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Abstract— Repetitive Control (RC) is a popular technique for
tracking periodic signals and rejecting periodic disturbances.
Repetitive control achieves accurate tracking of periodic tra-
jectories by incorporating a periodic signal generator within
the feedback loop. The periodic signal generator provides an
infinite loop-gain at the harmonic frequencies of the reference
signal. However, this scheme cannot be used in isolation due to
challenges with stability and robustness. The stability and ro-
bustness can be improved by incorporating appropriate filters.
However, there is a trade-off between robustness and tracking
performance. The current state-of-the art is to implement plant
inversion and include phase compensators to improve the high-
frequency tracking performance. In this work, a RC controller
is combined with a non-causal FIR filter to improve the tracking
performance without the requirement for phase compensators
or plant inversion. The performance of the proposed RC design
is demonstrated on a piezoelectric positioner.

I. INTRODUCTION

Repetitive control (RC) is a learning-type control tech-
nique which “learns” from experience to improve the control
performance [1]. The technique has been widely used in var-
ious engineering application such as robotics [2], hard-disk
arm actuators [3], electro-hydraulics [4], nanopositioning [5],
[6] and optical disk drives [7]. The idea of repetitive control
was originally developed to reject the periodic disturbances
in a power supply control application [8] and to track
periodic references in motion control applications [9].

Repetitive control is based on the Internal Model Princi-
ple (IMP) that was first formalized in [10]. This principle
states that if a certain signal must be rejected or tracked
with zero steady-state error, the generator must be inside the
control loop, in the controller, or in the plant itself. Any
periodic signal with a known period L can be generated by
a controller which has positive feedback around a pure time
delay, as illustrated in Fig. 1. The result is a controller with
an infinite number of marginally-stable poles with infinite
gain at the harmonics of the periodic reference. Compared to
traditional feedback and feed-forward controllers, the track-
ing error of RC reduces as the number of operating periods
increases. The repetitive control technique in discrete-time is
shown in [11].

The major challenges of RC control are stability, robust-
ness, and steady-state tracking performance. The problems
with stability and robustness arise from the interaction be-
tween the high frequency RC gain with the plant dynamics.
However, this problem can be avoided by incorporating
appropriate filters in the RC loop [1], [12]–[17]. However, a
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Fig. 1. A delay element in the feedback loop of a continuous-time system
satisfies the Internal Model Principle for periodic inputs. An infinite number
of oscillators is required to replicate an arbitrary periodic input.
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Fig. 2. Magnitude versus frequency for signal generator e−Ls

1−e−Ls .

trade-off is made between the robustness and high-frequency
tracking performance when such filters are used. In order
to improve the steady-state tracking performance, a phase
compensator can be included to account for the phase of
the filter as shown in references [18], [19]. The phase lead
compensator can be easily implemented in discrete time.

In light of previous work on RC, this work focuses on
improving the design of an RC system that is robust and
achieves minimum steady-state error. By incorporating a
non-causal FIR filter in the RC loop, the robustness and
high-frequency tracking performance of the system can be
greatly improved compared to the current state-of-the art.
Lastly, the performance of the proposed RC is demonstrated
on a piezoelectric positioner used in an AFM system.

II. DISCRETE TIME REPETITIVE CONTROL DESIGN

The discrete-time closed-loop system with RC is shown in
Fig. 3. In the block diagram, the plant is represented by G(z);
I(z) is the feedback controller, such as a PID controller; Q(z)
is a low-pass filter with a DC gain equal to 1 for robustness.
This is required to filter out the infinite loop gains that are
introduced by the memory loop at high-frequency harmonics.
It also defines the control bandwidth of the RC and prevents
the excitation of undesired dynamics at high frequencies. The
filter Q(z) can either be a Infinite Impulse Response (IIR)
or Finite Impulse Response (FIR) filter. Alternately, a zero-
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(a) The block diagram of the standard RC system.

(b) The block diagram of the proposed RC system.

Fig. 3. Discrete-Time Repetitive Control System.

phase filter can be implemented in Q(z). In [20], a zero phase
error tracking control (ZPETC) is shown to perfectly track a
reference with no phase delay, however, the method is based
on pole-zero cancellation and phase cancellation, hence, the
tracking performance is sensitive to modelling errors and
plant parameter variations.

The performance of the RC is enhanced by including a
positive phase lead compensator P1(z) and P2(z). The phase
lead compensators are

P1(z) = zm1,P2(z) = zm2, (1)

where m1 and m2 are non-negative integers. The phase lead
compensator zm1 and zm2 provides a linear phase lead.

