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Abstract— Repetitive control (RC) is used to track and
reject periodic exogenous signals. RC achieves tracking by
incorporating a model of a periodic signal in the feedback path,
which provides infinite loop-gain at the harmonic frequencies of
the periodic signal. To improve robustness, the periodic signal
model is bandwidth limited, and to improve the performance, an
inverse plant response filter is used. This filter can either be an
infinite impulse response (IIR) filter or a finite impulse response
(FIR) filter. The accuracy of the filter typically determines the
allowable bandwidth of the periodic signal model, and it is
therefore desirable to obtain the most accurate inverse possible.
In this paper a model-less method for synthesizing an FIR filter
for the inverse response is presented, and it is compared to
the common approach of using an inverse model-based IIR
filter. An experimental comparison of the two approaches is
presented, and it is demonstrated that the two methods produce
identical results, but where the model-less FIR filter approach
has the added benefit of avoiding the modeling e�ort needed
to obtain the IIR filter.

I. I�����������
Repetitive control (RC) [1] is a well-known technique

used to track and reject periodic exogenous signals. This is
achieved due to the internal model principle (IMP) [2], which
states that an exogenous signal can be nulled in the error
signal if a model of the dynamic structure of the reference
and disturbance signals is in the feedback path. RC was
originally developed to reject the periodic disturbances in
a power supply control application [3], but has since been
used for machining of parts [4], precision positioning [5],
optical drives [6], [7], electro-hydraulics [8], and scanning
probe microscopy [9], [10], [11].

Fig. 1 shows the ideal signal model used in the RC scheme
for a periodic signal with period L. This is a computationally
e�cient implementation, as the model only consists of a
positive feedback around a time-delay. This results in an
infinite number of marginally-stable poles with infinite gain
at the harmonics of the periodic reference.

The most common approach to implementing discrete-time
RC was first proposed in [12], where the plant dynamics is
inverted using the zero-phase tracking error control (ZPETC)
method. This approach can in principle obtain a bandwidth
up to the Nyquist frequency. However, the approach lacks
robustness, especially to plant modeling errors. In order
to address this problem, the gain of the RC law can be
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Fig. 1. A time-delay with positive feedback with the appropriate initial
function can model any periodic signal [1].

bandwidth limited using a low-pass filter [1], [13], [14]. This
will improve the stability margin at higher frequencies, where
the plant model typically has the largest uncertainty. The
application of general uncertainty and performance weights
can also be accommodated for using the H1 synthesis
framework [15], [16]. The robustness of the closed-loop
system can also be improved by computing a frequency
weighted inverse of the plant [17]. An analog implemention
of RC is also possible [18], [19].

The ZPETC method requires an accurately identified infi-
nite impulse response (IIR) model of the plant. This can be a
disadvantage in some cases, as the accuracy of the identified
model depends on the choice of model structure, the quality
of the excitation signal, and the method of identification.
In addition, since non-minimum phase zeros can not be
inverted, the magnitude response of the ZPETC inverse can
be inaccurate. The inversion e�ectiveness therefore depends
on the model accuracy and the e�ect of the non-minimum
phase zeros. As an alternative to the IIR model inverse, an
finite impulse response (FIR) filter inverse model can be
used [20], [21]. An FIR filter can alleviate problems due
to non-minimum phase zeros and the selection of model
structure. The main disadvantage is that an FIR filter is
usually more computationally demanding than an IIR filter.

In either case, for both the IIR and the FIR filter, one of
the most reliable methods of identification is to first produce
an empirical transfer-function estimate (ETFE) [22]. In [20],
[21] it is suggested to synthesize the inverse plant response
FIR filter by minimizing a least-squares cost function using
an ETFE generated using Gaussian white noise excitation via
the Welch averaged periodogram method [23], i.e., the ETFE
is found by the quotient of the cross power spectral density
estimate of the input and the measured output, and the power
spectral density estimate of the input.

