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Abstract— This article identifies the design considerations
for a two degree of freedom (DoF) miniature robotic leg
utilizing piezoelectric bimorph actuators with a specific focus
on the resonance modes of the system. An analytical model
was developed using three independent lumped mass models
with superposition for tuning the resonance frequencies and
optimizing the performance of the leg. The model was verified
both experimentally and using FEA.

I. INTRODUCTION

There are many advantages to the miniaturization of
autonomous robots. The reduction in size allows the robot
access to restricted locations such as, inside water pipes
[1], through rubble [2], [3] and even inside the human
body [4]. Another advantage is the potential reduction in
cost and the possibility for disposable robots. Additionally,
due to the small power requirements, it is possible to
power a miniature robot from ambient energy sources
such as light, electric fields, magnetic fields or vibration
[5].

There are several challenges associated with designing a
miniature robot. The reduced size of the robot increases
the complexity of the power supply, mechanical design,
sensors and control of the robot. To combat this, aspects
of the design are simplified to reduce the complexity. One
common method of reducing the complexity is to reduce
the number of actuators or degrees of freedom (DoF) the
robot has.

There has been an increased interest in the develop-
ment of miniature robots over the past decade [6]. For
example, Wood et al have developed several miniature
robots utilizing piezoelectric bender actuators for loco-
motion [7]–[11]. One such example is a 1.7 g hexapod
configuration autonomous robot that was able to achieve
a forward travel speed of 0.9 body lengths per second [12].
This robot was approximately 4.8 cm long and consisted
of three leg pairs where each pair of legs were driven
by three piezoelectric benders arranged to amplify the
displacement and produce a tripod gait.

The use of resonant vibration in miniature robotics was
reported in [13]. Their work outlines the development of
a range of robots capable of traveling over both land and
water. These robots used forced vibration of continua to
achieve two axis locomotion utilizing a single piezoelec-

The authors are with the Precision Mechatronics Laboratory, School
of Electrical Engineering and Computer Science at the University of
Newcastle, Callaghan, NSW 2308, AUSTRALIA

1Shannon.Rios@newcastle.edu.au
2Andrew.Fleming@newcastle.edu.au
3Yuenkuan.Yong@newcastle.edu.au

tric actuator. This actuator was driven with frequencies
between 0.1 to 100 kHz.

This article investigates the design of a two DoF minia-
ture robot leg. In order to generate locomotion two
piezoelectric benders are used. The displacement of the
benders are amplified by the mechanical structure of the
leg and by driving the two benders at the resonances of
the system, a high speed gait can be achieved. The main
focus of this work is to identify key design parameters and
insights that dictate the resonant frequencies of the minia-
ture robot leg and their associated motion. To achieve
this, three lumped mass models are derived and combined
using superposition. The model is then compared to FEA
and real world experimental results.

The following section will outline the overall leg design,
including the physical layout and electrical configuration.
Next the parameters for the lumped mass model of the
leg are derived and compared to experimental results. The
paper will be concluded with a discussion on the key
parameters effecting the resonant frequencies of the leg
and an outline of the future direction.

II. LEG CONFIGURATION

The size and shape of the leg is intended to be used
on a hexapod style miniature robot similar in design to
the one shown in Fig. 1. Each leg consists of two parallel
piezoelectric bimorph benders joined at the tip by an
aluminum end-effector comprised of a flexure part and
a leg part as shown in Fig. 2. Unlike most other miniature
robot legs [14], the piezoelectric actuators are integrated
into the mechanical structure.

Fig. 1. 3-D representation of a hexapod robot using this leg design

The benders are driven using the biased bipolar electri-
cal configuration [15] which utilizes both the positive and
negative electric fields for maximum deflection and force.
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Fig. 2. Prototype two degree of freedom piezoelectric leg

By driving each bender with a sinusoidal waveform and
varying the phase between the two benders a wide range
of end effector motion paths can be achieved. Of most
interest, when driven 90◦ out of phase a circular motion
at the tip of the end effector can be produced. A miniature
robot comprised of several legs can be controlled by
varying the phase and magnitude of each leg.

The unique design of the leg results in two resonant
modes that are reasonably close together and by altering
a small set of variables these resonant modes can be made
to overlap. In general the first resonant mode is dominated
by rotation about the z-axis and is referred to as the
lifting mode. The second resonant mode is characterized
by rotation about the x-axis and is referred to as the
swinging mode. By forcing these modes to overlap the
resonant motion of the leg will be a combination of lifting
and swinging.

III. MODELING

The modal superposition technique is used to develop
a 3-DoF lumped mass model for the previously discussed
miniature robot leg. This method was chosen over nu-
merical methods as a lumped mass model can be used to
provide insight into the design parameters of the system.
This technique uses superposition of multiple single DoF
lumped mass systems to create a complete model of the
system. Each individual system is comprised of either a
mass, stiffness and force, or a torque, rotational stiffness
and rotational inertia as per Fig. 3, where M is the mass,
I is the rotational inertia, K is the stiffness, F is the force
and τ is the torque.