θ1,2(ω) = m1,2Tsω, ω ∈ (0,π/Ts). (2)

In order to create an internal signal generator with period
Tp, the repetitive controller in the inner loop contains a pure
delay z−N where N = Tp/Ts is the number of points per
period Tp and Ts is the sampling time.

The stability of the closed-loop RC system shown in
Fig. 3 was analysed in [21]. The transfer function relating
the tracking error E(z) and the reference signal R(z) is

E(z)
R(z)

=
1−W (z)

1−W (z)+ [(P2(z)−1)W (z)+1]I(z)G(z)
,

=
[1−W (z)]S(z)

1−W (z)[1−P2(z)I(z)G(z)S(z)]
, (3)

where W (z)=Q(z)z(−N+m1) and S(z)= 1/[1+I(z)G(z)]. The
first stability condition requires that the closed-loop system
without RC S(z), has no poles outside the unit circle in the z-
plane. The second stability condition requires that [1−W (z)]
is stable. The third stability condition can be analysed using
Small Gain Theorem [22] when,

|W (z)[1−P2(z)I(z)G(z)S(z)]|< 1. (4)

By satisfying condition (4) the closed-loop RC system is
asymptotically stable.

III. PROPOSED DISCRETE TIME REPETITIVE CONTROL
DESIGN AND ANALYSIS

The discrete-time closed-loop system with the proposed
RC design is shown in Fig. 3(b). In the block diagram, the
open-loop system is represented by G(z); K is the RC gain;
C(z) is the feedback controller, such as a PID controller. H(z)
is a low-pass filter with a DC gain equal to 1. In situations
where the system’s loop gain exceeds 180◦, for example the
first resonance frequency of the system, the RC controller
must be attenuated to maintain stability. One option is to
use an IIR filter as mentioned in Section II, however, IIR
filters have a slow roll-off rate above the cut-off frequency
and also introduce unwanted phase shift.

The ideal filter is one that provides an arbitrary response
with unity gain and zero phase shift in the pass band and high
attenuation in the stop-band. With such a filter, it would be
possible to selectively include or exclude poles from the RC
controller. This work describes a method for achieving an
ideal filter response by employing a non-causal FIR filter.
The filter is restricted to have symmetric coefficients and a
length of precisely 2N taps. In doing so, the time delay of
the RC loop can be combined with the non-causal filter to
create a causal filter with a pure time delay of N samples. In
other words, the FIR filter can implement both the RC time
delay and an arbitrary frequency response which can be used
to selectively include or exclude poles from the repetitive
controller with zero phase shift.

A non-causal FIR filter can be described by

y(k) =
N

∑
i=−N

u(k− i) h(i), (5)

where y(k) is the output, u(k) is the input, and h(i) is a vector
of coefficients that are symmetric about i = 0. The transfer
function of (5) can be written,

H(z) =
N

∑
i=−N

z−i h(i). (6)

The amplitude response of H(z) can be arbitrary and the
phase shift is zero due to the condition of symmetry. How-
ever, is it non-causal with a time-advance of N samples. In
Fig. 3(b), H(z) is cascaded with the RC time delay z−N ,
therefore, these two systems can be combined to create a
causal FIR filter of length 2N with a pure time delay of N
samples. That is,

H(z) =
2N

∑
i=0

z−i h(i−N). (7)

Therefore, the transfer function of the RC controller is simply

GRC(z) = K
z−NzNH(z)

1− z−NzNH(z)
= K

H(z)
1−H(z)

, (8)

where H(z) is the causal filter and K is a constant gain.
Fig. 4(a) compares the response of an IIR and FIR loop

filter with a cut-off frequency of 400 Hz. Compared to the
FIR filter, the IIR filter has a relatively slow roll-off and
introduces a non-linear phase delay. The effect of both filters
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(a) Frequency response of a 1st order low-pass IIR filter and the proposed
FIR filter. Both the filters have a cut-off frequency of 400 Hz.

−100

0

100

200

M
ag

n
it

u
d

e 
(d

B
)

 

100 200 300 400 500 600 700 800 900 1000
Frequency  (Hz)

Ideal RC
RC + IIR
RC + Proposed FIR

(b) Frequency respone of an ideal RC controller, RC controller with IIR filter
and RC controller with the proposed FIR filter. The input periodic reference
is 100 Hz.

Fig. 4. The effects of stability filters on RC controllers.

