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Abstract: In this paper, an improvement to Integral Force Feedback (IFF) damping control
is proposed. The main limitation of Integral Force Feedback is that the maximum modal
damping depends on the system’s parameters. Hence, for some system achievable damping
is insignificant. The proposed improvement allows any arbitrary damping ratio to be achieved
for a system by introducing a new feed-through term in the system. To achieve displacement
tracking, one technique is to enclose the system in an integral feedback loop. However, the
bandwidth is limited due to the effects of an additional pole in the damping loop. The proposed
Structured PI controller is parameterised so that it contains a zero that cancel the additional
pole. Experiment was conducted on a commercial objective lens positioner. The results show
an exceptional tracking and damping performance and the system’s insensitivity to changes in
resonance frequency. The maximum bandwidth achievable with a commercial PID controller is
26.1 Hz. In contrast, with the proposed method, the bandwidth is increased to 255 Hz.
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1. INTRODUCTION

High-speed precision positioner are widely used in ap-
plication such as confocal microscopes [Semwogerere and
Weeks, 2005], scanning probe microscopy [Salapaka and
Salapaka, 2008, Fleming and Leang, 2014] and electrical
characterization of semiconductor [Oliver, 2008]. In this
paper, we are interested in improving the scanning per-
formance of a objective lens positioner used in confocal
microscopes. The objective lens positioner can be repre-
sented by a single-degree-of freedom mechanical system as
shown in Fig. 1. One difficulty with the positioning system
shown in Fig. 1 is the mechanical resonances that appears
from the interaction between the platform mass with the
flexures, mechanical linkages and actuators. Consequently,
the frequency of the driving signal for example a triangular
reference is limited to to 1% − 10% of the resonance
frequency to avoid excitation of the mechanical resonance.

Sensor-based feedback control using proportional-integral
or integral controllers are widely used in commercial
nanopositioning systems. The benefits of these controller
include robustness to modelling error, simplicity of im-
plementation and reduced piezoelectric non-linearity due
to a high loop gain at low frequency. The closed-loop
bandwidth of an integral tracking controller Ct(s) = K/s
is limited by the presence of highly resonance modes. The
maximum closed-loop bandwidth is 2ζωn, where ζ is the
damping ratio and ωn is the natural frequency see Fleming

Fig. 1. Single-degree-of-freedom positioning stage.

[2010] and Eielsen et al. [2011]. Since the damping ratio
is usually in the order of 0.01, the maximum closed-loop
bandwidth is less than 2% of the resonance frequency.

In order to improve the closed-loop bandwidth of nanopo-
sitioning system, techniques such as notch filters or plant
inversion filters can be implemented [Abramovitch et al.,
2008]. Such techniques can provide superior improvement
provided an extremely accurate model of the system is
available. However, due to the dependency on model ac-
curacy, any small changes in the system dynamics can
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result in instability. Notch or plant inversion filters are
only practical when the systems with stable resonance
frequency or cases when the feedback controller can be
continually recalibrated.

Damping control is an alternative method to improve the
closed-loop bandwidth. Damping controllers are insensi-
tive to variations in resonance frequency. Furthermore,
damping controllers provide better external disturbance
rejection than inversion-based systems, see Devasia et al.
[2007]. A number of techniques for damping control have
been successfully demonstrated in the literature, such as,
Positive Position Feedback (PPF) [Fanson and Caughey,
1990], polynomial based control [Aphale et al., 2008], accel-
eration feedback [Mahmoodi and Ahmadian, 2010], shunt
control [Fleming and Moheimani, 2006, Fleming et al.,
2002], resonant control [Pota et al., 1999], and Integral
Resonance Control (IRC) [Aphale et al., 2007, Fleming
et al., 2010].

Integral force feedback (IFF) a damping control tech-
nique described in references Preumont et al. [1992, 2008],
Preumont [2002, 2006], Fleming [2010], Fleming and Leang
[2010]. The advantages of IFF are the simplicity of the
controller, guaranteed stability and excellent performance
robustness. Furthermore, IFF can also be implemented
using an analog filter. However, one of the limitations of
IFF is that the maximum modal damping depends on the
frequency difference between the system’s poles and zeros.
If the frequency difference is small, the achievable modal
damping may be severely limited. Furthermore, when the
IFF system is enclosed in a tracking loop , the closed-loop
performance is limited by an additional pole introduced
by the integral force feedback controller.

In this paper, we proposed a technique that allows an
arbitrary damping ratio to be achieved by introducing an
additional feed-through term to the control system. This
allows the position of the zeros to be modified, hence,
increasing the maximum modal damping. Furthermore, we
identified the additional pole that is introduced by the
force feedback controller and compensate it by parameter-
ising the tracking controller with a zero that cancels the
additional pole.