In this paper, alternative methods for producing both the
EFTE and the inverse plant response FIR filter are presented.
Here, the EFTE is computed with very high accuracy by
using pseudo-random binary signal (PRBS) excitation and
subsequent periodic averaging in the time-domain. The in-
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Fig. 2. Block diagram of RC system.

verse plant response FIR filter is then computed directly
using the inverse discrete Fourier transform (IDFT) of the
inverse of the ETFE, and a suitable windowing function to
reduce artifacts due to the implicit rectangular windowing
in the IDFT, which is equivalent to the frequency-sampling
method for FIR filter design [24]. The result is a very high ac-
curacy inverse response which can produce the same results
as the ZPETC inverse, but without the modeling e�ort. The
presented methods for generating the FIR filter and the EFTE
are simpler and less computationally demanding compared to
the approach in [20], [21], and produce the same, or better,
accuracy for the EFTE and the subsequent FIR filter.

II. D�������-T��� R��������� C������ D�����
Fig. 2 shows a block diagram including the RC scheme

and the plant G(z�1). The filters H1(z�1) and H2(z�1)
are used to produce a bandwidth-limited signal generator. If
H1(z�1) and H2(z�1) have linear phase, and thus constant
group delay, then a group delay of L will produce poles
at ±j2⇡n/L, n 2 R+. Symmetric FIR filters have a linear
phase response, thus H1(z�1) and H2(z�1) are ideally such
filters. The magnitude response of H1(z�1) and H2(z�1)
can then be used to limit the bandwidth. H3(z�1) is the
inverse plant response filter, implemented as either an FIR
or IIR filter.

From Fig. 2 it can be seen that the RC law can be written

C
RC

(z�1) =
H1(z�1)H3(z�1)

1�H1(z�1)H2(z�1)
. (1)

Assuming that the reference signal period will always be an
integer multiple of the sampling time T

s

, then the product of
H1(z�1)H2(z�1) in the denominator has to contain a delay
of z�N , where N = L/T

s

, to satisfy the internal model
principle.

The sensitivity function of the closed-loop system is

S(z�1) =
E(z�1)

R(z�1)

=
1�H1(z�1)H2(z�1)

1�H1(z�1)H2(z�1)�H1(z�1)H3(z�1)G(z�1)

=
1�H1(z�1)H2(z�1)

1�H1(z�1) (H2(z�1)�H3(z�1)G(z�1))
,

which can be rearranged to be on the form shown in Fig. 3.
It can then be seen that the stability of the RC system is
determined by the denominator

1�H1(z
�1)

�
H2(z

�1)�H3(z
�1)G(z�1)

�
,

which will provide stability if the loop transfer function in
Fig. 3 satisfies the small-gain theorem [12], [17]. Thus, the
system is stable if

kH1(z
�1)

�
H2(z

�1)�H3(z
�1)G(z�1)

�
k1 < 1 . (2)

Fig. 3. Equivalent description of sensitivity function.

The stability condition can be split into two conditions, i.e.,

kH1(z
�1)k1 < 1 , (3)

and
kH2(z

�1)�H3(z
�1)G(z�1)k1 < 1 . (4)

These two stability conditions are necessary for the design
of the RC law as done in this paper.

III. IIR ��� FIR I������ P���� R������� F������
In this Section, we show two methods for designing the

inverse plant response filter. The first is using the model-
based zero-phase error tracking controller (ZPETC) IIR filter,
and the second is using an model-less FIR filter synthesized
directly from the plant frequency response.

A. Model-Based IIR Filter

An IIR model of the plant is given as

bG(z�1) = z�d

B(z�1)

A(z�1)
, (5)

where z�d is the dead-time of the plant, and

B(z�1) = b0 + b1z
�1 + ...+ b

m

z�m, b0 6= 0

A(z�1) = 1 + a1z
�1 + ...+ a

n

z�n .

The perfect feed-forward tracking control for (5) is

bG�1(z�1) = zd
A(z�1)

B(z�1)

which is non-causal due to the inverse of the d-step delay.
The inverse cancels all the poles and zeros such that the
product of the inverse filter and the plant is unity, i.e., there
is zero-phase shift. This is only possible if the roots of
B(z�1) = 0 are inside the unit circle in the z-plane, i.e.,
if they are minimum phase zeros.

