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Abstract: Integral Resonant Control (IRC) is a simple and robust control scheme for vibration
damping. Combined with an integral tracking controller, the IRC has been shown to improve the
performance of a wide range of nanopositioners. However, the overall improvement in positioning
performance is limited by the pole induced by the IRC. Through selective zero placement, the
induced pole can be placed near origin. A structured PI tracking controller, where the PI gains
are selected to place a zero at a specific location, is used to cancel the pole. This effectively
reduces the order of the system by one. For this system, controller gains are derived analytically
in order to maximize tracking bandwidth. Simulation results for one axis of a nanopositioner are
provided for both standard and modified IRC schemes. Compared to the standard IRC scheme,
the modified IRC scheme is found to provide a 55% increase in the ±1 dB bandwidth and a
reduction of both maximum and rms tracking errors.

1. INTRODUCTION

Resonance can drastically reduce the performance char-
acteristics and lifetime of mechatronic systems [Preumont
(1997)]. A multitude of vibration damping techniques have
been used to suppress the oscillatory nature of such sys-
tems, which fall into one of two categories: open- and
closed-loop. Open-loop controllers, though simple in their
design, often exhibit less than desirable performance and
reduced robustness properties. Closed-loop controllers,
whilst more complex, provide a vast array of options to
fine-tune the performance characteristics of a given sys-
tem and in general outperform open-loop systems [Inman
(1989)].

A number of closed-loop controllers have found widespread
use in vibration damping problems, the most common
of which being: Positive Position Feedback (PPF) [Fan-
son and Caughey (1990)], polynomial-based control (also
known as Positive Velocity and Position Feedback - PVPF)
[Bhikkaji et al. (2007)], Resonant control [Pota et al.
(2002)], robust control [Salapaka et al. (2002)], and In-
tegral Resonance Control (IRC) [Aphale et al. (2007)].
These controllers have been implemented in many different
applications, including robotic manipulators [Gomes et al.
(2006)], disk-drives [Numasato and Tomizuka (2003)], air-
craft wings [Friedmann and Millott (1995)], nanoposition-
ing stages [Devasia et al. (2007)], Scanning Probe Micro-
scopes [Fleming et al. (2010)], and high-density memory
storage devices [Sebastian et al. (2008)].

Nonlinear behaviour caused by piezoelectric components
must also be taken into account. Positioning errors of up to
15% between opposing directional movements, due to hys-
teresis, creep and thermal drift, have been reported in the

literature. To minimize these errors some form of reference
tracking is generally incorporated [Devasia et al. (2007)].
The use of a tracking controller with integral action has
been shown experimentally to reduce positioning errors
due to nonlinear effects, see Aphale et al. (2008); Bhikkaji
et al. (2007); Fleming (2010).

As IRC has seen successful implementation in a range of
applications, it is desirable to increase performance fur-
ther without sacrificing its existing advantages, i.e. simple
low-order design and robust performance. In this work,
a modified IRC scheme is used which makes use of a
proportional tracking controller, rather than an integral
tracking controller, to reduce the order of the system. This
has the benefit of simplifying the mathematical properties
of the system which, in turn, increases the ease of manip-
ulating system properties through the choice of controller
parameters. It also simplifies the relationship between the
damping and tracking controllers. Historically, the design
of damping and tracking controllers has been done sequen-
tially. However, it has been shown that they are interre-
lated, see Namavar et al. (2013). Utilising this knowledge,
we can exploit the simple mathematics of the system to
derive the relationship and maximize performance.

This paper is structured as follows: in Section II, an
overview is given of the current understanding of the IRC
scheme and its design procedure. Section III gives a brief
overview of the modified IRC scheme. This section also
details the reasons for the selection of the feed-through
parameter. Section IV describes the analytical derivation
of controller parameters which provide a flat band re-
sponse. Simulated responses of a nanopositioner for a
triangle wave reference signal are provided in Section V for
both the standard and modified systems and performance
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Fig. 1. (a) Block diagram of the damped and tracked IRC scheme where G(s) is the plant, modelled as a lightly damped
second-order transfer function, d is the feed-through, Cd(s) is the damping controller, and Ct(s) is the tracking
controller. (b) Root locus for the damped standard IRC loop measured from x to ỹ. Damping gain, k, can be
found form the root locus as the point which provides maximum damping or can be calculated mathematically
using Namavar et al. (2013). (c) Root locus for the damped and tracked standard IRC measured from r to y. The
tracking loop requires feedback from the direct output of the plant. This causes the change in system output from
ỹ to y. This system becomes unstable for large tracking gains, kt. A maximum for kt has been derived previously
in Namavar et al. (2013).

compared. A detailed analysis of the robust performance
delivered by the proposed control scheme, in the presence
of resonance frequency changes, is presented in Section VI.
Section VII concludes the paper.

