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Abstract— This article shows an improvement to Integral
Force Feedback (IFF) for active damping control of precision
mechanisms. The benefits of IFF include robustness, guaranteed
stability and simplicity. However, the damping performance
depends on the stiffness of the system; hence, some systems
cannot be adequately controlled. In this article, an extension
to the classical integral force feedback control scheme is
proposed. The new method achieves arbitrary damping for any
mechanical system by introducing a feed-through term in the
system.

I. INTRODUCTION

The speed and resolution of many scientific and industrial
machines are limited by the presence of lightly damped
mechanical resonances. Examples include scanning probe
microscopy [1]–[5], nanofabrication [6], precision optics [7]
and aerospace systems [8].

Traditional passive damping methods have includes vis-
coelastic damping and tuned-mass absorbers; however, these
methods can be bulky and may not perform well at low
frequencies. In contrast, active damping is an alternative
method to increase the performance. Active damping con-
trol utilizes a sensor and feedback loop to artificially in-
crease the damping ratio of a system. A number of suc-
cessful damping control techniques include Positive Posi-
tion Feedback (PPF) [9], polynomial based control [10],
shunt control [11]–[13], resonant control [14], Force Feed-
back [15]–[18], and Integral Resonance Control (IRC) [19]–
[21]. Among these techniques, PPF controllers, velocity
feedback controllers, force feedback controllers, and IRC
controllers have been shown to guarantee stability when the
plant is strictly negative imaginary [22]. Optimal controllers
with automatic synthesis have also been successfully applied
to damping control applications, for example, robust H∞

controllers [23], [24].
In references [15]–[18] integral force feedback (IFF) is

described for vibration control and positioning applications.
This technique utilizes a force sensor and integral controller
to directly augment the damping of a mechanical system.
The major advantages of IFF are the simplicity of the
controller, guaranteed stability and excellent performance
robustness. However, the maximum damping achievable with
IFF is a function of the system properties, in particular
the system stiffness relative to the actuator stiffness. Hence,
some systems can be critically damped using IFF while other
exhibit negligible damping improvement.
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Fig. 1. Structure G with a piezoelectric transducer

Fig. 2. Block Diagram of the Classical Integral Force Feedback (CIFF).

In this work, an extension to IFF is described for an
arbitrary damping ratio to be achieved for any mechanical
system. The modification amounts to replacing the integral
controller with a first-order equivalent low-pass filter. Al-
though the additional complexity is negligible, the damping
performance is significantly improved. This is an exceptional
result that allows integral force feedback to be extended to
systems that were not previously suited.

II. CLASSICAL INTEGRAL FORCE FEEDBACK (CIFF)

Integral Force Feedback (IFF) control has been widely ap-
plied for augmenting the damping of flexible structures [16].
The feedback law is simple to implement and under common
circumstances provides excellent damping performance with
guaranteed stability. Fig. 1 illustrates a structure G equipped
with a piezoelectric actuator that produces a force Fa with
internal stiffness Ka. A force sensor is collocated with the
piezoelectric actuator and measures the axial force Fs acting
on the system G. The variable d represents the mechanical
displacement.

The classical integral force feedback controller (CIFF) has
a block diagram representation illustrated in Fig. 2. The
transfer function between the unconstrained piezo expansion
δ to the sensor force Fs is [25]

GFsδ (s) =
Fs

δ
= Ka

{
1−

n

∑
i=1

vi

1+ s2/ω2
i

}
, (1)
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(a) Classical method. (b) Optimal method.

Fig. 3. Typical root locus plots.

(a) Block Diagram of the OIFF with new feed-through term β .

(b) Block Diagram of the OIFF in the classical form with K̂a and v̂i.

Fig. 4. Block Diagrams of Optimal Integral Force Feedback (OIFF).

where ωi is the natural frequency of the system and vi is the
fraction of modal strain energy for the ith mode. The modal
zeros are [16],

z2
i = ω

2
i (1− vi). (2)

The integral force feedback controller is

Cd1(s) =
Kd1

Kas
, (3)

where Kd is the gain of controller. The maximum modal
damping is

ζ
max
i =

ωi − zi

2ωi
, (4)

and is achieved for

Kd1 = ωi

√
ωi

zi
. (5)

The root locus plot corresponding to CIFF is shown in
Fig. 3(a). A key limitation of the classical method is that
the maximum modal damping (4) depends on the distance
between the system poles ωi and modal zeros zi. If the
distance between the pole and zero is small, the maximum
damping achievable with CIFF is not significant.