The method of inversion that excludes the non-minimum
phase zeros is called the zero-phase error tracking con-
troller (ZPETC) [25]. Applying this inverse, the product of
the inverse filter and the plant will have zero-phase shift.
This is done by factorizing the zeros of bG(z�1) as

B(z�1) = B
a

(z�1)B
u

(z�1)

where B
a

(z�1) includes minimum phase, or acceptable,
zeros, and B

u

(z�1) includes non-minimum phase, or un-
acceptable, zeros. The ZPETC inverse is then found in [25]
to be

C
ZPETC

(z�1) = z(d+s) A(z�1)B̄
u

(z�1)

B
a

(z�1)[B
u

(1)]2

where B
u

(1) is the DC-gain of B
u

(z�1), and

B̄
u

(z�1) = b̄
s

+ b̄(s�1)z
�1 + ...+ b̄0z

�s .
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The filter is non-causal and (d + s) steps ahead. This can
be overcome by delaying the input. As a result, the filter
H3(z�1) is taken to be

H3(z
�1) = z�(d+s)C

ZPETC

(z�1) .

RC requires that the product of the filters H1(z�1) and
H2(z�1) has a delay of N steps. The stability criterion (4)
is most easily satisfied if

H2(z
�1) = z�(d+s) ,

since |H2(z�1)| = |e�j!(d+s)| = 1, and thus (4) is

kz�(d+s) � z�(d+s)C
ZPETC

(z�1)G(z�1)k1 =

k1� C
ZPETC

(z�1)G(z�1)k1 < 1 ,

where C
ZPETC

(z�1)G(z�1) ⇡ 1 if the ZPETC inverse is
accurate. Assuming N > d+s, then H1(z�1) can be chosen
to be a linear-phase FIR filter with a delay of N�d�s, i.e.,
it will have an order of 2(N�d�s), which means that is will
have 2(N�d�s)+1 taps. H1(z�1) is a low-pass filter used
to satisfy (2) at higher frequencies, where the uncertainty of
the ZPETC inverse typically is high.

B. Model-Less FIR Filter

The alternative to the model-based IIR filter is to use an
FIR filter. This can be considered a model-less approach,
because no model structure needs to be chosen. This is also
known as nonparametric frequency-domain system identifi-
cation. As the FIR filter approximates the impulse response
of a system directly, the accuracy of the filter is mainly
determined by the length, or number of taps. The main
benefits of using an FIR filter for plant inversion is the
avoidance of inversion of non-minimum phase zeros and
simple synthesis if a reliable plant frequency response can
be obtained.

In terms of frequency samples, the empirical transfer-
function estimate (ETFE) [22] of the plant is given as

bG(k) =
Y (k)

U(k)
,

and its inverse is given as

bG�1(k) =
U(k)

Y (k)
,

where Y (k) and U(k) are the discrete Fourier trans-
forms (DFT) of, respectively, the output and input, i.e.,

Y (k) =
M�1X

n=0

y(n)e�j2⇡kn/M ,

and

U(k) =
M�1X

n=0

u(n)e�j2⇡kn/M ,

for k = 0, 1, ...,M � 1. The estimates are empirical, as no
other assumptions have been imposed besides linearity.

To obtain an accurate ETFE, a periodic input signal and
averaging can be used [22]. Here, the system is excited

by a pseudo-random binary signal (PRBS). A PRBS is
deterministic, and it is spectrally white. Moreover, a PRBS
has an optimal crest factor which results in a large total
energy delivery into the excited system. If the system is
excited by a periodic repetition of the PRBS with length N
for P periods, the total length of the output signal is NP .
By averaging over the periods, the output signal has length
N , but the signal-to-noise ratio is increased by a factor P .

