). Higher-order
models needed to capture the cross-coupling dynamics are not required for the control design and are not derived.
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Fig. 2. Block diagram of the damped and tracked PVPF scheme, whereG(s)
is the plant, Gcc(s) is the FRF measuring the cross-coupling between the
axes, CPVPF (s) is the damping controller, and Ct(s) is the tracking controller.

optimal controller. This is based on the measured frequency
response of a nanopositioning platform. Simulations are
provided for both axes and includes cross-coupling between
the axes. Section V concludes the paper.

II. Positive Velocity and Position Feedback (PVPF)
PVPF was introduced as an improvement on the existing

PPF controller. Its design and implementation is similar to
PPF with one exception: the addition of velocity feedback
allows arbitrary pole placement, whereas PPF is limited in
that regard. It has been shown to be an effective vibration
damping controller in a nanopositioning applications [4],
[6], [16]. The controller parameters are derived such that
the damped system has two sets of complex poles at a
specific location. Typically, this location is chosen by shifting
the open-loop poles by an arbitrary, yet sufficiently large,
amount into the left half plane. The frequency response of
a nanopositioner measured from the applied voltage to the
displacement can be represented by a second-order model as
the first resonant mode is dominant, see Fig. 1. The model
has transfer function

G(s) =
σ2

s2 + 2ζωns + ω2n
, (1)

where σ2 corresponds to the DC gain, ζ is the damping ratio,
and ωn is the natural frequency. The PVPF controller has
transfer function

CPVPF (s) =
Γ2s + Γ1

s2 + 2γωcs + ω2c
. (2)

A simple integrator is used as a tracking controller given by

Ct(s) =
kt
s
. (3)

The structure of the control scheme is shown in Fig. 2. As
has been mentioned previously, the PVPF control scheme
is designed by first choosing a damping controller to place
the poles of the closed-loop system at a specified location.
A tracking controller is then added and the gain is tuned
to obtain the desired response. However, it has been shown
that there is a relationship between the damping and tracking
controllers and the stability of the system [17]. For this
reason, the damping and tracking controllers will be designed
simultaneously, i.e. only the damped and tracked system will
be considered.
Denoting the numerator of a transfer function Gnum, and

the denominator Gden, such that G = Gnum/Gden, the damped
and tracked closed-loop system is given by

Gnumcl (s) = ktσ
2(s2 + 2γωc + ω2c) (4)

Gdencl (s) = s
5 + (2ζωn + 2γωc)s4 + (2ζωn2γωc + ω2n + ω2c)s3

+(2ζωnω2c + 2γωcω2n − σ2Γ2 + ktσ2)s2

+(ω2nω2c − σ2Γ1 + ktσ22γωc)s + ktσ2ω2c (5)

This is used in the following section to derive the parameters
of the proposed controller.

III. Proposed Controller Design
The traditional PVPF control scheme places the poles of

the damped system at a specific location. As the tracking
controller is implemented and the gain increased, the poles
diverge from the chosen location. In this work, the opposite
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Fig. 3. Root loci of the tracking loop for the traditional controller design and the proposed controller design for the positive imaginary axis only. The
image is mirrored on the negative imaginary axis. The black crosses are undamped poles of the open-loop system, blue crosses are the damped poles of
the closed-loop system, and the red cross depicts the pole introduced by the tracking controller. In the traditional PVPF design, complex poles are placed
at the desired location and the tracking controller displaces these poles from the intended location as the tracking gain is increased. The proposed control
design places the damped poles at different strategic locations such that when the desired tracking gain is reached, the PVPF-induced poles converge on
the desired (damped) location.
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Fig. 4. Bode magnitude plot of the open- and closed-loop system using the second-order model derived from the measured frequency response. The
closed-loop model shows the desired flat-band response giving maximum bandwidth. In this the case the ±3 dB bandwidth is greater than the resonant
frequency for each axis.

is desired. The damping controller should place the poles at
two distinct locations. When the tracking controller is applied
and the gain increased to the optimal amount, the complex
poles should converge at the desired location, as shown if
Fig. 3. The damped and tracked system has the following
characteristic equation

P(s) = (s + ωp)(s2 + 2ψωd s + ω2d)
2. (6)

where ωp is the real pole introduced by the tracking con-
troller, ωd is the damped natural frequency of the open-loop
system, for lightly damped systems this is approximately
equal to ωn, and ψ is the desired damping ratio. Equating
this with the denominator in Eqn. (5) gives the equivalent
damped and tracked closed-loop system in terms of the de-
sired system variables. This derivation makes the assumption
that the damping ratio, ζ, is sufficiently small and can be
neglected.