2. INTEGRAL RESONANT CONTROL

IRC has found wide use in applications such as cantilever
beams [Aphale et al. (2007)], flexible robotic manipu-
lators [Pereira et al. (2011)], nanopositioning platforms
[Wadikhaye et al. (2012)], commercial atomic force mi-
croscopes [Fleming et al. (2010)], flexible civil structures
[Basu and Nielsen (2011)], and walking-induced floor vi-
brations [Diaz et al. (2012)], due to the simplicity of its de-
sign and robust performance. Recent mathematical anal-
ysis [Namavar et al. (2013)], has removed the trial-and-
error approach to choosing the controller parameters and
instead provides criteria required to attain high levels of
performance, these include the feed-through and damping
gain associated with maximum damping, and maximum
tracking gain for stable performance. As Fig. 1(a) shows,
the IRC scheme consists of three components: a feed-
through term, d, a damping controller, and a tracking
controller, both of which are integral controllers.

3. MODIFIED INTEGRAL RESONANT CONTROL
SCHEME

In the standard IRC scheme we observe the two damped
complex poles of the plant in addition to two real poles
induced by the damping and tracking controllers. As the
tracking gain, kt, increases the real poles diverge from
the real axis and become complex, see Fig. 1(c). For
tracking gain in the range of interest, i.e. that which
provides stability, the damping controller-induced pole
moves towards the origin rather than away, which is
undesirable. The aim of the modified IRC is to remove the
non-zero real pole in the damped and tracked root locus.
This control scheme should behave like a simple integral
controlled system whilst also providing the damping and
tracking benefits of standard IRC. In the modified IRC
scheme, the damping controller is the same as in standard
IRC, and but a proportional tracking controller is used as
opposed to the standard integrator, i.e.

Ct(s) = kp. (1)

The damped and tracked modified IRC scheme has closed-
loop transfer function as given by Eqn. (2).

Hnum(s) = kpkσ
2
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Fig. 2. Root loci for the design procedure of a modified IRC scheme for Case 1. The top row ((a), (b), and (c)) has
output y, whereas the bottom row ((d), (e), and (f)) has output ỹ, see Fig. 1(a). (a), (d) shows the plant with
feed-through, d, added, (b), (e) shows the addition of the damping controller, and (c), (f) the addition of the
tracking controller. (e) and (c) are typically used in IRC design, the former to select damping gain, and the latter
to choose tracking gain. (e) shows a pole/zero pair located at the origin which prevents displacement of the damping
controller induced pole. The two complex poles can be positioned using the damping gain, k, under the condition
given in Eqn. (7). (c) shows that there is an upper bound on the tracking gain, kp, for stability. This limit is derived
in Eqn. (9)

Hden(s) = s3 + (2ζωn − dk)s2

+(ω2
n − 2ζωndk)s+ k(kpσ

2 − dω2
n − σ2). (2)

where num/den denote the numerator and denominator of
the transfer function.

3.1 Choice of feed-through

The feed-through term, d, is chosen to make the system
type 1. The type number of a system is defined as the
number of poles at the origin in the systems loop gain
transfer function. A type 1 system will provide a steady
state error of zero when tracking step inputs. As IRC
provides a type 1 system, the modified IRC scheme must
also be made type 1 to prevent performance degradation.

Consider the type 0 system given in Eqn. (2). The system
becomes type 1 if the coefficients of both the numerator
and denominator s0 terms are equal, i.e.

k(kpσ
2 − dω2

p − σ2) = kpkσ
2

⇒ −dω2
n − σ2 = 0. (3)

As ωn and σ are plant parameters and cannot be changed,
Eqn. (3) is only satisfied if d is chosen to be d = −σ2/ω2

n,
which will be denoted as dn. In order to introduce a zero
at the origin, σ and ωn must be measured accurately. If
d is not sufficiently accurate, the zero will move from the
origin.

Choosing d = dn, the plant plus feed-through is as follows

G(s) + dn =
ds(s+ 2ζωn)

s2 + 2ζωns+ ω2
n

(4)

which has zeros at s = 0, − 2ζωn. When the damping
controller is implemented, the pole introduced at s = 0
cannot move beyond the zero at the origin for any damping
gain, k. The modified IRC relies on the zero at the origin,
to ensure correct pole placement.

