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Abstract— This paper proposes a method for designing set-
point regulation controllers for a class of underactuated me-
chanical systems in Port-Hamiltonian System (PHS) form. A
new set of potential shape variables in closed loop is proposed,
which can replace the set of open loop shape variables—
the configuration variables that appear in the kinetic energy.
With this choice, the closed-loop potential energy contains free
functions of the new variables. By expressing the regulation
objective in terms of these new potential shape variables, the
desired equilibrium can be assigned and there is freedom to
reshape the potential energy to achieve performance whilst
maintaining the PHS form in closed loop. This complements
contemporary results in the literature, which preserve the open-
loop shape variables. As a case study, we consider a robotic
manipulator mounted on a flexible base and compensate for
the motion of the base while positioning the end effector with
respect to the ground reference. We compare the proposed
control strategy with special cases that correspond to other
energy shaping strategies previously proposed in the literature.

I. INTRODUCTION

A mechanical system with configuration variables q ∈
Q and conjugate momenta p , ∂L/∂q̇ ∈ P , where L
is the Lagrangian, is called fully actuated if the forces,
τ ∈ F , produced by actuator configuration is such that
dimF = dimP . If dimF < dimP the system is said to be
underactuated [1].

For fully-actuated mechanical systems, set-point regula-
tion can be achieved by reshaping the potential energy such
that it attains its minimum at the desired equilibrium. A
positive definite potential energy function is chosen for the
closed-loop system, and the control law can be found by
matching the dynamics of the open-loop and desired closed-
loop systems [2].

If the mechanical system is modelled as a Port Hamilto-
nian System (PHS)1, the more general method of Intercon-
nection and Damping Assignment Passivity Based Control
(IDA-PBC) allows not only potential energy shaping, but
also kinetic energy shaping—that is, total energy shaping
[4]. The matching conditions must satisfy a PDE in terms
of both kinetic and potential energy, and the solution of
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1Also referred to as Port-Controlled Hamiltonian Systems in the literature
[3].

this PDE provides the control law [4]. For underactuated
mechanical systems, this PDE admits solutions only for a
class of achievable total energy in closed loop. Such a PDE,
in general, is difficult to solve.

As discussed in [5, p. 21], shape variables are configu-
ration variables that appear in the open-loop kinetic energy.
The remaining set of configuration variables are called ex-
ternal variables. Underactuated mechanical systems can be
classified according to which shape variables have actuation
[5]. In [6] and [7], the control of a class of mechanical
systems with unactuated shape variables2 is considered. The
controllers are designed to preserve the open-loop shape
variables in the closed-loop kinetic energy. A constructive
method is proposed in [8] to solve the matching PDE for
systems with underactuation degree one (dimF = dimP −
1), and more recently in [9], this approach is extended to
reduce the problem of solving the non-homogeneous kinetic
energy PDE to a simpler problem of finding a transformation
of the momentum state. Both approaches in [8], [9] also
choose to preserve the shape variables in the closed loop.

In this paper, we consider a class of mechanical systems
with unactuated external variables with stable dynamics. For
this class of systems, potential energy shaping can be applied.
This implements a partial state-feedback, that is, the external
variables do not appear in the control law. The stability of the
closed loop system relies on the passivity of the unactuated
variables [2]. A performance issue arises if the dynamics in
the unactuated variables are relatively slow, since there is
no direct control authority in these channels. Hence, one can
attempt to shape the total energy giving additional freedom to
the designer. The performance of these controllers, however,
may be limited if the open-loop shape variables are preserved
in the closed loop.

Our modest contribution is, therefore, a method to design
set-point regulation controllers for the above mentioned class
of underactuated mechanical systems in PHS form. We do
so by proposing a new set of potential shape variables in
closed loop. Here, the meaning of the word potential is
twofold. On the one hand, it means there is an option to
use these variables as shape variables in the closed loop. On
the other hand, even though these variables are related to the
kinetic energy, they can be used to shape the potential energy.
We show that the closed-loop potential energy contains free
functions of these variables. By expressing the regulation
objective in terms of the potential shape variables, we can

2With some abuse of terminology, we will refer to a configuration
variable, qj , as unactuated when no generalised force acts on the derivative
of its conjugate momentum, namely ṗj = d(∂L/∂q̇j)/dt.
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assign the desired equilibrium and have the freedom to
reshape the potential energy to achieve performance whilst
maintaining the PHS form in closed loop. As a case study, we
consider a robotic manipulator mounted on a flexible base,
and compensate for motion of the base while positioning the
end effector with respect to the ground reference. We com-
pare our control strategy with special cases that correspond
to other energy shaping strategies previously proposed in the
literature.