The remainder of the paper is organised as follows. In
Section 2, the modelling of a single-degree-of-freedom po-
sitioning system is shown. Section 3 compares the pro-
posed damping control technique with classical integral
force feedback control. The tracking controller designs
are discussed in Section 4. The experimental result on a
commercial objective lens positioner in Section 5.

2. MODELLING A NANOPOSITIONING SYSTEMS

A single-degree of freedom positioner illustrated in Fig. 1
can be represented by a second-order mechanical system
as shown in Fig. 2. The equation of motion for this system
is

Mpd̈+ cf ḋ+ (Ka + kf )d = Fa, (1)

where Mp is the mass of the platform and the stiffness
and damping coefficient of the flexures are denoted by kf
and cf respectively. The force of the actuator is Fa and
the stiffness is Ka. A force sensor is collocated with the
actuator and measures the load force Fs. The configuration

Fig. 2. Mechanical diagram of a single-degree-of freedom
positioner where Fs is the measured force acting
between the actuator and the mass of the platform
in the vertical direction.

of the system is such that the actuator and flexure appear
mechanically in parallel, hence, the stiffness coefficients
can be grouped together, k = Ka + kf , which simplifies
the equation of motion (1) to

Mpd̈+ cf ḋ+ k = Fa. (2)

The transfer function from actuator force Fa to the dis-
placement of the platform d is

GdFa(s) =
d

Fa
=

1

Mps2 + cfs+ k
.

The sensor force Fs can be written as

Fs = Fa − dKa = Fa (1 −KaGdFa
) . (3)

The transfer function between the applied force Fa and
measured force Fs is found by rearranging (3).

GFsFa
(s) =

Fs
Fa

= 1 −KaGdFa
(s) . (4)

The force developed by the actuator Fa is

Fa = Kaδ (5)

where δ is the unconstrained piezo expansion. Substituting
(5) into (4), we obtain the transfer function from the
unconstrained piezo expansion δ to the force of the sensor
Fs

GFsδ(s) =
Fs
δ

= Ka
Fs
Fa

= Ka (1 −KaGdFa
) . (6)

A valid assumption is that the effect of the damping in the
flexure cf is small and thus negligible. The frequencies of
the open-loop poles ω1 and zeros z1 of (4) are

ω1 =

√
k

Mp
=

√
Ka + kf
Mp

, z1 =

√
kf
Mp

. (7)

The zeros will appear below the poles as shown in Fig. 3.

3. DAMPING CONTROL

Integral force feedback (IFF) is a popular method for
damping control, as described in references Preumont et al.
[2008], Preumont [2006], Fleming [2010], Fleming and
Leang [2010]. This technique utilizes a force sensor and
integral controller to directly augment the damping of a
mechanical system. The major advantages of IFF are the
simplicity of the controller, guaranteed stability, excellent
performance robustness, and the ability to damp a large
number of resonance modes with a first order controller.
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Fig. 3. Typical frequency response of GFsFa
(s).

(a) Classical Integral Force Feedback.

(b) Optimal Integral Force Feedback with new feedthrough term β.

(c) Optimal Integral Force Feedback with new equivalent controller.

Fig. 4. Damping control block diagrams

(a) Classical method. (b) Optimal method.

Fig. 5. Typical root-locus plots.

3.1 Classical Integral Force Feedback

The technique of Classical Integral Force Feedback (CIFF)
has been widely applied for augmenting the damping of
flexible structures. The feedback law is simple to imple-
ment and, under common circumstances, provides excel-
lent damping performance with guaranteed stability.

The open loop transfer function between the uncon-
strained piezo expansion δ to the sensor force Fs is adapted
from Preumont et al. [2008]

GFsδ(s) =
Fs
δ

= Ka

{
1 −

n∑
i=1

vi
1 + s2/ω2

i

}
, (8)

where the sum extends to all the modes, ωi is the natural
frequency of the system and vi is the fraction of modal
strain energy for the ith mode. The corresponding zeros of
each mode is given as z2i = ω2

i (1 − vi).

For the positioning application the first resonance mode is
of significant interest, this reduce (8) to a second order
system (6). The feedback diagram of an IFF damping
controller is shown in Fig. 4(a). The frequency response of
GFsFa

is shown in Fig. 3. A key observation of the system
GFsFa

is that its phase response lies between 0 and 180◦.
This is a general feature of flexible structures with inputs
and outputs proportional to applied and measured forces.
A unique property of such systems is that integral control
can be directly applied to achieve damping, i.e.

Cd1(s) =
Kd1

Kas
, (9)

where Kd1 is the damping control gain. As the integral
controller has a constant phase lag of 90◦, the loop-gain
phase lies between −90 and 90◦. That is, the closed-loop
system has an infinite gain margin and phase margin
of 90◦. Simplicity and robustness are two outstanding
properties of systems with CIFF.

