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Positive Velocity and Position Feedback (PVPF) is a widely

used control scheme in lightly damped resonant systems with

collocated sensor actuator pairs. The popularity of PVPF is

due to the ability to achieve a chosen damping ratio by repo-

sitioning the poles of the system. The addition of a track-

ing controller, to reduce the effects of inherent nonlineari-

ties, causes the poles to deviate from the intended location

and can be a detriment to the damping achieved. By design-

ing the PVPF and tracking controllers simultaneously, the

optimal damping and tracking can be achieved. Simulations

show full damping of the first resonance mode and signifi-

cantly higher bandwidth than that achieved using the tradi-

tional PVPF design method, allowing for high speed scan-

ning with accurate tracking. Experimental results are also

provided to verify performance in implementation.

1 Introduction

Highly resonant systems suffer from harmonic excita-

tion which can lead to performance degradation and even

structural damage. Previous research suggests a myriad of

options to manage the behaviour of such systems. In this

work, we consider a nanopositioning platform. The perfor-

mance of nanopositioners is limited by two features of their

construction: firstly, nanopositioners have a low resonance

frequency, and secondly, the piezoelectric actuators exhibit

nonlinear behaviour.

In open-loop operation, the speed at which a flexure-

based piezo-actuated nanopositioner can accurately trace a

raster scan input is limited to approximately one-hundredth

of its dominant resonance frequency [1]. However, there is

a growing need for systems capable of high scanning speeds

[2,3]. In order to combat the effect of the low resonance fre-

quency, a damping controller is used. Integral Resonant Con-

trol (IRC) [4] and Integral Force Feedback (IFF) [5] are sim-

ple, robust and easy to implement damping controllers which

utilise similar control laws. The development of Optimal In-

tegral Force Feedback (OIFF) has made IFF identical to IRC

from an analytical standpoint [6]. Though IRC has more

scope for improvement, due to the arbitrary assignment of

its feedthrough term, both controllers are limited in terms of

achievable closed-loop poles. Resonant Control [7], Positive

Position Feedback (PPF) [8] and Positive Velocity and Po-

sition Feedback (PVPF) [9] have been previously compared

for suitability in nanopositioning applications using noise re-

jection as the performance criteria [7]. In that case PVPF was

found to be the preferred choice. PVPF is also capable of ar-

bitrary pole placement, whereas PPF is not. This allows full

control over the closed-loop performance characteristics of

the nanopositioner. For this reason, PVPF will be used in

this work.

The nonlinear behaviour observed in the operation of

piezo-actuated nanopositioners comes primarily from hys-

teresis. This can result in significant positioning errors over

the full scan range and necessitates additional methods of

control to counteract the effects. Various methods have

been reported in previous research, such as charge actua-

tion [10,11], the augmentation of linear control schemes with
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High−frequency triangular input r(t) Frequency response of a
nanopositioner axis, G(s), with
lightly damped resonant mode

Open−loop distorted output y(t)

+

Piezoelectric Nonlinearities

(Hysteresis and Creep)

Resonance
induced
oscillations

Deviation from
linear trajectory
due to hysteresis

Slow drift
in position

due to creep

Fig. 1. Interaction of input harmonics and plant dynamics. On the left is a typical input for nanopositioning systems, a high frequency

triangular waveform. The typical magnitude response of a lightly damped resonant system is presented in the centre. On the right is the

resultant distorted output showing the effects of the lightly damped resonance, creep and hysteresis. Note, the effects have been exaggerated

for illustrative purposes.

nonlinear damping [12, 13], and fuzzy control [14]. How-

ever, in nanopositioning, the reduction of positioning errors

due to the inherent nonlinearities of piezoactuators is typi-

cally achieved through reference tracking [15]. Though lin-

ear control cannot fully negate nonlinear behaviour, previous

works, where integral tracking is used, show a significant re-

duction in positioning errors [7, 9, 16].