II. A CLASS OF PORT HAMILTONIAN SYSTEMS

We consider the following model of a simple mechanical
system:[

ṗ
q̇

]
=

{[
0 −I
I 0

]
−
[
D 0
0 0

]}[∂H(p,q)
∂p

∂H(p,q)
∂q

]
+

[
G
0

]
τ . (1)

The variable q ∈ Rn gives the configuration of the system,
and p ∈ Rn is the conjugate momentum. We consider
the control input τ ∈ Rm (generalised forces). For typical
underactuated systems, m < n.

We further assume that the configuration variables are
partitioned as follows:

q =

[
qe
qs

]
, (2)

where qs ∈ Qs = Rm is the vector of shape variables and
qe ∈ Qe = Rn−m is the vector of external variables. The
parameter D = DT ∈ Rn×n is the positive definite damping,
and G ∈ Rn×m, with rank(G) = m, is the input coupling
matrix.

For the above class of systems, the shape variables are
fully actuated, and we will assume,

G =

[
0(n−m)×m

Im×m

]
. (3)

If G is not in the form (3), then in some cases, it may
be possible to transform the control variables to obtain the
desired form.

The Hamiltonian function H(p,q) is given by

H(p,q) =
1

2
pTM−1(qs)p︸ ︷︷ ︸
T (p,qs)

+V(q) (4)

where M(qs) = MT(qs) > 0 is the mass matrix, which
determines the open-loop kinetic energy T (p,qs), and V(q)
is the open-loop potential energy.

III. SET-POINT REGULATION CONTROL FOR
UNDERACTUATED MECHANICAL SYSTEMS

Let us define z(q) ∈ Z as the potential shape variables—
the properties of this transformation are defined in Sec-
tion III-D, and follow from the set of conditions for stability.
We then consider set-point regulation of z to a desired
equilibrium point z∗.

A. Closed-loop PHS

Let the desired closed-loop PHS be[
ṗ
q̇

]
=

{[
0 −Md(z)M−1(qs)

M−1(qs)Md(z) 0

]
−
[
Dd 0
0 0

]}[∂Hd

∂p
∂Hd

∂q

]
, (5)

where Dd = DT
d > 0 is the desired damping, and the closed-

loop Hamiltonian is given by

Hd =
1

2
pTM−1

d (z)p︸ ︷︷ ︸
Td(p,z)

+Vd(q), (6)

where Md(z) = MT
d (z) > 0 is used to shape the kinetic

energy Td(p, z). The potential energy Vd(q) is used to assign
the desired closed-loop equilibrium, at which the potential
energy attains its minimum.

B. Matching

To find a control law τ , we must match the ṗ and q̇
equations in (1) and (5). The q̇ equation is already matched
by construction of (5) since

q̇ =
∂H
∂p

= M−1(qs)p

= M−1(qs)Md(z)M−1
d (z)p

= M−1(qs)Md(z)
∂Hd
∂p

.

(7)

The matching of ṗ yields

ṗ = −DM−1(qs)p−
∂H
∂q

+ Gτ

= −DdM
−1
d (z)p−Md(z)M−1(qs)

∂Hd
∂q

.
(8)

Since (8) consists of n equations and m < n unknown
control forces, we need to satisfy the following additional
n−m constraints to find a solution for τ :

G⊥
{

DM−1(qs)p−DdM
−1
d (z)p

+
∂H
∂q
−Md(z)M−1(qs)

∂Hd
∂q

}
= 0, (9)

where G⊥ is any full-rank left annihilator of G, that is,
G⊥G = 0 and rank(G⊥) = n −m. If (9) is satisfied, the
control law is given by

τ =
(
GTG

)−1
GT

{
DM−1(qs)p−DdM

−1
d (z)p

+
∂H
∂q
−Md(z)M−1(qs)

∂Hd
∂q

}
. (10)

We can separate the matching equation, (9), into powers
of p, under the assumption that D and Dd are independent
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of p. Thus, a particular solution of (9) is obtained by solving
the following equations:

G⊥
{
∂V
∂q
−Md(z)M−1(qs)

∂Vd
∂q

}
= 0, (11a)

G⊥
{
DM−1(qs)p−DdM

−1
d (z)p

}
= 0, (11b)

G⊥
{
∂T
∂q
−Md(z)M−1(qs)

∂Td
∂q

}
= 0. (11c)

The objective is to choose Md(z), Vd(q), and Dd to
satisfy (11).