The inverse plant response filter H3(z) as an FIR filter
can be found by taking the inverse discrete Fourier trans-
form (IDFT) of bG�1(k). This method is also known as the
frequency-sampling method for FIR filter design [24]. The
unit impulse response g

i

(n) of bG�1(k) is

g
i

(n) =
1

M

M�1X

k=0

bG�1(k)ej2⇡kn/M ,

where n = 0, 1, ...,M � 1. The FIR filter is then expressed
in the z-domain as

G
i

(z�1) =
M�1X

n=0

g
i

(n)z�n .

The frequency-sampling method results in an unit impulse
response which has been convoluted with a rectangular
window of the same length in the frequency domain. The
frequency response of G

i

(z�1) is therefore a�ected by the
large side-lobes of the rectangular window. As a result, the
modeling error of G

i

(z�1) is large between the frequency
samples. This can be alleviated by the use of a window that
do not contain abrupt discontinuities in the time domain, and
thus have small side-lobes in the frequency domain, i.e., the
window smoothes the frequency response of G

i

(z�1).
A windowed FIR filter h̃(n) is created from an unwin-

dowed FIR filter h(n) as

h̃(n) = w(n)h(n)

where w(n) is a window function which is nonzero only for
n = 0, 1, ...,M �1. The frequency-domain representation of
the window function W (k) is found as

W (k) =
M�1X

n=0

w(n�M/2)e�j2⇡kn/M

=

"
M�1X

n=0

w(n)e�j2⇡kn/M

#
e�j(2⇡k/M)(M/2) ,

where the term e�j(2⇡k/M)(M/2) comes from the fact that
the rectangular window is not centered around n = 0, but
is time-shifted to be centered around n = M/2. This phase
term will cause distortion of h(n), unless h(n) is also phase-
shifted to compensate. The unit impulse response g

i

(n) is
therefore phase-shifted before windowing. Due to the circular
shift property of the DFT, this can be done by rearranging
g
i

(n) such that

ḡ
i

(n) =

(
g
i

(n+M/2) , n = 0, 1, ..., M

2 � 1

g
i

(n�M/2) , n = M

2 , M

2 + 1, ...,M � 1
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Fig. 4. Two-axis serial-kinematic nanopositioning platform.

for the case when M is even. The inverse response is then
represented by the FIR filter

Ḡ
i

(z�1) =
M�1X

n=0

ḡ
i

(n)z�n = z�M/2G
i

(z�1)

which is G
i

(z�1) delayed by M/2 steps. Applying the
window w(n) to the time-shifted impulse response ḡ

i

(n),

g̃
i

(n) = w(n)ḡ
i

(n) ,

the filter

G̃
i

(z�1) = W (z�1) ⇤
h
z�M/2G

i

(z�1)
i

is obtained, and H3(z�1) = G̃
i

(z�1) is used in (1).
For the implementation, M = N , and the stability condi-

tion given in (4) is simplified by choosing

H2(z
�1) = z�N/2 , (6)

since |H2(z�1)| = 1, which results in

kz�M/2 �G(z�1)z�M/2
⇥
G

i

(z�1) ⇤W (z�1)
⇤
k1 =

k1�G(z�1)
⇥
W (z�1) ⇤G

i

(z�1)
⇤
k1 < 1 ,

where G(z�1)
⇥
W (z�1) ⇤G

i

(z�1)
⇤
⇡ 1 if the FIR filter

inverse is accurate. RC requires that the product of the
filters H1(z�1) and H2(z�1) has a delay of N steps. Hence,
H1(z�1) is chosen to be a linear-phase FIR filter with a delay
of N/2 steps, i.e., it will have N+1 taps. H1(z�1) is a low-
pass filter used to satisfy (2) at higher frequencies, where the
uncertainty of the FIR filter inverse typically is high, just as
in the case of the ZPETC inverse.