Gnumcl (s) =
ω4dωp(s

2 + (4ψωd + ωp)s + (5ψω2d + ω
2
d + 4ψωdωp))

5ψω2d + ω
2
d + 4ψωdωp

(7)
Gdencl (s) = s

5 + (4ψωd + ωp)s4 + (4ψ2ω2d + 2ω
2
d + 4ψωdωp)s

3

+(4ψω3d + 4ψ
2ω2dωp + 2ω

2
dωp)s

2 + (ω4d + 4ψω
3
dωp)s + ω

4
dωp.

(8)

The aim is to choose ψ and ωd to achieve a desired amount
of damping, and find the ωp which will give a flat-band
response, i.e. |Gcl( jω)|dB ≤ 0 ∀ ω ∈ �. The controller
parameters will be found by equating the denominator terms
of Eqn. (5) with the desired characteristic equation.

|Gcl( jω)| ≤ 1∣∣∣Gnumcl ( jω)∣∣∣∣∣∣Gdencl ( jω)∣∣∣ ≤ 1∣∣∣Gnumcl ( jω)∣∣∣2 ≤ ∣∣∣Gdencl ( jω)∣∣∣2∣∣∣Gdencl ( jω)∣∣∣2 − ∣∣∣Gnumcl ( jω)∣∣∣2 ≥ 0(
ω10 + (8ψ2ω2d + ω

2
p − 4ω2d)ω

8

+(−16ψ2ω4d + 8ψ
2ω2dω

2
p − 4ω2dω

2
p + 6ω4d + 16ψ

4ω4d)ω
6

+(6ω4dω
2
p + 8ψ

2ω6d − 16ψ
2ω4dω

2
p + 16ψ

4ω4dω
2
p − 4ω

6
d)ω

4

+(ω8d + 8ψ
2ω6dω

2
p − 4ω

6
dω

2
p)ω

2 + ω8dω
2
p

)
−

(
ω4dωp

5ψω2d + ω
2
d + 4ψωdωp

)2 (
ω4 + (6ψ2ω2d − 2ω

2
d + ω

2
p)ω2

+(25ψ4ω4d + ω
4
d + 16ψ

2ω2dω
2
p + 10ψ

2ω4d + 40ψ
3ω3dωp + 8ψω

3
dωp)
)
≥ 0
(9)

As the system is type 1, the ω0 terms are equal. Subtracting
the ω0 terms and dividing by ω2 gives(

ω8 + (8ψ2ω2d + ω
2
p − 4ω2d)ω

6

+(−16ψ2ω4d + 8ψ
2ω2dω

2
p − 4ω2dω

2
p + 6ω4d + 16ψ

4ω4d)ω
4

+(6ω4dω
2
p + 8ψ2ω6d − 16ψ

2ω4dω
2
p + 16ψ4ω4dω

2
p − 4ω6d)ω

2

+(ω8d + 8ψ
2ω6dω

2
p − 4ω6dω

2
p)
)

−

(
ω4dωp

5ψω2d + ω
2
d + 4ψωdωp

)2 (
ω2 + (6ψ2ω2d − 2ω

2
d + ω

2
p)
)
≥ 0. (10)
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Fig. 5. Closed-loop frequency response of the nanopositioning platform with PVPF controller. As can be seen in the x- (top left) and y-axis (bottom
right) FRFs, the response is not as flat as the model-based simulation, see Fig. 4. This is due to the effect of the higher order modes not considered in the
modelled case.