Substituting Eqn. (3) into the transfer function of the IRC
damping loop gives

GIRC(s) =
kσ2

s(s2 + (2ζωn − dk)s+ (ω2
n − 2ζωndk))

. (5)

The system has a real pole at s = 0, as well as two
additional poles. The additional poles will be complex if
the following is true

(2ζωn − dk)2 − 4(ω2
n − 2ζωndk) < 0

⇒ d2k2 + 4ζωndk + 4(ζ2 − 1)ω2
n < 0. (6)

Neglecting ζ terms for simplicity gives

k <
2ω3

n

σ2
. (7)

Choosing k such that the IRC loop has only one real pole
ensures the real pole will be s = 0. The loop gain of the
damped and tracked system is then

kpkσ
2

s(s2 + (2ζωn − dk)s+ (ω2
n − 2ζωndk))

(8)
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and so, the system becomes type 1.

Using the Routh-Hurwitz stability criterion, it is found
that to ensure stability, the following limitations must be
placed on kp

0 < kp <
(ω2

n − 2ζωndk)(2ζωn − dk)

kσ2
. (9)

4. OPTIMISATION FOR FLAT BAND RESPONSE

In nanopositioning, the most commonly used input signal
is a triangle wave. The triangle wave consists of infinite
harmonics of the base frequency. A system with flat band
response is desirable as it most accurately recreates the
harmonics of the reference signal within its bandwidth. In
this section, the controller gains which provide a flat band
response are found. This is done by finding the turning
points of the FRF, deriving the conditions for which the
difference in magnitude at the turning points is minimal,
and finally, calculating the controller parameters such that
the input-harmonic-weighted frequency response

∣
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∞
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i=1,3,5,...
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|H(jωi)|dB

∣

∣

∣

∣

∣

∣

(10)

is minimised, where ωi is the i-th harmonic of the input
signal, and | · |dB = 20 log10 | · |. This is equivalent to a
magnitude of 0 dB at the turning points, which will be
used in the analysis.

4.1 Turning Points of the FRF

The FRF |H(jω)| has five turning points. One occurs at
ω = 0, which will be discounted from analysis as the type
number of the system guarantees a magnitude of 0 dB
at this point. Additionally, it is known that G(−jω) =
G(jw)∗, therefore, |G(−jω)| = |G(jω)|. Thus, of the four
remaining turning points, there are two pairs with equal
magnitude and opposite sign. For this reason, only the two
positive roots will be considered. Neglecting ζ terms, for
simplicity, in the transfer function of the modified IRC
scheme gives the simplified system, Hs,

Hs(jω) =
kpkσ

2

(dkω2 + kpkσ2) + j(ω2
nω − ω3)

. (11)

The turning points occur when

δ

δω
|Hs(jω)| = 0. (12)

Solving this equation gives the frequency at which the
turning points occur as

ωtp =

√

2ω2
n − d2k2 ±

√

d4k4 − 4d2k2ω2
n − 6dkpk2σ2 + ω4

n

3
.

(13)

4.2 Minimising the Difference in Magnitude at ωtp

Making the substitution

∆ =
√

d4k4 − 4d2k2ω2
n − 6dkpk2σ2 + ω4

n, (14)

into Eqn. (13) gives

ωtp =

√

2ω2
n − d2k2 ±∆

3
. (15)

It is clear that for ∆ = 0, will have two equal solutions, and
so there will be no difference in the magnitude. However,
in order to find any other conditions which minimise the
difference in magnitude, the following must be solved

|Hs(jωtpmax
)| − |Hs(jωtpmin

)| = 0. (16)

This is found to be true only for

|∆| = 0

Using Eqn. (14), this can be solved for the tracking gain,
kp, giving

kp =
d4k4 − 4d2k2ω2

n + ω4
n

6dk2σ2
.

4.3 Calculating Controller Parameters

For the condition ∆ = 0, the solutions of Eqn. (13) are real
and equal. Therefore the FRF of any modified IRC scheme
such that Eqn. (17) is true, does not have turning points
but a point of inflection. This does not guarantee a flat
band response. In order for this to happen, the magnitude
at the point of inflection must be sufficiently close to 0 dB.
Substituting ∆ = 0 into Eqn. (15) gives

ωtp =

√

2ω2
n − d2k2

3
. (17)

The optimal damping gain, k, is found by solving
|Hs(jωtp)| = 1.

|Hs(jωtp)| =
kpkσ

2

√

−9d6k6+54d4ω2
nk

4
−108d2ω4

nk
2+72ω6

n+81k2
pk

2σ4

81

(18)

which is equal to 1 when

−9d6k6 + 54d4ω2
nk

4 − 108d2ω4
nk

2 + 72ω6
n

81
= k6 − 6d−2ω2

nk
4 + 12d−4ω4

nk
2 − 8d−6ω6

n

= (k2 − 2d−2ω2
n)

3 = 0. (19)

This gives the following controller parameters

k =
√
2
ω3
n

σ2
, kp = 0.25.