In the previously cited works, the controllers are de-

signed sequentially, i.e. the damping controller is designed

using an appropriate method, the tracking controller is then

added and the gain tuned by trial-and-error. The tracking

controller causes a change in the location of the damped

poles, thereby altering the damping characteristics of the sys-

tem. By designing both the damping and tracking controllers

simultaneously, the desired damping and tracking perfor-

mance can be achieved. In this work, a method is provided

for the simultaneous design of the damping and tracking con-

trollers in order to achieve a flat band response.

Whilst H2/H∞ optimal control strategies can be em-

ployed to achieve the desired damping and tracking char-

acteristics [17], there is a need for low-order, experimen-

tally tunable controllers. In nanopositioning applications,

variations in system dynamics, due to modelling uncertain-

ties and loading of the nanopositioning platform, can cause

performance degradation. Robustifying H2/H∞ designs im-

prove performance in such circumstances. However, low-

order controllers, including PVPF, are needed as the tracking

controller gain can easily be fine-tuned to optimise perfor-

mance in the presence of uncertainties.

The paper is structured as follows, Section II provides

an overview of PVPF before presenting a method of deriv-

ing optimal controller parameters. In Section III, optimal

controller parameters are derived for two axes of a nanopo-

sitioning platform. Simulations are provided to validate the

theoretical work in Section II, assuring the objective of a flat

band response is met. Section IV presents experimental re-

sults, showing the effectiveness of the proposed controller

design in implementation. Section V concludes the paper.

r(t) Ctrack

CPVPF

G(s)

Gcc(s)rcc(t)

y(t)
- +

+

Fig. 2. Block diagram of the damped and tracked PVPF scheme,

where G(s) is the plant, Gcc(s) is the FRF measuring the cross-

coupling between the axes, CPVPF(s) is the PVPF damping con-

troller, and Ctrack(s) is the tracking controller.

2 Control Strategy

The effects of a nanopositioners resonance mode and

nonlinear behaviours are depicted in Fig. 1. Applying a tri-

angular input wave, the measured position is distorted by os-

cillations near the resonance frequency, deviation from the

linear trajectory (hysteresis), and a drift in position (creep).

In order to reduce the positioning error, closed-loop control

is implemented, incorporating both damping (to reduce high-

frequency distortions due to resonance-induced vibrations)

and tracking (to reduce the positioning errors introduced by

the piezoelectric nonlinearities) [15]. A closed-loop imple-

mentation, using a PVPF damping controller and integral

tracking contoller, is shown in Fig. 2.

Positive Velocity and Position Feedback (PVPF) was

introduced as an extension of the PPF controller. The ad-

dition of the velocity term allows arbitrary pole placement

in the complex plane. It has been shown to be an effec-

tive vibration damping controller in nanopositioning applica-

tions [7,9,18]. In the following subsections, a brief overview

of the traditional PVPF will be presented followed by a novel

method of simultaneously placing the poles of the damping

controller (PVPF-based) and the tracking controller (inte-

gral control). The main benefit of the proposed simultane-

ous pole-placement technique is the significant increase in

closed-loop positioning bandwidth.
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Fig. 3. Root loci of the tracking loop for the traditional controller design and the proposed controller design for the positive imaginary axis

only. The black crosses are undamped poles of the open-loop system, blue crosses are the damped poles of the closed-loop system, and the

red cross depicts the pole introduced by the tracking controller. The blue solid (—) arrow indicates the effect of the damping controller, and

the red dashed (- - -) arrow the effect of the tracking controller. In the traditional PVPF design, the tracking controller displaces the complex

poles from the intended location as the tracking gain is increased. The proposed control design places the damped poles at different strategic

locations such that when the desired tracking gain is reached, the PVPF-induced poles converge on the desired (damped) location.

2.1 Traditional PVPF design

In nanopositioning, the control action is aimed at damp-

ing the dominant resonance mode. Therefore, the frequency

response of a nanopositioner measured from the applied volt-

age to the displacement can be represented by a second-order

model which has transfer function

G(s) =
σ2

s2+2ζωns+ω2
n

, (1)

where ζ is the damping ratio, ωn is the natural frequency, and

σ2 is chosen to match the DC gain of the plant. A model of

this form has been derived from the mechanical configura-

tion of the nanopositioning platform in [19]. Nonlinearities

are not considered in the modelling of the plant as reference

tracking reduces the effects. The PVPF controller, shown in

Fig. 2 as CPVPF , has transfer function

CPVPF(s) =
Γ2s+Γ1

s2+2γωcs+ω2
c

. (2)

An integrator is used as a tracking controller, Ctrack in Fig.