A. Complex Pole Placement
For a second-order system with normalized input/output

gain, the transfer function is

G(s) =
ω2n

s2 + 2ζωns + ω2n
, (11)

and has magnitude response

|G( jω)| =
ω2n√

ω4 + (4ζ2ω2n − 2ω2n)ω2 + ω4n
. (12)

For a given a bandwidth of ±x dB, |G( jω)| should not pass
through the upper bound on bandwidth, i.e.

|G( jω)| ≤ 10
x
20 : ∀ω ∈ � (13)

Substituting Eqn. (12) and rearranging gives

ω4 + (4ζ2ω2n − 2ω
2
n)ω

2 + ω4n − ω
4
n × 10

−x
10 ≥ 0. (14)

The roots of Eqn. (14) give the frequencies at which |G( jω)|
crosses x dB. If Eqn. (14) has two real and distinct roots,
|G( jω)| > x dB for some ω, if the roots are real and equal,
|G( jω)| = x dB for only one value of ω, and if the roots
are complex |G( jω)| < x dB ∀ω. It is obvious that real and
equal roots will provide maximum bandwidth. In this case,
the discriminant of Eqn. (14) is equal to zero, i.e.

(4ζ2ω2n − 2ω
2
n)
2 + 4ω4n × 10

−x
10 = 0

4ω4n(4ζ
4
− 4ζ2 + 10

−x
10 ) = 0

⇒ ζ =

√
4 ±
√
16 − 16 × 10 −x10
8

(15)

Pole placement such that the damping ratio is that given by
Eqn. (15) will therefore provide maximum ±x dB bandwidth
relative to the DC gain of a second-order system. For a
±1 dB bandwidth, as required in nanopositioning, this gives
the damping ratio, ζ = 0.5227.

B. Real Pole Placement
For fixed complex poles, represented by ψ, ωd, Eqn. (10)

can be defined as a function of the real pole, ωp, and
the frequency, ω, as H(ωp, ω). We choose ωp such that
the following equation is minimized over the bandwidth of
interest, i.e. ω ∈ [0, ωn],

min

∣∣∣∣∣∣∣
ωn∑
ω=0
H(ωp, ω)

∣∣∣∣∣∣∣ . (16)

This gives the closed loop frequency response, Gcl( jω),
which is closest to unity gain over the chosen bandwidth.

C. Controller Synthesis
With the three system variables defined numerically, the

characteristic equation of the system will be of the form

s5 + K4s4 + K3s3 + K2s2 + K1s + K0. (17)

Equating this with Eqn. (5) gives the controller parameters
as

2γωc = K4 − 2ζωn
ω2c = K3 − ω2n − 2ζωn2γωc

kt = K0/(σ2ω2c)
Γ2 = −(K2 − 2ζωnω2c − 2γωcω2n − ktσ2)/σ2

Γ1 = −(K1 − ω2cω2n − 2γωcktσ2)/σ2 (18)

This is used in the following section to derive the controllers
for simulation purposes.

IV. Simulation
Simulations are carried out using the measured frequency

response of a two-axis serial kinematic nanopositioner de-
signed and constructed at the EasyLab, University of Nevada,
Reno. The stage is driven by a Piezodrive PDL200 200 V lin-
ear amplifier, and the position measured using a Microsense
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Fig. 6. Plot of the x- and y-axis output (top row) and the error relative to the input (bottom row). The magnitude of the x-axis error is amplified by the
slight time-delay caused by the increased phase of the closed-loop system. By shifting the output by the delay time, a more accurate error signal can be
found. For the purpose of simulation, this is not necessary as the y-axis input has been delayed by the equivalent time to obtain an accurate scan. Similarly
to the x-axis case, the maximum y-axis error is amplified by the delay induced to account for the delay in the x-axis response.