4.4 Adaptation for Implementation

The control scheme developed in the previous sections,
though plausible in theory, is limited in terms of perfor-
mance in application. This is due to the use of a pro-
portional tracking controller. A tracking controller with
integral action provides many benefits in practice. The
system is more robust against perturbations in the plant
and disturbances. Integral tracking action has also been
shown to reduce the effect of nonlinear behaviours, such
as hysteresis and creep, to an acceptable level [Bhikkaji
et al. (2007); Devasia et al. (2007); Aphale et al. (2008);
Fleming (2010)].

To add integral action to the tracking controller, first
the feedtrough term is reduced to slightly less than dn.
This causes the damping controller induced pole to move
into the left half plane, without significantly changing the
position of the damped poles. A structured PI controller
is used, see Teo et al. (2014), of the form
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Fig. 3. (a) Bode magnitude plot for the plant, standard, and modified IRC schemes. (b) Simulated response of each
of the IRC schemes to an input of a 20 Hz triangle wave of amplitude ±1 µm, offset by 0.2 µm for clarity, and
time-shifted to compensate for phase differences. (c) Error signals for both the standard and modified IRC schemes.

Ct(s) =
kp(s+ p)

s
(20)

where p is the location of damping controller induced pole
and is given by

p = −(A+B − a

3
), a = 2ζωn − dk,

b = ω2
n − 2ζωndk, c = −k(dω2

n + σ2),

Q =
a2 − 3b

9
, R =

2a3 − 9ab+ 27c

54
,

A = − 3

√

R+
√

R2 −Q3, B =
Q

A
. (21)

5. SIMULATION

Simulations are carried out using the measured frequency
response of a two-axis serial kinematic nanopositioner
designed and constructed at the EasyLab, University of
Nevada, Reno. The stage is driven by a Piezodrive PDL200
200 V linear amplifier, and the position measured using a
Microsense 4810 capacitive sensor. The frequency response
is measured using an Agilent 35670A Dynamic Signal
Analyzer.

The second-order model is derived from the measured
frequency response using the discrete time system identifi-
cation algorithm described in McKelvey et al. (1996). The
continuous time model is then found by bilinear transform
giving

G(s) =
2.036× 107

s2 + 80.67s+ 2.036× 107
. (22)

The standard IRC damping controller is designed using the
method laid out in Namavar et al. (2013), and the modified
IRC damping controller using the method laid out in
this paper. In simulation, using the measured frequency
response data, both schemes suffered significantly reduced
bandwidth due to the resonant modes not accounted for
in the second order model. The tracking controller gains
were adjusted, via trial and error, to obtain maximum
bandwidth in each case. The final controller designs are
listed in the following table.

Standard Modified
d -2 -1.05
Cd

2683
s

6381
s

Ct
1200
s

0.37s+128.8
s

Fig. 3 shows the simulated results of both the standard
and modified IRC designs. The resulting bandwidth and
error measurements are presented in the following table.

Standard Modified
Bandwidth ±1 dB (Hz) 346 546
Bandwidth ±3 dB (Hz) 482 654

Max. Error (V ) 0.0319 0.0290
RMS Error (V ) 0.0252 0.0188

5.1 Robustness

To verify performance in the presence of plant perturba-
tions, simulations were carried out using the measured
frequency response of the platform with a 10 g mass
added. The addition of the mass causes the first resonant
frequency to reduce from 718Hz to 596Hz. The simulated
response is shown in Fig. 4 and the results are as follows:

Standard Modified
Bandwidth ±1 dB (Hz) 448 450
Bandwidth ±3 dB (Hz) 452 546

Max. Error (V ) 0.0455 0.0756
RMS Error (V ) 0.0285 0.0374

.

6. CONCLUSION

In this paper, a modified IRC scheme is introduced with
the aim to increase the positioning bandwidth of lightly
damped resonant systems. A method for reducing the
order of the controller through a selective choice of feed-
through is found. This is incompatible with standard IRC.
Controller parameters have been analytically derived in or-
der to provide maximum tracking bandwidth. Simulations
show substantial improvements in tracking bandwidth over
standard IRC designs, though the improvement is reduced
for large perturbations of the plant.
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Fig. 4. (a) Bode magnitude plot for the perturbed plant, standard, and modified IRC schemes. (b) Simulated response
of each of the IRC schemes to an input of a 20 Hz triangle wave of amplitude ±1 µm, offset by 0.2 µm for clarity,
and time-shifted to compensate for phase differences. (c) Error signals for both the standard and modified IRC
schemes.
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