F,τK

M,I

Fig. 3. Single DoF equivalent lumped mass model

Each lumped mass system will be related to a point that
is along the centroid of the flexure and midway between
the two piezoelectric benders, shown in Fig. 2. The three
axis to be determined are: displacement along the y-axis
δy , rotation about the x-axis θx and rotation about the
z-axis θz . In order to solve the dynamic equation and
find the resonant frequencies, the stiffnesses, mass and
inertias of the individual systems must be determined.
The damping factor of the system is ignored to simplify
this analysis.

A. Linear DoF δy

The resonant frequency for a single DoF system is given

by f = 1
2π

√
K
M . In order to determine the stiffness and

mass parameters for the y-axis an appropriate model for
the system must be developed. Fig. 4 shows the mass and
stiffness model used for the y-axis lumped mass model.
This model was used in combination with the Rayleigh
method of equating the maximum potential energy to the
maximum kinetic energy of the system, PEmax = K Emax. In
order to solve this equation the relative displacements and
velocity of each mass were found, assuming sinusoidal
motion, such that,

δy =δmax, (1)

δp =δmax A, (2)

vy =δ̇y (3)

=ωδmax , (4)

vp =ωδmax A, (5)

A = K f

K f +Kp
, (6)

where δy is the displacement of the leg mass, δmax is
the maximum displacement, δp is the displacement of
the bender mass, vy is the velocity of the leg mass, Vp

is the velocity of the bender mass, ω is the rotational
velocity and Kp and K f are the stiffnesses of the bender
and flexure.
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Fig. 4. Lumped mass model for y-axis DoF.

Using Eq. (1) to (6) and by analyzing half of the model
due to symmetry, the maximum potential energy of the
system is,

PEmax =1

2

[
K f (δmax −δmax A)2 +Kp (δmax A)2] , (7)

=1

2
δ2

max

[
K f (1− A)2 +Kp A2] . (8)



Similarly the maximum kinetic energy is given by,

K Emax =1

2

[
(Mp +M f )ω2δ2

max A2 + Ml

2
ω2δ2

max

]
, (9)

=1

2
ω2δ2

max

[
(Mp +M f )A2 + Ml

2

]
, (10)

where My , Mp , Ml and M f respectively are the lumped
masses of the y-axis DoF, bender, leg and flexure respec-
tively. Lastly, the lumped mass and stiffness can be found
by equating the maximum potential and kinetic energy
such that,

ω=
√√√√ K f

(Mp +M f )A2 + Ml
2

, (11)

Ky =K f , (12)

My =(Mp +M f )A2 + Ml

2
, (13)

where My is the equivalent mass and Ky is the equivalent
stiffness of the y-axis model.

The stiffness of the piezoelectric bender, Kp , with re-
spect to the y-axis is found using the boundary conditions
for a cantilever beam [16],

Kp =3Dwp

2l 3
p

, (14)

where Kp is the stiffness of the beam, wp is the width of
the beam, lp is the length of the beam and D is the flexural
stiffness of a triple layer beam, given by D = ∫

E(y)y2 dy
[15]. Similarly, the bending stiffness of the flexure is

K f =
36E f I f

P 3 , (15)

where K f is the stiffness of the flexure, E f is the Young’s
modulus of the flexure, I f is the second moment of area of
the flexure and P is the distance between the piezoelectric
actuators.

The lumped mass, Mp , of the actuator was determined
by looking at the kinetic energy of an element of the
actuator, dT = 1

2 m(x)v(x)2 and using a velocity of v(x) =
vmax

x
lp

and the mass per unit length of m(x) = ρp wp tp dx
where vmax is the velocity at the tip of the actuator, lp

is the free length of the actuator, ρp is the density, wp

is the width and tp is the thickness of the actuator. By
substituting the velocity and mass equations,

Mp =mp
1

3
, (16)

where mp = ρp wp tp lp . Similarly, the mass of the flexure
attached to the actuator is

M f =m f
wp

l f
, (17)

where m f = ρ f w f t f l f , w f is the width of the flexure, t f

is the thickness of the flexure and l f is the length of
the flexure. The mass of the free section of the flexure
is ignored and the leg mass. The mass of the leg, Ml =∫
ρl Al (y)ll dy , is assumed to be completely lumped at the

intersection of the reference x and z axis shown in Fig. 2.