4810 capacitive sensor. The frequency response is measured
using an Agilent 35670A Dynamic Signal Analyzer.
The x- and y-axis models are derived from the measured

frequency response using the discrete time system identifica-
tion algorithm described in [18]. The continuous time model
is then found by bilinear transform giving

Gxx(s) =
2.036 × 107

s2 + 80.67s + 2.036 × 107
(19)

Gyy(s) =
1.017 × 107

s2 + 67.92s + 1.017 × 107
(20)

A. X-axis Controller

For a desired damping ratio of 0.5227, the complex poles
of the desired transfer function are set to −2766.7± 4512.4.
The damped system should then have a maximum resonant
peak of no more than 2 dB. From Eqn. (16), the real pole
which gives a flat band response is found to be −3847.0.
This gives the desired characteristic equation as

s5 + 1.4914 × 104s4 + 1.2923 × 108s3 + 6.4340× 1011s2

+1.9777 × 1015s + 3.0196× 1018.
(21)

Using Eqn. (18) the controller parameters are calculated,
which gives the following controllers

CPVPFx(s) =
−1.496 × 104s + 3.097 × 107

s2 + 1.483 × 104s + 1.077 × 108
(22)

Ctx(s) =
1377
s

. (23)

B. Y-axis Controller

Using the same method as for the x-axis design, the
complex poles are set to −1954.9 ± 3188.4, the real pole

is found to be −2717.3, giving the desired characteristic
equation

s5 + 1.0537 × 104s4 + 6.451 × 107s3 + 2.2693× 1011s2

+4.9286 × 1014s + 5.3164 × 1017.
(24)

Eqn. (18) gives the controllers

CPVPFy(s) =
−1.052 × 104s + 1.536 × 107

s2 + 1.047 × 104s + 5.363 × 107
(25)

Cty(s) =
975.1
s

. (26)

C. Cross-coupling
An accurate simulation of a multiple axis scan must

account for cross-coupling between the axes. As the nanopo-
sitioner used has a serial kinematic design, it is susceptible to
significant coupling effects. This is observed in the measured
frequency response, Fig. 1. The outputs of the closed-loop
system are calculated as

x =
CtxGxx

1 −Gxx(CPVPFx −Ctx)
rx +

Gxy
1 −Gxx(CPVPFx −Ctx)

ry

(27)

y =
Gyx

1 −Gyy(CPVPFy −Cty)
rx +

CtyGyy
1 −Gyy(CPVPFy −Cty)

ry.

(28)

The closed-loop frequency response is shown in Fig. 5.
The PVPF controller provides a large reduction of coupling
effects at low frequencies.

D. Raster Scan
The closed-loop response is simulated using a ±1 μm,

20 Hz triangle wave as the x-axis input and a 10 Hz repeating
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Fig. 7. Simulated raster scan where the x-axis input is a 20 Hz triangle
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point of the x-axis trajectory. The phase-lag-induced artifacts present in the
full scan during the transition between each consecutive increment of the
stepping function have been removed, leaving only the usable scan lines.

step function, with a maximum magnitude of 1 μm, as the
y-axis input. The step is placed at

tstep =
i − 1
fx0
+

3
4 fx0

+

∣∣∣∠Gclxx( jωx0)∣∣∣
2π fx0

, i = 1, 2, ..., n (29)

where fx0 is the base frequency of the x-axis input in Hz,
∠Gclxx( jωx0) is the phase of the closed-loop x-axis frequency
response, measured from rx to x, at the same frequency, and
n is the total number of periods. This coincides with the
negative peak of the x-axis triangular input. The response of
the individual axes are plotted in Fig. 6, and the combined
raster scan in Fig. 7. The results are as follows:

x-axis y-axis
Resonant Frequency (Hz) 718 508
Bandwidth ±1 dB (Hz) 468 376
Bandwidth ±3 dB (Hz) 938 608
Max. Error (μm) 0.0121 0.1022
RMS Error (μm) 0.0045 0.0192

Note, the x-axis error measurements were calculated using a
time-shifted output such that the zero cross-over of both the
input and output occur at the same point.

V. Conclusion

In this paper, a method for simultaneously optimizing the
parameters of a PVPF damping controller and an integral
tracking controller for high-precision positioning applications
is provided. The model-based simulations show a flat band
response with high bandwidth, perfectly suited to high-speed
scanning. The frequency response based simulations exhibit
the effect of the systems higher order dynamics but maintain
a largely flat response and similarly high bandwidth. Despite

the example systems tendency to exhibit cross-coupling ef-
fects, the controller significantly reduces them. This method
is, therefore, ideal for improving the positioning bandwidth
of existing nanopositioners.
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