2, given by

Ctrack(s) =
kt

s
. (3)

The PVPF control scheme is designed by first choosing a

damping controller to place the poles of the closed-loop sys-

tem at a specified location. Typically, this location is chosen

by reducing the real component of the open-loop poles by a

sufficiently large amount, such that the damping ratio is in-

creased whilst maintaining the damped natural frequency. A

tracking controller is then added and the gain is tuned to ob-

tain the desired response. However, it has been shown that

there is a relationship between the damping and tracking con-

trollers and system stability [20]. For this reason, the damp-

ing and tracking controllers will be designed simultaneously,

i.e. only the damped and tracked system will be considered.

Denoting the numerator of a transfer function Gnum, and

the denominator Gden, such that G =Gnum/Gden, the damped

and tracked closed-loop system, measured from input, r(t),

to output, y(t), is given by

Gnum
cl (s) = ktσ

2(s2+2γωc+ω
2
c)

Gden
cl (s) = s5+ (2ζωn+2γωc)s4+ (2ζωn2γωc+ω

2
n+ω

2
c)s3

+(2ζωnω
2
c +2γωcω

2
n−σ

2Γ2+ ktσ
2)s2

+(ω2
nω

2
c −σ

2Γ1+ ktσ
22γωc)s+ ktσ

2ω2
c

(4)

This is used in the derivation of the proposed controller

parameters. The optimisation process applies a change of

variables to aid computation. Equation (4) is used in revert-

ing to the original variable set.

2.2 Simultaneous Damping and Tracking via Selective

Pole Placement

The traditional PVPF control scheme places the poles

of the damped system at a specific location. As the tracking

controller is implemented and the gain increased, the poles

diverge from the chosen location. In this work, the oppo-

site is desired. The damping controller places the poles at

two distinct locations. As the tracking controller gain is in-

creased to the optimal amount, the complex poles converge
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at the desired location, see Fig. 3. In order to achieve this,

the pole placement is specified for the damped and tracked

closed-loop system. Then, the controller parameters for both

the damping and tracking controllers are derived simulta-

neously. In contrast to the traditional PVPF approach, this

method ensures the desired damping ratio is achieved in the

damped and tracked closed-loop system. The damped and

tracked system has the following characteristic equation

P(s) = (s+ωp)(s2+2ψωd s+ω2
d)2. (5)

where ωp is the real pole introduced by the tracking con-

troller, ωd is the damped natural frequency of the open-loop

system, for lightly damped systems this is approximately

equal toωn, and ψ is the desired damping ratio. Equating this

with the denominator in Eq. (4) gives the equivalent damped

and tracked closed-loop system in terms of the desired sys-

tem variables. This derivation makes the assumption that the

damping ratio, ζ, is sufficiently small and can be neglected.

Gnum
cl (s) =

ω4
d
ωp(s2+ (4ψωd+ωp)s+ (5ψω2

d
+ω2

d
+4ψωdωp))

5ψω2
d
+ω2

d
+4ψωdωp

Gden
cl (s) = s5+ (4ψωd+ωp)s4+ (4ψ2ω2

d+2ω2
d+4ψωdωp)s3

+(4ψω3
d+4ψ2ω2

dωp+2ω2
dωp)s2+ (ω4

d+4ψω3
dωp)s+ω4

dωp.