IV. E����������� R������
A. Nanopositioner Model

The experiments was conducted on the two-axis serial-
kinematic nanopositioning stage shown in Fig. 4. The
nanopositioner was designed and constructed at the EasyLab,
University of Nevada, Reno, USA. Each axis contains a
12 mm long piezoelectric stack actuator (Noliac NAC2003-
H12) with a free displacement of 12 µm at 200 V. The flexure
design includes a mechanical amplifier to provide a total
range of 30 µm. The flexures also mitigate cross-coupling so

that each axis can be controlled independently. The position
of the moving platform is measured by a Microsense 6810
capacitive sensor and 6504-01 probe, which has a sensitivity
of 2.5µm/V. The stage is driven a by PiezoDrive PDL200
voltage amplifier with a gain of 20. The control law was
implemented on a dSPACE DS1104 hardware-in-the-loop
system via Simulink Coder. The anti-aliasing and reconstruc-
tion filters were implemented using two Stanford Research
System SR570 pre-amplifiers. The experiments were done
using the x-axis. The sampling frequency of the system was
10 kHz and the reference was a 40 Hz triangle wave, i.e.,
T
s

= 0.0001 s and L = 0.025 s which resulted in N = 250.
The frequency response of the open-loop system was

obtained using the method outline in Sec. III-B. Fig. 5
displays the measured response. For the purpose of control
design, a continuous time model was found using a subspace
identification method [26]. A model of order 6 gave the best
fit in the frequency domain from 0 to 2 kHz. The model
was then discretized using zero-order hold interpolation. The
discrete-time model of the system was found as:

bG(z�1) =
A(z�1)

B(z�1)
=

�0.02+0.08z�1�0.16z�2+0.21z�3�0.17z�4+0.15z�4�0.10z�6

1�2.8z�1+3.4z�2�3.3z�3+3.2z�4�1.9z�5+0.43z�6

The frequency response of the model is also shown in Fig. 5.

B. Control Design

1) Discrete-time RC with ZPETC inverse: Fig. 6 shows
the frequency response of the ZPETC inverse, as described
in Sec. III-A. It can be seen that the product of the measured
response and the ZPETC inverse is unity up to approximately
1 kHz, which is set as the cut-o� frequency for the H1(z�1)
low-pass filter to attenuate the unmodeled high-frequency dy-
namics. The dead-time of the system model is d = 0, and the
numerator has s = 3 non-minimum phase zeros. The filters
H3(z) and H2(z) are thus H3(z�1) = z�3C

ZPETC

(z�1)
and H2(z�1) = z�3. As a result, the filter H1(z�1) has to
have a delay of N � (s+ d) = 247. The filter H1(z�1) is
designed to be a linear-phase low-pass filter with a cut-o�
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Fig. 5. The frequency response of the nanopositioner along the x-axis.
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frequency of 1 kHz. The length of the filter is 2(N � d �
s)+1 = 495 which results in the desired delay. Fig. 9 shows
the response of H1(z�1) and the stability criterion (4).

2) Discrete-time RC with FIR inverse: Fig. 8 shows the
frequency response of the FIR inverse filter H3(z�1) found
using the method described in Sec. III-B. For H3(z�1) with
a rectangular window, the modeling error is zero at the
frequency samples, i.e., at 40 Hz, 80 Hz, 120 Hz, etc., but
the error is large between the samples. This is due to the
large side-lobes of the rectangular window. As can be seen,
when applying a window, in this case a Hanning window, to
the FIR filter, the frequency response is smoothed between
the frequency samples. The product between the measured
response and H3(z�1) with a Hanning window is shown
to be approximately unity up to about 1 kHz, similar to the
case of the ZPETC inverse. The filter H2(z�1) has a delay of
125 steps, and the filter H1(z�1) is designed to be a linear-
phase low-pass filter with delay of N/2 steps and a cut-o�
frequency of 1 kHz. The length of the filter is N +1 = 251.
Fig. 10 shows the response of H1(z�1) and the stability
criterion (4).

C. Results and Discussion

The reference signal is a ±5 µm triangular wave at 40 Hz.
The tracking performance of both controllers are shown
in Fig. 11 and the error plots are shown in Fig. 12. The
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Fig. 7. The unit impulse response h3(n) when using a rectangular window
and a Hanning window.
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TABLE I
T������� ������� ��� ±5µm �������� ���� ��������� �� �� Hz.