A solution for the optimal feedback gain Kd has already
been derived in Preumont et al. [2008]. These results
can be directly adapted for the system considered in this
study. The method makes the valid assumption that sys-
tem damping coefficients are small and can be neglected.
With these assumptions, the maximum modal damping is
Preumont et al. [2008]

ζmaxi =
ωi − zi

2zi
, (10)

and is achieved for

Kd1 = ωi
√
ωi/zi. (11)

The root locus plot corresponding to CIFF is shown in
Fig. 5(a). Note that a key characteristic of this system
is that the position of the poles and zeros alternates.
The main limitation of the classical method is that the
maximum modal damping (10) depends on the distance
between the system poles ωi and modal zeros zi. If the
distance between the pole and zero is small, the maximum
modal damping achievable with CIFF is reduced.

3.2 Optimal Integral Force Feedback (OIFF)

Here, we discuss an extension to the classical technique of
Integral Force Feedback that allows an arbitrary damping
ratio to be achieved for any system. A new feed-through
term β is introduced into the system as shown in Fig. 4(b).
The location of the new open-loop zeros is given as

ẑi(β) =

√
ω2
i

(
1 − Ka

Ka + β

Ka

k

)
. (12)

This results in an extra degree of freedom that allows the
position of the zeros to be modified. As β decreases, the
zeros of the system will move closer to the real axis, under
the condition that Ka(vi − 1) < β < 0 is satisfied. The
new maximum damping ratio of the system is given as
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Fig. 6. Block diagram of the overall system including inner
damping loop and the outer tracking loop.

ζ̂maxi =
ωi − ẑi(β)

2ẑi(β)
, (13)

The force feedback control is

Cd2(s) =
Kd2

(Ka + β)s
(14)

The corresponding optimal gain is given as

Kd2 = ωi
√
ωi/ẑi(β). (15)

Given a desired damping ratio ζd < 1, the expression for
β is found by replacing (12) into (13) and rearranging the
equation as

β = −Ka +
Kavi(2ζd + 1)2

4ζd(1 + ζd)
. (16)

where vi = Ka/k for the nanopositioning system in
Section 2.

The typical root locus plot corresponding to OIFF is
given in Fig. 5(b). Note that the zero location changes

with respect to β. The equivalent controller Ĉd(s) can be
written as

Ĉd(s) =
Cd2(s)

1 + Cd2(s)β
, (17)

as shown in Fig. 4(c). The modification amounts to re-
placing the integral controller with a first-order low-pass
filter. Although the additional complexity is negligible,
the damping performance is significantly improved. This
result allows integral force feedback control to be applied
to systems that were not previously suited.

4. TRACKING CONTROL

4.1 Integral Control with Displacement Feedback

The most straightforward technique for achieving displace-
ment tracking is to simply enclose the system in an inte-
gral feedback loop, as depicted in Fig. 6. The tracking
controller is

Ct1(s) =
Kt1

s
. (18)

This strategy requires the displacement d and is obtained
with a physical sensor i.e capacitive sensor. However, the
damped system contains a pair of resonance poles, plus an
additional real axis pole due to OIFF. The additional pole
unnecessarily increase the system order and reduces the
achievable tracking bandwidth due to low-phase margin.

4.2 Structured PI Control with Displacement Feedback

The location of the additional pole can be found by ex-
amining the characteristic equation of the damped system
and finding the roots using Cardano’s method, see Press
et al. [2007]. The roots of the system under consideration

Fig. 7. Queensgate OSM-Z-100B objective lens posi-
tioner (Left) and Olympus 4×, 40× and 100× ob-
jective lens (Right).

contains a complex pair and a pole on the real axis. To
eliminate the additional pole from the tracking loop, the
controller can be parameterised so that it contains a zero
at the same frequency, that is

Ct2(s) =
Kt2(s+ p)

sp
, (19)

where p is the location of the additional pole given as

p = − (A+B − a/3) ,

a = Kd2 +
cf
Mp

,

b =
k + cfKd2

Mp
,

c =
Kd2(−K2

a + k(Ka + β))

Mp(Ka + β)
,

Q =
a2 − 3b

9
, R =

2a3 − 9ab+ 27c

54
,

A = − 3

√
R+ 2

√
R2 −Q3, B = Q/A.

The integral gain is chosen in the normal way to provide
the desired stability margins. The form of this controller
is identical to a PI controller except that the zero location
is fixed. This is advantageous since the controller has only
one free tuning parameter.

5. EXPERIMENTAL RESULTS

The experiment was conducted on a Queensgate OSM-
Z-100B objective lens positioner with 3 different lens
as shown in Fig. 7. This single-axis positioner has a
range of 100 µm and a static stiffness of 1.5 N/µm. The
weight of the objective lens are given in Table 1. The
inner loop damping controller is implemented using analog
electronics. The outer tracking loop is implemented using
a Queensgate NPS4110 controller. The block diagram of
the experimental set-up is shown in Fig. 8.