(6)

The aim is to choose ψ and ωd to achieve a desired

amount of damping, and find the ωp which will give a flat-

band response, i.e. |Gcl( jω)|dB ≤ 0 ∀ ω ∈ �. The con-

troller parameters are found by equating the denominator

terms of Eq. (4) with the desired characteristic equation. For

|Gcl( jω)|dB ≤ 0, the following is true

|Gcl( jω)| ≤ 1
∣

∣

∣Gnum
cl

( jω)
∣

∣

∣

∣

∣

∣Gden
cl

( jω)
∣

∣

∣

≤ 1

∣

∣

∣Gnum
cl ( jω)

∣

∣

∣

2
≤
∣

∣

∣Gden
cl ( jω)

∣

∣

∣

2

∣

∣

∣Gden
cl ( jω)

∣

∣

∣

2
−
∣

∣

∣Gnum
cl ( jω)

∣

∣

∣

2
≥ 0.

Substituting the numerator and denominator of the closed-
loop transfer function, Eq. (6), gives the following:

(

ω10 + (8ψ2ω2
d +ω

2
p −4ω2

d)ω8

+(−16ψ2ω4
d +8ψ2ω2

dω
2
p −4ω2

dω
2
p +6ω4

d +16ψ4ω4
d)ω6

+(6ω4
dω

2
p +8ψ2ω6

d −16ψ2ω4
dω

2
p +16ψ4ω4

dω
2
p −4ω6

d)ω4

+(ω8
d
+8ψ2ω6

d
ω2

p −4ω6
d
ω2

p)ω2 +ω8
d
ω2

p

)

−















ω4
d
ωp

5ψω2
d
+ω2

d
+4ψωdωp















2
(

ω4 + (6ψ2ω2
d −2ω2

d +ω
2
p)ω2

+(25ψ4ω4
d +ω

4
d +16ψ2ω2

dω
2
p +10ψ2ω4

d +40ψ3ω3
dωp +8ψω3

dωp)
)

≥ 0.

(7)

As the system is type 1, the ω0 terms of the numerator and
denominator of the transfer function are equal. Thus, the
ω0 terms in Eq. 7 are equal. Subtracting the ω0 terms and
dividing by ω2 gives

(

ω8 + (8ψ2ω2
d +ω

2
p −4ω2

d)ω6

+(−16ψ2ω4
d +8ψ2ω2

dω
2
p −4ω2

dω
2
p +6ω4

d +16ψ4ω4
d)ω4

+(6ω4
dω

2
p +8ψ2ω6

d
−16ψ2ω4

dω
2
p +16ψ4ω4

dω
2
p −4ω6

d
)ω2

+(ω8
d +8ψ2ω6

dω
2
p −4ω6

dω
2
p)
)

−















ω4
d
ωp

5ψω2
d
+ω2

d
+4ψωdωp















2
(

ω2 + (6ψ2ω2
d −2ω2

d +ω
2
p)
)

≥ 0. (8)

A flat-band response is achieved when the above equation is

approximately equal to zero over a defined range of frequen-

cies.

2.2.1 Complex Pole Placement

In traditional PVPF design, the location of the complex

poles is chosen by shifting the open-loop poles of the system

by an arbitrary amount into the left-half plane, typically in

the region of 1000 units, i.e. the real component of the open-

loop poles is reduced by 1000. The complex poles in the

proposed controller are chosen by selecting a desired damp-

ing ratio to achieve a predetermined amount of damping.

For a second-order system with normalized input/output

gain, the transfer function is

G(s) =
ω2

n

s2+2ζωns+ω2
n

, (9)

and has magnitude response

|G( jω)| =
ω2

n
√

ω4+ (4ζ2ω2
n−2ω2

n)ω2+ω4
n

. (10)

For a given bandwidth of ±x dB, |G( jω)| should not pass

through the upper bound on bandwidth, i.e.

|G( jω)| ≤ 10
x

20 : ∀ω ∈� (11)

Substituting Eq. (10) and rearranging gives

ω4+ (4ζ2ω2
n−2ω2

n)ω2+ω4
n−ω

4
n×10

−x
10 ≥ 0. (12)

The roots of Eq. (12) give the frequencies at which |G( jω)|

crosses x dB. If Eq. (12) has two real and distinct roots,

|G( jω)| > x dB for some ω, if the roots are real and equal,

|G( jω)| = x dB for only one value of ω, and if the roots are

complex |G( jω)| < x dB ∀ω. It is obvious that real and equal

roots will provide maximum bandwidth. In this case, the
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discriminant of Eq. (12) is equal to zero, i.e.