C. Main result

We consider choosing z to shape the total energy. Since
the shape variables are actuated, G⊥ ∂T∂q = 0, then (11c) can
be expressed as follows:

G⊥Md(z)M−1(qs)
∂Tz

∂q

∂Td
∂z

= 0. (12)

This homogeneous PDE is solved for any z(q) =
[z1(q), . . . , zm(q)]T that satisfies

G⊥Md(z)M−1(qs)
∂zi
∂q

= 0, (13)

∀i ∈ {1, . . . ,m}. Thus, matching the kinetic energy has been
reduced to finding m functions of q from which we can form
the shape variables for the closed-loop system. Note that (13)
is simpler to solve than (12) since the latter involves the
partial derivatives of M−1

d (z). To solve (13), we propose a
particular z and then try to solve an algebraic equation in
Md(z).

The potential energy PDE, (11a), can be separated into
partial derivatives of external and shape variables,

G⊥
{
∂V
∂q
−Md(z)M−1(qs)

[
∂Vd
∂qe

0

]
−Md(z)M−1(qs)

[
0
∂Vd
∂qs

]}
= 0, (14)

which is satisfied by Vd(q) = Vde(q) + Vds(qs) where
Vde(q) and Vds(qs) are solutions of

G⊥
{
∂V
∂q
−Md(z)M−1(qs)

[
∂Vde
∂qe

0

]}
= 0, (15a)

G⊥Md(z)M−1(qs)

[
0

∂Vds
∂qs

]
= 0. (15b)

Equation (15a) can be simplified, by choosing

G⊥ =
[
I(n−m)×(n−m) 0(n−m)×m

]
, (16)

so that
∂Vde
∂qe

= Γ−1(q)
∂V
∂qe

, (17)

where Γ(q) is the upper-left (n −m) × (n −m) block of
Md(z)M−1(qs). The matrix Γ(q) is invertible since it is
the (n−m)th-order leading principal submatrix of a product
of two square full rank matrices.

Equation (17) shows that the equilibrium points in the
unactuated coordinates cannot be moved3, as previously
reported in [8] for systems with underactuation degree one,
where n−m = 1, qe and Γ(q) are scalars and (17) may be
integrated directly,

Vde(q) =

∫
1

Γ(q)

∂V
∂qe

dqe. (18)

We can now design Md(z), and thus Γ(q), so that Vde(q)
in (17) is positive definite in the external coordinates, qe,
in a neighbourhood of its equilibrium, which we denote
q∗e . This also suggests the possibility of extending this
approach to problems with unstable open-loop dynamics
in the unactuated coordinates. Since the product of two
positive definite matrices, Md(z)M−1(qs), and thus Γ(q),
is not necessarily positive definite (or even symmetric) it may
be possible to design Md(z) to produce a positive-definite
potential Vde(q) even for a non-positive-definite V(q). This
is beyond the scope of the current paper.

Equation (15b) can be expressed in terms of z as follows:

G⊥Md(z)M−1(qs)
∂Tz

∂q

[
0

∂Vdz
∂z

]
= 0, (19)

which is satisfied for any free function Vdz(z), since z
already satisfies (13). Therefore, a solution for the closed-
loop potential energy is given by

Vd(q) = Vde(q) + Vdz(z(q)), (20)

where Vde(q) is a solution to (15a) and Vdz(z) is any free
function of z. We can then choose a function Vdz(z) so it is
minimised at the desired equilibrium z∗ and renders Vd(q)
positive definite in a neighbourhood of z∗.

Damping injection can be achieved by finding a matrix
Dd which satisfies the algebraic constraints in (11b), that is,

G⊥DdM
−1
d (z) = G⊥DM−1(qs). (21)

This determines the first n−m rows (and due to symmetry
the first n−m columns) of Dd.

D. Stability

Since the solution of Vde(q) from (17) is minimised at
qe = q∗e , and we choose Vdz(z) to be minimised at z = z∗,
we can show that Vd(q) is minimised at qe = q∗e and z = z∗.

Proposition 1: Given Vde(q) > 0, ∀qe 6= q∗e , Vdz(z) >

0, ∀z 6= z∗ and assuming that ∂Tz
∂qs

is non-singular, then
Vd(q) = Vde(q) + Vdz(z) is minimised at qe = q∗e and
z = z∗.