B. Rotational DoF θx

The resonance frequency for a rotational model is

given by or f = 1
2π

√
K
I . The lumped mass model for the

rotational DoF about the x-axis is shown in Fig. 5. The
reference axis for this degree of freedom is located through
the centroid of the flexure with respect to the y-z plane.
Using this model the lumped parameters are,

Kθx =K f x +2Kp

(
P

2

)2

, (18)

Ix =2Ipx + I f x + Il , (19)

where Kθx and K f x are the equivalent rotational stiffness
for the x-axis DoF and the flexure respectively, Ix , Ipx , I f x

and Il are the rotational inertias of the equivalent system,
actuator, flexure and leg respectively.
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Fig. 5. Lumped mass model for θx DoF

Because of the symmetrical construction of the leg, the
rotational stiffness K f x was found by analyzing half of the
flexure and assuming a guided - simply supported beam
boundary condition [16], shown in Fig. 6. The angular
displacement was found at the simply supported end and
Hooke’s law was used to determine the rotational stiffness,

K f x =9E f I f

P
. (20)
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Fig. 6. Boundary conditions for flexure

The rotational inertia of a volume is found by perform-
ing the integral I = ∫

V
ρ(r )r 2 dV for the volume, where r is

the distance from the axis of rotation to a mass element
ρ(r )dV . In the case of the end-effector a compact cross



section is assumed, reducing the integral to be evaluated
over the length of the end-effector such that,

Il x =
∫ ll

0
ρl A(y)y2 dy. (21)

The lumped inertias of the flexure and actuators are
found by assuming a concentrated mass at a distance r =
P
2 from the center of rotation and ignoring the mass of
the free flexure (unsupported section of flexure as shown
in Fig. 6) such that,

I =mr 2, (22)

I f x =M f

(
P

2

)2

, (23)

Ipx =Mp

(
P

2

)2

. (24)

C. Rotation DoF θz

The lumped mass model for the z-axis rotational DoF
can be seen in Fig. 7. The reference axis for this DoF is
located through the centroid of the flexure with respect to
the x-y plane as shown in Fig. 2. The lumped inertia and
rotational stiffness are found using the Rayleigh method
described in the y-axis DoF section such that,

Kθz =K f z , (25)

Iz =(Ipz + I f z )B 2 + Il z

2
, (26)

B = K f z

K f z +Kpz
, (27)

where Kθz , K f z and Kpz are the rotational stiffness with
respect to the z-axis model, the flexure and the actuator
respectively and Iz , Ipz and I f z are the rotational inertias
of the equivalent system, actuator and flexure respectively.
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Fig. 7. Lumped mass model for the θz DoF

The rotational stiffness for the flexure is found by
analyzing the torsional stiffness of the flexure, given by
the equation,

K = JG

l
, (28)

J f z =
1

3
w f t 3

f , (29)

K f z =
3G f J f z

P
. (30)

where K is the flexural stiffness, J is the torsion constant,
G is the shear modulus and l is the length.

The rotational stiffness of the piezoelectric bender at
the tip can be found using Hooke’s law and the equations
for motion of the piezoelectric bender from [15] and [17]
such that,

Kpz =
Dwp

lp
. (31)

The rotational inertia of the flexure is calculated using
the integral,

I f z =
∫

A
ρ f l f r 2 dA (32)

=
∫
y

∫
x

ρ f l f (x2 + y2)dxdy (33)

=
m f (w2

f + t 2
f )

12
, (34)

where x and y are measured from the rotational z-axis.
The rotational inertia of the leg is identical to that of the
x-axis rotational inertia shown in Eq. 21.

The method used to determine rotational inertia of
the actuator, Ipz , is slightly more complicated due to
the loading conditions of the piezoelectric bender. To
simplify the calculation the actuator is assumed to have a
concentrated cross section such that the integral will only
be along the x-axis. To determine Ipz , first the angular
velocity, Ωp (x), and linear momentum, dLp (x), must be
found with respect to the rotational axis,

dLp (x) =ρp wp tp vp (x)(N −x)dx, (35)

Ωp (x) = vp (x)

(N −x)
, (36)

where vp (x) is the velocity of the actuator with respect
to x and N = lp − w f

2 is the distance from the base of the
actuator to the z reference axis. Using these equations and
integrating along the length of the beam, the rotational
inertia is,

dIpz =
dLp (x)

Ωp (x)
= ρp wp tp N 2

(
1− x

N

)2
dx, (37)

Ipz =
lp∫

0

ρp wp tp N 2
(
1− x

N

)2
dx (38)

=mp N 2
(
1− L

N
+ L2

3N 2

)
. (39)

D. Finite element analysis

The leg was also analyzed using the FEA tool ANSYS to
determine the range of motion and resonance modes of
the leg. This analysis showed that the first two resonance
modes were dominated by rotational motion about the x
and z reference axis. The first two resonant modes can be
seen in Fig. 8. The third resonance was significantly higher
that the first two and features significant displacement
along the y-axis, corresponding to the δy DoF.



a) b)

Fig. 8. a) First resonant mode shape, b) Second resonant mode shape

E. Discussions

By analyzing the equations for stiffness, mass and iner-
tia, insights into the parameters that effect the resonant
frequencies can be determined.