(4ζ2ω2
n−2ω2

n)2+4ω4
n×10

−x
10 = 0

4ω4
n(4ζ4−4ζ2+10

−x
10 ) = 0

⇒ ζ =

√

4±
√

16−16×10
−x
10

8
(13)

Pole placement such that the damping ratio is that given by

Eq. (13) will therefore provide maximum ±x dB bandwidth

relative to the DC gain of a second-order system. For a ±1

dB bandwidth, as required in nanopositioning, this gives the

damping ratio, ζ = 0.5227.

2.2.2 Real Pole Placement

The real pole is chosen to provide a flat-band response

over a given frequency range. Care must be taken when

choosing the upper limit of the frequency range as an incor-

rect choice can result in resonance. Through simulation, it is

found that the natural frequency of the plant is sufficient to

achieve a flat-band response.

For fixed complex poles, represented by ψ, ωd, Eq. (8)

can be defined as a function of the real pole, ωp, and the

frequency, ω, as H(ωp,ω). We choose ωp such that the fol-

lowing equation is minimized over the bandwidth of interest,

i.e. ω ∈ [0,ωn],

min

∣

∣

∣

∣

∣

∣

∣

ωn
∑

ω=0

H(ωp,ω)

∣

∣

∣

∣

∣

∣

∣

. (14)

This gives the closed loop frequency response, Gcl( jω),

which is closest to unity gain over the chosen frequency

range. Note that, due to the fixed location of the complex

poles in the damped and tracked closed-loop system, the

choice of real pole affects not only the tracking controller

gain but also the parameters of the PVPF damping controller.

This differs from the traditional approach in that the choice

of real pole does not alter the damping ratio of the complex

poles in the closed-loop system.

2.2.3 Controller Synthesis

The controller parameters are derived using a method

that is similar to that used in traditional PVPF design. The

only differences being the inclusion of the tracking gain, kt,

and the adoption of a different set of variables to ensure the

desired closed-loop poles are achieved.

With the three system variables, ωp, ωd, ψ, defined nu-

merically, the characteristic equation of the system will be of

the form

s5+K4s4+K3s3+K2s2+K1s+K0. (15)

Fig. 4. A two-axis 40 µm serial kinematic nanopositioner designed

at the EasyLab, University of Nevada, Reno

Equating this with Eq. (4) gives the controller parameters as

2γωc = K4−2ζωn

ω2
c = K3−ω

2
n−2ζωn2γωc

kt = K0/(σ
2ω2

c)

Γ2 = −(K2−2ζωnω
2
c −2γωcω

2
n− ktσ

2)/σ2

Γ1 = −(K1−ω
2
cω

2
n−2γωcktσ

2)/σ2 (16)

In the following section, the developed control strategy is

applied to a 2× 2 nanopositioning platform. The system is

modelled on the measured frequency response, optimal pole

placement is found using Eq. (14), and the optimal controller

parameters are derived from Eqs. (2) and (3).

3 Experimental Setup and Simulations

The performance of the proposed controller is evaluated

on a two-axis serial kinematic nanopositioner, pictured in

Fig. 4.

3.1 Experimental Setup

The nanopositioner was designed and constructed at the

EasyLab, University of Nevada, Reno. The stage is driven

by two 10 mm 200 V piezoelectric stack actuators that pro-

vide a range of 40 µm in each axis. The position is mea-

sured by a Microsense 6810 capacitive sensor and 6504-01

probe with a sensitivity of 2.5 µm/V. The stage is driven by

two PiezoDrive PDL200 voltage amplifiers with a gain of 20.

The control algorithm was implemented using the dSPACE

DS1103 rapid prototyping system consisting of 16-bit A/D

input channels and 16-bit D/A output channels operating in

parallel at a sampling rate of 20 kHz. All the transfer func-

tions were recorded using a HP35670A Dynamic Signal An-

alyzer.