By referring to the set-up in Fig. 8, the open-loop fre-
quency response shown in Fig. 9 was measured from the
voltage amplifier input u2 to the force sensor Fs and
position sensor output d with an excitation of 100 mVpp
random noise signal. The voltage amplifier input is propor-
tional to the internal force of the actuator Fa. The open-
loop frequency responses are shown in Fig. 10 which reveal
an extremely high modal density. The first two modes are
relative close in frequency. This open loop system with
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Fig. 8. Block diagram of the experimental setup.
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Fig. 9. Open-loop frequency response measured from the
voltage amplifier input u2 to the force sensor Fs.
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Fig. 10. Open-loop frequency response measured from
voltage amplifier input u2 to position sensor output
d, scaled to um/V for different objectives.

the 100× objective lens attached can be approximated by
a second-order transfer function

GFsFa
(s) =

2.141s2 + 736.4s+ 6.072 × 106

s2 + 214s+ 5.606 × 106
(20)

5.1 Damping Control

The maximum damping ratio and corresponding gain of
the system with CIFF is Kd1 = 1500 and ζmax1 = 0.3. The
numerically found values are Kd1 = 1700 and ζmax1 = 0.33
obtained from the root locus plot in Fig. 12. With OIFF,
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Fig. 11. Closed-loop frequency response of the inner damp-
ing loop measured from u2 to the position sensor
output d, scaled to um/V for different objectives.
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Fig. 12. Root-locus of the system using OIFF.

the damping ratio can be increased from 0.33 to 0.85 by
adjusting the value of the feed-through term β. Fig. 12
shows the root locus plots of the system using OIFF with
different value of β and Fig. 13 shows the relationship
between β and ζ.

Fig. 11 also shows the closed-loop frequency responses of
the inner damping loop of the system using OIFF with β =
−0.6. The closed-loop frequency responses are measured
using the same procedure as the open-loop responses. The
closed-loop response shows that the first resonance modes
have been effectively damped. Moreover, it can be observed
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Fig. 14. Closed-loop frequency responses of the system
measured from the reference r to the output of the
position sensor d scaled to um/V for different objec-
tives.

that for other objectives the tuning of the force-feedback
loop is not sensitive to changes in resonance frequency.

Table 1. Performance with different objectives.

4× 100× 40×+mass

Mass 47.8 g 88.8 g 163.3 g

Resonance Freq. 412 Hz 378 Hz 264 Hz

Force Feedback BW. 500 Hz 398 Hz 326 Hz

Tracking BW. (PID) 31.6 Hz 26.1 Hz 21.5 Hz

Tracking BW. (OIFF+S. PI) 167 Hz 255 Hz 212 Hz

5.2 Tracking Control

The performance of the commercial PID controller was
tuned experimentally as there was no direct access to the
PID parameters on the commercial controller. The tuning
minimized the settling time due to a step input reference.
The implemented PID controller has the following struc-
ture

Ct(s) = kp +
ki
s

+
kds

τds+ 1
. (21)

where kp = 0.01, ki = 2000, kd = 1x10−6 and τd =
1.25x10−7. The derivative component is an approximation
that facilitates practical implementation. The approxima-
tion acts as a derivative at low frequency, while reducing
the gain at high frequency with an additional pole. The
term τd limits the gain,hence, the high-frequency signal is
amplified at most by a factor of kd/τd = 8.

The proposed tracking control with Structure PI is

Ct(s) =
700(s+ 2914)

2914s
(22)

where s = −2914 is the additional pole. The only tun-
ing parameter here is Kt which was tuned to provide
acceptable stability margins. The closed-loop frequency
responses are shown in Fig. 14 for different objectives.
The performance results are summarise in Table 1. The
performance of the proposed control scheme shows a sig-
nificant improvement as compared to the commercial PID
controller.

6. CONCLUSION

This paper describes an novel method of increasing the
tracking bandwidth of a objective lens positioner used in
confocal microscopes. The objective lens positioner is first
damped using a damping controller technique called Opti-
mal Integral Force Feedback which enables the mechanical
damping of the system to be increased arbitrary through
the additional of a feed-through term which changes the
zeros location of the system. The experimental results on
the objective lens positioner demonstrates an increase in
the maximum damping from 0.33 to 0.68. Furthermore, we
show that with different objective lens, the system is still
damp effectively. We proceed to design a Structured PI
tracking controller. This eliminates an additional real pole
induced by OIFF which limits the bandwidth of traditional
integral tracking controller. The performance of the pro-
posed method is compared to a commercial PID controller.
With the proposed controllers, the tracking bandwidth
of the system is increased from 26.1 Hz to 255 Hz, an
improvement of almost ten folds.
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