Fig. 5. Two-axis serial-kinematic nanopositioning platform with a range
of 30µm designed and constructed at the EasyLab, University of Nevada,
Reno, USA.

on the RC controller is illustrated in Fig. 4(b). The ideal
RC controller has infinite gain at the harmonics as expected.
However, if the system has a resonance frequency of 500 Hz,
the gain of the RC controller must be attenuated before
this frequency. In the example, an IIR filter with a cut-
off frequency of 400 Hz will cause instability. As a result,
the cut-off frequency needs to be reduced which significant
degrades the tracking performance of the system. On the
other hand, with the proposed non-causal FIR filter, the unity
gain and zero phase shift in the pass band does not degrade
the ideal response of the RC controller.

IV. DESIGN OF RC FOR A NANOPOSITIONER

In this section, the performance of three different con-
trollers are compared for 1) PID control with notch filter
2) standard RC control with phase lead compensator and
notch filter, and 3) proposed RC control. The details of
the implementation and experimental results are presented
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Fig. 6. The frequency response of the nanopositioner along the x-axis.
The solid line (blue) is the measured response, the dash line (green) is the
continuous-time model and the dash-dot line (red) is the linear discrete-
time model using Matlab function c2d with zero-order hold and sampling
frequency of 5 kHz.

below. A model of the nanopositioner was first obtained, then
a simulation study was conducted to study the effects of the
RC parameters on the performance before implementing the
discrete time RC on the nanopositioner.

A. Nanopositioner Model

The experiments were conducted on a two-axis serial-
kinematic nanopositioning stage pictured in Fig. 5. The
nanopositioner was designed and constructed at the EasyLab,
University of Nevada, Reno, USA. Each axis contains a
12 mm long piezoelectric stack actuator (Noliac NAC2003-
H12) with a free displacement of 12 µm at 200 V. The
flexure design includes a mechanical amplifier to provide
a total range of 30 µm. The flexures also mitigate cross-
coupling so that each axis can be controlled independently.
The position of the moving platform is measured by a
Microsense 6810 capacitive sensor and 6504-01 probe, which
has a sensitivity of 2.5µm/V. The stage is driven a PiezoDrive
PDL200 voltage amplifier with a gain of 20. The simulation
and experiments are done along the x-axis, which translates
from left to right in Fig. 5 and has a resonance frequency of
509 Hz.

For the purpose of control design, a second-order model
is procured using the frequency domain least-squares tech-
nique. The model of the system is

G(z) =
0.09535 z+0.09526
z2−1.897 z+0.9972

. (9)

The frequency response of the model is compared to the
experimental data in Fig. 6. The model closely approximates
the first resonance mode which is sufficient for control
design.

B. PID Control with Notch Filter

A popular technique for control of commercial nanopo-
sitioning systems is integral or proportional-integral con-
trol [23]. PID feedback controllers are commonly used to
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minimize hysteresis, creep, and the effect of vibration.

PID(s) = Kp +
Ki

s
+Kds. (10)

The derivative term is rarely used due to the increased
noise sensitivity and stability problems associated with high
frequency resonance modes. On the contrary, PI and I
controllers are simple to tune, however, the bandwidths of PI
and I tracking controllers are severely limited by the presence
of highly resonant modes.

Plant inversion techniques are popular as they are simple
to implement and can provide a high closed-loop bandwidth
if they are accurately tuned and the resonance frequency
does not vary [24]. The transfer function of a typical inverse
controller is

N(s) =
s2 +2ζzs+ω2

z

(s+ωz)2 , (11)

where ζz and ωz are the damping ratio and first resonance
frequency of the nanopositioner. One of the crucial consider-
ation with inversion based control is the effects of modelling
error. For instance, if the resonance frequency falls below
the frequency of the notch filter, the phase lag will cause the
system to become unstable [24]. The notch filter is tuned to
509 Hz with an estimated damping ζz of 0.0045.

The block diagram of the control system is similar to Fig. 3
with P2(z) = 0, in other words, the RC loop is absent. The
controller I(z) can be written

I(z) = PID(z)N(z). (12)

The PID controller was tuned to provide acceptable gain and
phase margins. The parameters of the controller are Kp = 0,
Ki = 500 and Kd = 0.

PID(z) =
0.01 z+0.07

z−1
, (13)

In discrete time, the notch filter N(z) was designed to invert
the resonance frequency at 509 Hz,

N(z) =
z2−1.915 z+0.99

z2−1.454 z+0.5283
. (14)

The open-loop and closed-loop frequency response using
PID control and notch filter are plotted in Fig. 7.