III. OPTIMAL INTEGRAL FORCE FEEDBACK (OIFF)

In this work, we extend the classical integral force feed-
back methodology by introducing a feed-through term β in

the system as shown in Fig. 4(a). The new system can be
converted into the classical form by equating the systems in
Fig. 4(a) and Fig. 4(b), that is

Ka

{
1−

n

∑
i=1

vi

1+ s2/ω2
i

}
+β = K̂a

{
1−

n

∑
i=1

v̂i

1+ s2/ω2
i

}
,

Ka +β −
n

∑
i=1

Kavi

1+ s2/ω2
i
= K̂a −

n

∑
i=1

K̂av̂i

1+ s2/ω2
i
. (6)

From (6) we obtain the new expressions

K̂a = Ka +β , (7)

and

v̂i =
Kavi

K̂a
,

=
Kavi

Ka +β
. (8)

The transfer function from δ̂ to F̂s is

ĜFsδ (s) = K̂a

{
1−

n

∑
i=1

v̂i

1+ s2/ω2
i

}
. (9)

The modal zeros are now a function of β

ẑi(β ) =

√
ω2

i

(
1− Ka

Ka +β
vi

)
. (10)

This results in an extra degree of freedom that allows the
position of the zeros to be modified. As β decreases, the
zeros move closer to the real axis, under the condition that
Ka(vi − 1) < β < 0 is satisfied. The integral force feedback
controller is

Cd2(s) =
Kd2

K̂as
, (11)

The root locus plot for a typical OIFF system is shown in
Fig. 3(b). Notice that the location of the zero changes with
respect to β . The new maximum modal damping is

ζ̂
max
i =

ωi − ẑi(β )

2ẑi(β )
, (12)

which corresponds to the new optimal gain

Kd2 = ωi

√
ωi

ẑi(β )
. (13)

On the other hand, given a desired modal damping ζd , the
value of β required is

β =−Ka +
Kavi(2ζd +1)2

4ζd(1+ζd)
. (14)

IV. CASE STUDY

In this section, the performance of CIFF and OIFF is
evaluated on a simple mechanical system.
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Fig. 5. Mechanical diagram of a second-order mechanical system where
Fs is the measured force acting between the actuator and the mass in the
vertical direction.

A. Mechanical Dynamics and System Properties

Fig. 5 shows a second-order mechanical system with mass
Mp = 250 g, flexure stiffness k f = 300 N/µm, actuator stiff-
ness Ka = 100 N/µm and flexure damping c f = 10 N/ms−1.

The equation of motion for this system is

Mpd̈ + c f ḋ +(Ka + k f )d = Fa, (15)

where Mp is the mass of the platform and the stiffness and
damping coefficient of the flexures are denoted by k f and c f
respectively. The force of the actuator is Fa and the stiffness
is Ka. A force sensor is collocated with the actuator and
measures the load force Fs.

The configuration of the system is such that the actuator
and flexure appear mechanically in parallel, hence, the stiff-
ness coefficients can be grouped together k = Ka + k f . This
simplifies the equation of motion (15) to

Mpd̈ + c f ḋ + k = Fa. (16)

The transfer function from actuator force Fa to the displace-
ment of the mass d is

GdFa(s) =
d
Fa

,

=
1

Mps2 + c f s+ k
. (17)

The sensor force Fs can be written as

Fs = Fa −dKa,

= Fa −KaFaGdFa(s),

= Fa (1−KaGdFa (s)) . (18)

The transfer function between the applied force Fa and
measured force Fs is found by rearranging (18).

GFsFa(s) =
Fs

Fa
,

= 1−KaGdFa (s) . (19)

The force developed by the actuator Fa is

Fa = Kaδ , (20)

recall that δ is the unconstrained piezo expansion. Substitut-
ing (20) into (19), we obtain the transfer function from the
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Fig. 6. Case Study: Frequency Response of GFsFa (s).

unconstrained piezo expansion δ to the force of the sensor
Fs

GFsδ =
Fs

δ
,

= Ka
Fs

Fa
,

= Ka (1−KaGdFa (s)) . (21)

A valid assumption is that the effect of the damping in the
flexure c f is small and thus negligible.

The imaginary parts of the open-loop poles and zeros are

ω1 =

√
k

Mp
,

=

√
Ka + k f

Mp
,

z1 =

√
k f

Mp
. (22)

For this system the open-loop poles and zeros of the
system are ω1 = 6.37 kHz and z1 = 5.5 kHz.

B. Damping Control Design

1) Classical Integral Force Feedback (CIFF): The open-
loop frequency response of GFsFa(s) is shown in Fig. 6. One
key observation is that its phase response of the system lies
between 0 and 180◦. This is a general property of flexible
structures with inputs and outputs proportional to the applied
and measured forces. Recall that the classical integral force
feedback controller is

Cd1(s) =
Kd1

Kas
. (23)

The integral controller has a constant phase lag of 90◦ so
the loop-gain of the system lies between -90 and 90◦. Hence,
the closed-loop system has an infinite gain margin and phase
margin of 90◦. The solution for the optimal feedback gain
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Fig. 7. Case Study: Root locus of the system using CIFF and OIFF at
different values of ζ max.