The simulations are performed using both a second-

order model, as in Eq. (1), and a full frd-model based on the

aforementioned nanopositioning system. The coupled axes
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Fig. 5. Simulated magnitude response of the closed-loop, damped and tracked system for both the traditional PVPF design and the proposed

technique that incorporates simultaneously designed damping and tracking controllers optimized via selective pole-placement.

are not modelled, therefore, only the frd results are provided

for those axes. The x- and y-axis models are derived from the

measured frequency response using the discrete time system

identification algorithm described in [21]. The continuous

time model is then found by bilinear transform giving

Gxx(s) =
8.9793×106

s2+147s+1.0881×107
(17)

Gyy(s) =
1.3888×107

s2+148s+1.8325×107
(18)

3.2 X-axis Controller

To validate the performance of the proposed controller

design, both a traditional PVPF control scheme and the pro-

posed control scheme are designed and simulated using the

second-order model of the x-axis to compare achievable

bandwidth.

3.2.1 Traditional PVPF Design

The traditional PVPF controller is designed using the

method laid out in [7] and [9]. In these works, the closed-

loop damping ratios achieved are ζ = 0.356 and ζ = 0.371

respectively. In order to achieve similar performance, the

poles are moved 1350 units into the left half plane, i.e. the

closed-loop poles are placed at −1423.5± i3297.8. This gives

a closed loop damping ratio of ζ = 0.396. The tracking con-

troller gain is found via trial-and-error, such that the magni-

tude response does not exceed 0 dB. The traditional PVPF

and tracking controllers are

CPVPF,x(s) =
−1096s+8.379×106

s2+5547s+2.221×107
(19)

Ctrack,x(s) =
700

s
. (20)

3.2.2 Proposed Controller Design

As derived in Section 2.2.1, a damping ratio of 0.5227

is desired. This provides a frequency response with mag-

nitude no greater than 1 dB for a second-order system. As

the damped system is fourth order, the frequency response

will have a maximum resonance peak of no more than 2 dB.

Setting the damping ratio, ψ = 0.5227, and damped natural

frequncy ωd =ωn = 3298.6, the complex poles of the desired

closed-loop transfer function are −2022.5± i3298.6. From

Eq. (14), the real pole, ωp, which gives a flat band response

is found to be -2809.2. This gives the desired characteristic

equation as

s5+1.0899×104s4+6.9031×107s3+2.5120×1011s2

+5.6439×1014s+6.2967×1017.

(21)

Using Eq. (16) the controller parameters are calculated.

The simultaneously designed controllers are denoted by

CsPVPF(s) and Cstrack(s), and given by

CsPVPF,x(s) =
−1.278×104s+1.902×107

s2+1.075×104s+5.657×107
(22)

Cstrack,x(s) =
1240

s
. (23)

The simulated magnitude response is presented in Fig.

5. It is observed that the proposed controller provides sig-

nificantly higher bandwidth. For this reason, the proposed

controller design is applied to the y-axis and simulated for

the full 2×2 model of the plant.

3.3 Y-axis Controller

Using the same method as for the x-axis design, the

complex poles are set to −2624.7± i4280.8, the real pole is
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Fig. 6. Measured magnitude response of the nanopositioning platform (blue) and the derived second-order model (black), both denoted by

dashed (—) lines. Higher-order models needed to capture the cross-coupling dynamics are not required for the control design and are not

derived. Simulated closed-loop magnitude responses of the nanopositioning platform with PVPF controller are provided for both the second-

order model and the full frd-model. As can be seen in the x- (top left) and y-axis (bottom right) FRFs, the response is very similar in the

frequency range of interest. The higher order modes have little effect on the response below the first resonance mode.

found to be -3648.3, giving the desired characteristic equa-

tion

s5+1.4147×104s4+1.1629×108s3+5.4922×1011s2

+1.6015×1015s+2.3194×1018.

(24)

Eq. (16) gives the controllers

CsPVPF,y(s) =
−1.831×104s+3.559×107

s2+1.4×104s+9.589×107
(25)

Cstrack,y(s) =
1742

s
. (26)

The simulated magnitude response of the nanoposition-

ing platform is provided in Fig. 6.