Proof: The stationary points of Vd(q) are found by
setting ∂Vd

∂q = ∂Vde
∂q + ∂Tz

∂q
∂Vdz
∂z = 0. Then, separating the

3although the stability of the existing equilibrium points may be modified
as shown in [6] and [7] for unstable systems.
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partial derivatives into qe and qs components, it follows from
(17) that

∂Vd
∂qe

= Γ−1(q)
∂V
∂qe

+
∂Tz

∂qe

∂Vdz
∂z

= 0, (22)

∂Vd
∂qs

=
∂Tz

∂qs

∂Vdz
∂z

= 0. (23)

Equation (23) is satisfied if and only if z = z∗ since ∂Tz
∂qs

is
full-rank. Equation (22) is satisfied for qe = q∗e and z = z∗.
To show there are no other stationary points, consider some
qe 6= q∗e and z = z∗ that satisfies (22). Then Γ−1(q) ∂V∂qe

=

0 for some qe 6= q∗e , but this is a contradiction since ∂V
∂qe

= 0
if and only if qe = q∗e , and Γ(q) is full-rank. Therefore,
Vd(q) is only stationary for qe = q∗e and z = z∗.

To establish that Vd(q) is minimised, we note that it must
be positive definite, since it is the sum of two positive definite
functions.

The condition that ∂Tz
∂qs

is full rank requires z to be a
function of all the elements of qs. This is not particularly
restrictive, since if this were not the case, we could not assign
any particular equilibrium point in all the qs coordinates.

Note also that z may depend on elements of qe, but there is
no difficulty in having the equilibrium specified by qe = q∗e
and z = z∗ which appears overdetermined. The reason for
this, is that no choice of z which solves (13) can modify
the location of the unactuated equilibrium points; so there is
no conflict. We can use this feature to our advantage, as we
show in the following section, since z, being dependent on
the unactuated coordinates, allows us to shape dynamics in
qe.

We can now show that the closed-loop system is asymp-
totically stable.

Proposition 2: Consider the dynamics of the system (1)
in closed-loop with the control law (10) and Md(z), Vd(q)
and Dd satisfy (11) and the conditions given in Proposition 1
hold. Then, the closed-loop system can be written as the PHS
(5) which has an asymptotically stable equilibrium point at
p = 0, qe = q∗e and z = z∗.

Proof: Using Hd as a Lyapunov candidate function,
which is minimised at p = 0, qe = q∗e and z = z∗, we
can compute its derivative with respect to time along the
solutions of (5) and obtain

Ḣd(p,q) =
∂THd
∂p

ṗ +
∂THd
∂q

q̇

= −∂
THd
∂p

Dd
∂Hd
∂p
≤ 0,

(24)

which establishes stability. Asymptotic stability follows by
applying the Invariance Principle. Since Ḣd = 0 =⇒ p =
0, then from (5) we have ṗ = −Md(z)M−1(qs)

∂Vd
∂q which

is zero only for qe = q∗e and z = z∗. Therefore the largest
invariant set contained within {p,q ∈ Rn | Ḣd = 0} is
p = 0, qe = q∗e and z = z∗.

IV. CASE STUDY
We consider the control of a robotic manipulator mounted

on a flexible base. This is shown in Figure 1. The robot task

consists of moving a heavy tool to a particular position in the
workspace. The base has 1 DOF, q1, and the robot arm has
2 DOFs, which correspond to rotation of the arm, q2, and
extension of the arm, q3. Control torque τm acts to rotate the
arm, and the control force FA acts to extend the arm.

Due to this configuration and the weight of the tool, the
control system should be designed to compensate for motion
of the base while positioning the end effector with respect
to the ground reference.

Fig. 1. Robotic manipulator mounted on a flexible base.

The open-loop mass matrix M(qs) is given by

M(qs) = mB +mT mT (q3 + `) cos q2 mT sin q2
mT (q3 + `) cos q2 mT (q3 + `)2 0

mT sin q2 0 mT

 .

(25)

The open-loop potential energy V(q) is given by

V(q) =
1

2
kAq

2
3 +

1

2
kBq

2
1

+ (mB +mT )gq1 +mT g(q3 + `) sin q2. (26)

The input coupling matrix G and its left-annihilator G⊥

are given by

G =

0 0
1 0
0 1

 , G⊥ =
[
1 0 0

]
. (27)

Let the closed-loop mass matrix Md(z) be parameterised
as follows:

Md(z) =

a1 a2 a3
a2 a4 a5
a3 a5 a6

 , (28)

and let the closed-loop damping Dd be parameterised as
follows:

Dd =

b1 b2 b3
b2 b4 b5
b3 b5 b6

 . (29)
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The regulation task is to position the tool, that is x ,
[x, y]T → x∗ , [x∗, y∗]T where,

x = (q3 + `) cos q2 (30a)
y = q1 + (q3 + `) sin q2 (30b)

and x∗ and y∗ are the coordinates of the desired position in
the workspace.