Fig. 8. Detail Block Diagram of the CIFF system for analysis

Kd has already been derived in [16] and further generalised
for nanopositioning systems in [17]. The optimal feedback
gain Kd and corresponding maximum closed-loop damping
ratio ζ max

1 are

Kd1 = ω1

√
ω1

z1
,

= 4.3×104, (24)

and

ζ
max
1 =

ω1 − z1

2z1
,

= 0.077. (25)

The numerical root-locus plot in Fig. 7 validate these
values. The numerically optimal gain is 4.57× 104 and the
corresponding damping ratio is 0.077. This correlates closely
with the predicted values which supports the accuracy of the
assumptions made in deriving the optimal gain.

Fig. 8 shows a detailed block diagram of the system with
sensor force Fs and platform displacement d as outputs. A
disturbance w is also considered. The transfer function from
the disturbance w to the sensor force Fs is

GFsw(s) =
Fs

w
,

=
GFsδ

1+CdGFsδ

. (26)

The simulated open-loop and closed-loop frequency re-
sponses of (26) are plotted in Fig. 9.
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Fig. 9. Case Study: Frequency response from the input disturbance w to
the sensor force Fs.
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Fig. 10. Case Study: Frequency response from the input disturbance w to
the displacement of the platform d.

The transfer function from the disturbance w to the dis-
placement of the platform d is

Gdw(s) =
d
w
,

=
KaGdFa

1+CdGFsδ

. (27)

The simulated open-loop and closed-loop frequency re-
sponses of (27) are plotted in Fig. 10.

2) Optimal Integral Force Feedback (OIFF): The CIFF
method can be extended to include the feed-through term β

as illustrated in Fig. 4(a). The equivalent controller Ĉd(s) is
found by equating the systems in Fig. 4(b) and Fig. 11,

Ĉd(s) =
Cd2(s)

1+Cd2(s)β
. (28)

For the case study, the relationship between β and ζ

described in (14) is plotted in Fig. 12. The maximum
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Fig. 11. Block Diagram of the example system using OIFF.
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Fig. 12. Case Study: The relationship between β and ζ max for OIFF.

modal damping with CIFF is 0.077; however, with OIFF,
the maximum modal damping can be varied from 0.077 to
1 at different values of β .

The root locus of the system is shown in Fig. 7. The
optimal feedback gain, maximum damping ratio and cor-
responding value of β is given in Table I. These values
can be validated by the numerical root-locus plot in Fig. 7
and is summarize in Table I. These values correlates closely
with the predicted values which supports the accuracy of the
assumptions made in deriving the optimal gain.

Fig. 13 shows a detailed block diagram of the system with
sensor force Fs and platform displacement d as outputs. A
disturbance w is also considered. The transfer function from
the disturbances w to the sensor force Fs is

GFsw(s) =
Fs

w
,

=
GFsδ

1+ĈdGFsδ

. (29)

The simulated open-loop and closed-loop frequency re-
sponses of (29) is shown in Fig. 9.

The closed-loop transfer function measured from the ref-
erence, r, to the sensor force, Fs, is

GFsr(s) =
Fs

r
,

=
ĈdGFsδ

1+ĈdGFsδ

. (30)

TABLE I
COMPARISON BETWEEN ANALYTIC AND NUMERICALLY OBTAINED

DAMPING RATIO ζ max AND FEEDBACK GAIN Kd2 .

Analytic Numerical
β ζ max Kd2 ζ max Kd2

−6.67×107 0.500 5.65×104 0.501 5.57×104

−6.85×107 0.600 5.93×104 0.601 5.94×104

−6.98×107 0.707 6.21×104 0.708 6.23×104

−7.07×107 0.800 6.45×104 0.801 6.49×104

−7.13×107 0.900 6.69×104 0.902 6.70×104

Fig. 13. Detail Block Diagram of the OIFF system for analysis
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Fig. 14. Case Study: Frequency response from the input disturbance w to
the control action u as β is decreased.

when s = 0

GFsr(0) =
ĈdGFsδ (0)

1+ĈdGFsδ (0)
,

=
GFsδ (0)

GFsδ (0)+β
. (31)

This shows that the DC gain of the closed-loop increases
as β decreases such that Ka(vi − 1) < β < 0 holds. Recall
that the maximum damping ratio of the closed-loop system
increases as β is decrease.

The transfer function from the disturbance w to the dis-
placement of the platform d is

Gdw(s) =
d
w
,

=
KaGdFa

1+ĈdGFsδ

. (32)

The simulated open-loop and closed-loop frequency re-
sponses of (32) are plotted in Fig. 14. The frequency response

1641



of this transfer function is shown in Fig. 14. The sensitivity
of the control action toward input disturbance increases as
the desired damping ratio is increased.

V. CONCLUSION

This article describes an extension to integral force feed-
back control that allows arbitrary mechanical damping to
be achieved for any mechanical system. An additional feed-
through term is added to the system to provide an extra
degree of freedom that can be used to arbitrarily manipulate
the modal zeros and maximum damping.

Simulation results on a simple mechanical system demon-
strate an increase in the maximum achievable damping from
0.077 to 1 using integral force feedback. This result will
allow high-performance mechanical systems to be critically
damped with a first-order control law.

Future work will include experimental application, exten-
sion to systems with multiple actuators, and modeling using
a negative imaginary framework.
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