4 Experimental Results and Discussion

In this section, experimental results are provided for the

nanopositioning platform, as described in Section 3.1. Re-

sults are given in the form of measured closed-loop magni-

tude responses, of the 2× 2 system, and the measured posi-

tion of both axes tracing a raster scan pattern.

4.1 Frequency Domain Results

The measured closed-loop response is shown in Fig. 7.

The measured bandwidth is given in Table 1. Here band-

width is defined as the range of frequencies for which the

frequency response is between ±1 dB. This is done for two

reasons. First, the traditional -3 dB bandwidth results in a

loss of signal strength of approximately 30%, as such, it is

not suitable for use in precise positioning applications [20].

Second, both upper and lower limits are required in defin-

ing bandwidth as an exceedingly high response can have an

equally detrimental effect on performance. The ±3 dB band-

width is also provided.
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Fig. 7. Experimentally measured open- and closed-loop magnitude response of the nanopositioning platform with PVPF and tracking con-

trollers.

The closed-loop implentation of the control scheme is

seen to be stable. The measured bandwidth of both axes is

similar to that found in simulation. The effects of the higher

order dynamics are lessened due to the increased roll-off rate

at high frequencies. In the coupled axes it is observed that

the response is reduced at low frequencies. Additionally, it is

noted that the dominant resonance mode of both the x- and

y-axes are damped.

4.2 Time Domain Results

Typical positioning performance of nanopositioners is

tested by forcing the nanopositioner to trace a raster pattern

[1, 15]. A raster pattern is generated by a combination of a

slow staircase or ramp input along one axis and a relatively

high-frequency triangle wave input along the other.

The closed-loop response is tested using a ±1.25 µm, 20

Hz triangle wave as the x-axis input and a 10 Hz repeating

step function, increasing in increments of 0.25 µm, within

the range ±1.25 µm , as the y-axis input.

The experimental data displays tracking of the reference

which closely matches that predicted by simulation. The x-

axis response shows accurate tracking of the reference, with

Table 1. Experimental Results

x-axis y-axis

Resonance Frequency (Hz) 525 681

Bandwidth ±1 dB (Hz) 428 656

Bandwidth ±3 dB (Hz) 593 715

Max. Error (µm) 0.0165 0.2580

RMS Error (µm) 0.0048 0.0190

an RMS error of 0.48%. The measured RMS error of the y-

axis response is larger at 1.9%. This is somewhat skewed by

the considerable error incurred due to lag at the step. In prac-

tice, this is largely inconsequential as it can be omitted from

the data used to formulate output in the primary application

of nanopositioning, imaging.

The scan results shown in Figs. 8 and 9 clearly show that

the proposed control technique has successfully suppressed

the resonance-induced positioning errors. The straight-line

trajectories of the raster also show that the proposed control

strategy reduced the positioning errors introduced by the in-
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Fig. 8. Plot of the phase-corrected x- and y-axis output (top row) and the error relative to the input (bottom row)
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Fig. 9. Raster scan where the x-axis input is a 20 Hz triangle wave

with amplitude ±1.25 µm, and the y-axis input is 10 Hz stepping

function which increases by 0.25 µm each period and the step co-

incides with the lowest point of the x-axis trajectory. The phase-lag-

induced artifacts present in the full scan during the transition between

each consecutive increment of the stepping function have been re-

moved, leaving only the usable scan lines.

herent nonlinearities (hysteresis and creep) present in piezo-

electric actuators.

5 Conclusion

This paper presents a method for simultaneously opti-

mizing the parameters of a PVPF damping controller and an

integral tracking controller for high-precision positioning ap-

plications. The model-based simulations show a significantly

greater bandwidth than the traditional PVPF implementation

and flat band response at low frequencies, perfectly suited

to high-speed scanning. The experimental results exhibit the

effect of the system’s higher order dynamics but confirm the

results of the simulations, maintaining a largely flat response

and similarly high bandwidth. This method, therefore, pro-

vides a cost-effective, easy to implement improvement of the

positioning bandwidth of existing nanopositioners.
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