This work has highlighted several parameters that have
a significant effect over particular modes compared to
others. The length of the bender has a moderate impact
on the δy resonant frequency and a significant effect on
the resonant frequency for the θx mode while having
very little effect on the θz resonance. This feature can
be exploited to change the θx resonant frequency with
a marginal alteration to the free length of the actuators.
Conversely the separation distance P has a minimal effect
on the θx mode but a significant impact on the δy and
θz modes. Care must be taken when tuning the resonant
frequencies using these two methods to not affect the
stiffness and therefore the maximum displacements.

An alternative method of tunning the resonant frequen-
cies is to alter the lumped masses of the leg. If done
correctly, adding or removing masses will have little to no
effect on the stiffness and therefore maximum displace-
ments of the beam. The simplest method of tuning the
mass of the leg is to change the shape of the end effector.
Increasing mass at the base of the leg will have a minimal
impact on the rotational DoFs as this mass is located very
near to the axis of rotation. Conversely, mass added or
removed from the tip will significantly alter the resonant
frequencies of the rotational DoFs.

IV. EXPERIMENTAL RESULTS

An experimental analysis was conducted using a proto-
type leg identical in design to the leg shown in Fig. 2 and
Fig. 9. The purpose of this analysis was to determine the
frequency responses and the static displacements of the
leg so as to verify the analytical model. The control signals
for the piezoelectric benders were generated using an
Agilent 33500B dual channel signal generator connected to
two Pdm200 voltage amplifier from PiezoDrive to generate
the high voltage driving signals. The leg end effector
velocities were measured using a PDV 100 laser vibrometer
from Polytec and the low frequency displacements were
measured with an LAT61 laser distance sensor from di-
soric.
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Fig. 9. Miniature robot leg end effector. All dimensions are in mm
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Fig. 10. Experimental end-effector displacement with actuators driven
90◦ out of phase at 5 Hz.

The leg was constructed using two custom made piezo-
electric benders measuring 4.5 mm wide, 0.4 mm thick
by 15 mm in length. The actuators were glued to a 3-
D printed, ABS plastic base 6 mm apart with two part
epoxy and with a free length of approximately 12.8 mm.
The leg end effector and flexure was machined out of a
single piece of aluminum and glued across the tips of the
actuators.

The end effector x, y and z axis displacements were
measured by driving the benders 90◦ out of phase at a
frequency of 5 Hz. All displacement measurements were
taken at the tip of the end-effector. The displacements
achieved were 462.2 µm in the x-axis, 250.1 µm in the
y-axis and 552.1 µm in the z-axis as shown in Fig. 10.

The frequency response shown in Fig. 11, identifies
resonances at approximately 270 Hz, 360 Hz and 720 Hz
for the x, z and y axis respectively. This response was
generated by driving both benders with identical noise
with a peak to peak voltage of 10 V and a bandwidth of
1 kHz. This result compares reasonably well with both
the FEA and analytical analysis shown in Table. I. The
coupling shown in Fig. 11 between the different axis is
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Fig. 11. Frequency response of miniature robotic leg in x, y and z axis.

primarily due to the alignment of the vibrometer with
respect to the leg, and the alignment of the components
of the leg during the assembly process.

Discrepancies between the experimental, FEA and an-
alytical results are contributed to the imperfect mounting
and assembly of the leg structure and the non-rigid nature
of the support structure, overall resulting in a less stiff
structure. Damping is also present in the real world results
and the lumped mass model ignores twisting and shear
stress of the piezoelectric actuators. Lastly, the analytical
and FEA models do no account for any non-linear effects
due to the piezoelectric actuators.

V. CONCLUSION

The experimental results show that a miniature robotic
leg produced in this way can provide enough force and
motion to achieve significant motion of the end-effector.
The main shortcomings of this design is the repeatability
of the leg construction. In order to improve this the man-
ufacturing process must be simplified to attain a uniform
and repeatable leg. Another approach to this problem is
to fine tune the resonant modes after construction such
that the resonant frequencies of all the robots legs are
equal. Ideally a combination of these improvements will
be investigated

TABLE I

FIRST RESONANT MODES FOR EACH DOF

DoF Lumped Mass FEA Experimental
δy 1030 946 Hz 720 Hz
θx 391 Hz 427 Hz 360 Hz
θz 334 Hz 410 Hz 270 Hz

The next step will be to analyze the response of the
leg during intermittent ground contact. Preliminary results
have shown that an intermittent ground contact will have
a damping effect of the frequency response of the leg,
however this is greatly dependent on a wide range of
variables and more research is required. The final goal
of this research is to develop an untethered, autonomous
hexapod miniature robot.
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