C. Standard RC Control with Phase Lead Compensation and
Notch Filter

The block diagram of this control system is shown in
Fig. 3. The first step is to design I(z), the feedback controller
without RC control. The controller can be written as

I(z) = D(z)N(z), (15)

where D(z) is a simple integral control and N(z) is a notch
filter similar to that in Section IV-B. The controller was
tuned to provide adequate gain and phase margins. The
implemented controller was

D(z) =
0.0025z+0.0175

z−1
, (16)
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Fig. 7. Open-loop and closed-loop frequency response using PID control
and notch filter.
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Fig. 8. Frequency response of the standard RC controller and the proposed
RC controller.

and the notch filter N(z) is identical to (14).
The next step is to design the RC controller. The signal

period is Tp = 0.1 s. The pure delay of the controller is set
to N = Tp/Ts = 500. The next step is to design a low-pass
filter Q(z). Here, a first-order Butterworth filter with a cut-off
frequency of 200 Hz is chosen,

Q(z) =
0.1122+0.1122z−1

1−0.7757z−1
. (17)

This filter allows for the reduction of gain at those frequency
at which uncertainty exists and above the first resonance
frequency. The phase lead compensators were chosen to be

P1(z) = z4, P2(z) = z4. (18)

The frequency response of the standard RC controller shown
here is given in Fig. 8. The open-loop and closed-loop
frequency response using the standard RC control with phase
lead compensation and notch filter is plotted in Fig. 9.

D. Proposed RC Control

A 2N-tap non-causal low-pass FIR filter with N = 500 is
designed. The cut-off frequency of is 400 Hz. The feedback
controller C(z) is an integrator given as

C(z) =
0.0001
z−1

. (19)
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Fig. 9. Open-loop and closed-loop frequency response using standard RC
control with phase lead compensation and notch filter.
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RC control.

The RC gain K = 0.3. The frequency response of the
proposed RC controller shown here is plotted in Fig. 8.
The open-loop and closed-loop frequency response using the
proposed RC control is plotted in Fig. 10.

E. Experimental Results and Discussion

In the experiment, the first reference signal was a ±1 µm
sinusoidal wave at 20 Hz. The tracking results for three
control schemes are presented in Fig. 11 and Fig. 12(a). The
second reference signal was a ±1 µm triangular wave at
20 Hz. The tracking results are presented in Fig. 13 and
Fig. 12(b). From the time signal in Fig. 11 and Fig. 13, the
phase shift in the first controller is significant compared to
the two RC control methods. From the error signal plot in
Fig. 12(a) and Fig. 12(b), the performance of the proposed
RC control is significantly better than the PID control with
notch filter. The proposed RC control also outperforms the
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Fig. 11. The output displacement in response to a sinusoidal reference of
±1 µm at 20 Hz.
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(a) Sinusoidal reference of ±1 µm at 20 Hz.
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(b) Triangular reference of ±1 µm at 20 Hz.

Fig. 12. Error in the output displacement.

standard RC control with phase lead compensation and notch
filter.

An important factor that effects the RC performance is
the amount of frequency shift due to the stability filters
Q(z), This is done by examining the denominator of the RC
controllers. The transfer function of the standard RC control
with phase lead compensator and notch filter is

RC1(z) = 1+P2(s)
z−NQ(z)P1(z)

1+ z−NQ(z)P1(z)
,

=
1+ z−NQ(z)P1(z)+P2(s)z−NQ(z)P1(z)

1+ z−NQ(z)P1(z)
, (20)

and the transfer function of the proposed RC control is

RC2(z) =
z−NH(z)

1+ z−NH(z)
. (21)

The denominator of an ideal RC control is (1 + z−N).
The denominator of (20) indicates that the pole location is
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Fig. 13. The output displacement in response to a triangular reference of
±1 µm at 20 Hz.
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affected by the phase shift in filter Q(z) and the phase lead
compensator P1(z). The filter H(z) is a 2N-tap non-causal
low pass FIR filter which has zero phase shift. As a result,
by observing the denominator of (21), the pole location of
the system is not affected by the filter as shown in Fig. 14.

V. CONCLUSIONS
In this work, an RC control is incorporated with a novel fil-

ter design that greatly improves the high-frequency tracking
performance without the requirement for phase compensators
or plant inversion. The experiments were conducted on a
piezoelectric positioner. The performance of the proposed
RC design outperforms a PID controller with notch filter
and standard RC control with phase lead compensation and
notch filter. Future work includes plant inversion to further
improve the performance.
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