Control law e
max

(%) e
rms

(%)

RC with FIR inverse 0.8571 0.1031
RC with ZPETC inverse 0.8341 0.1030

maximum tracking error is defined as

e
max

(%) =
max|y � r|

max(y)� min(y)
⇥ 100%

where y and r are the measured output and the reference,
respectively. The root-mean-squared error (RSME) is defined
as

e
rms

(%) =

s
1
T

TR

0
[y(t)� r(t)]2 dt

max(y)� min(y)
⇥ 100% .

The tracking performance is summarized in Tab. I.
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V. C���������

This paper focused on the design and implementation of
a discrete repetitive control scheme when using a model-
less finite impulse response (FIR) inverse plant response
filter. Methods for obtaining an accurate empirical transfer-
function estimate and the synthesis of the FIR inverse from
this estimate using the frequency sampling method was
presented. The FIR inversion approach was compared to the
more common approach of using an infinite impulse response
(IIR) filter inverse via the zero-phase error tracking controller
(ZPETC) method. The experimental results showed good
tracking performance for an experimental nanopositioning
system, and further showed that the FIR inverse and the
ZPETC inverse had almost identical performance. The main
advantages of using the model-less FIR inverse, is that no
modeling e�ort is required, and a more accurate inverse
response can in principle be obtained.
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[15] T. E. Peery and H. Özbay, “On H1 optimal repetitive controllers,” in

Proc. 32nd IEEE Decis. Contr., 1993, pp. 1146–1151.
[16] J. Li and T.-C. Tsao, “Robust Performance Repetitive Control Sys-

tems,” J. Dyn. Syst.-T. ASME, vol. 123, no. 3, pp. 330–337, 2001.
[17] A. W. Osburn and M. A. Franchek, “Designing Robust Repetitive

Controllers,” J. Dyn. Syst.-T. ASME, vol. 126, no. 4, pp. 865–872,
2004.

[18] A. A. Eielsen, J. T. Gravdahl, and K. K. Leang, “Robust Damping PI
Repetitive Control for Nanopositioning,” in Proc. 2012 ACC, Montreal,
2012, pp. 3803–3810.

[19] ——, “Analog Robust Repetitive Control for Nanopositioning Using
Bucket Brigade Devices,” in Proc. 19th IFAC World Congr. (to

appear), Cape Town, 2014.
[20] B. Panomruttanarug and R. W. Longman, “Designing Optimized FIR

Repetitive Controllers from Noisy Frequency Response Data,” Adv.

Astronaut. Sci., vol. 127, pp. 1723–1742, 2007.
[21] R. W. Longman, “On the Theory and Design of Linear Repetitive

Control Systems,” Eur. J. Control., vol. 16, no. 5, pp. 447–496, 2010.
[22] L. Ljung, System Identification: Theory for the User, 2nd ed. Prentice

Hall, 1999.
[23] P. D. Welch, “The Use of Fast Fourier Transform for the Estimation

of Power Spectra: A Method Based on Time Averaging Over Short,
Modified Periodograms,” IEEE Trans. Audio Electroacoust., vol. 15,
no. 2, pp. 70–73, 1967.

[24] L. R. Rabiner, “Techniques for Designing Finite-Duration Impulse-
Response Digital Filters,” IEEE Trans. Commun. Technol., vol. COM-
19, no. 2, pp. 188–195, Apr. 1971.

[25] M. Tomizuka, “Zero Phase Error Tracking Algorithm for Digital
Control,” J. Dyn. Syst.-T. ASME, vol. 109, no. 1, pp. 65–68, Feb.
1987.

[26] T. McKelvey, H. Akcay, and L. Ljung, “Subspace Based Multivariable
System Identification from Frequency Response Data,” IEEE Trans.

Autom. Control, vol. 41, no. 7, pp. 960–978, 1996.

1669