A. Total energy shaping preserving shape variables

We design a controller using total energy shaping, that
preserves shape variables in the closed loop and recover
the special case of potential energy shaping. This controller
corresponds to a particular case of the controllers that can
be designed with the method proposed in [4].

Substituting z = qs into (13) and assuming det M(q) =
mBm

2
T (q3+`)2 6= 0, we have the constraints on the elements

of Md(z),

(a3 sin q2 − a1)mT (q3 + `) cos q2

+a2(mB +mT cos2 q2) = 0, (31a)
(a2 cos q2 − a1(q3 + `))mT sin q2

+a3(q3 + `)(mB +mT sin2 q2) = 0. (31b)

By choosing a1 > 0 as a design parameter, a2 and a3 can
be expressed in terms of a1,

a2 = a1
mT (q3 + `) cos q2

mB +mT
, (32a)

a3 = a1
mT sin q2
mB +mT

, (32b)

and a4, a5 and a6 must be chosen to ensure Md(z) > 0. We
will choose a5 = 0 to simplify the design. Then, the choice
a4 =

a22
a1

+ δ and a6 =
a23a4
δ + α leaves δ > 0 and α > 0 as

design parameters which guarantees Md(z) > 0.
From (18) and (20) we have

Vd(q) =
mB +mT

a1

(
1

2
kBq

2
1 + (mB +mT )gq1

)
+ Vdz(q2, q3), (33)

where Vdz(·, ·) is a free function. Since Vdz cannot depend
on q1, we choose

Vdz(q2, q3) =
1

2
kx ((q3 + `) cos q2 − x∗)2

+
1

2
ky (q̃1 + (q3 + `) sin q2 − y∗)2 , (34)

where q̃1 , − (mB+mT )g
kB

is the steady-state equilibrium
position of q1 and kx, ky > 0 are free parameters. We have
included q̃1 to provide steady-state gravity compensation, in
the absence of q1.

Substituting (29) into (21) determines the first row and
column of Dd,

b1 =
bB(−a2 cos q2 + (q3 + `)(a1 − a3 sin q2))

mB(q3 + `)
, (35a)

b2 =
bB(a2(q3 + `)− a4 cos q2)

mB(q3 + `)
, (35b)

b3 =
bB(a3 − a6 sin q2)

mB
. (35c)

Then, b4, b5 and b6 must be chosen to satisfy Dd > 0. We
will choose b5 = 0 to simplify the design. Then, the choice
b4 =

b22
b1

+ γ and b6 =
b23b4
γ + β leaves γ > 0 and β > 0 as

design parameters which guarantees Dd > 0.
Note that if we set a1 = mB + mT , a4 = mT (q3 + `)2,

a5 = 0 and a6 = mT we have Md(z) = M(q) and we
recover the special case of potential energy shaping.

To show stability, we note that Vde(q) > 0, Vdz(z) > 0

and ∂Tz
∂qs

= I, which satisfies the conditions in Proposition 1.
Since M(q) is singular at q3 + ` = 0, care should be taken.
Assuming we have an initial condition q3(0) + ` > 0 and
target q∗3 + ` > 0, we can expect asymptotic stability by
applying Proposition 2, since the trajectory of the states will
not excite the singularity.

B. Total energy shaping with potential shape variables

We design a controller using total energy shaping by
proposing potential shape variables which are compatible
with the regulation task (30). Substituting z = x into
(13) and assuming det M(q) 6= 0, we have the following
constraints on the elements of Md(z):

a3(q3 + `) cos q2 − a2 sin q2 = 0, (36a)
a3(q3 + `) sin q2 − a2 cos q2 = 0. (36b)

The solution to (36) is given by a2 = a3 = 0. Then, a1,
a4, a5 and a6 are free parameters subject to a1, a4 > 0 and
a4a6 > a25 which guarantees Md(z) > 0.

From (18) and (20) we have

Vd(q) =
mB +mT

a1

(
1

2
kBq

2
1 + (mB +mT )gq1

)
+ Vdz(x, y), (37)

where Vdz(·, ·) is a free function. Now we can choose

Vdz(x, y) =
1

2
kx (x− x∗)2 +

1

2
ky (y − y∗)2 (38)

where kx, ky > 0 are free parameters.
Substituting (29) into (21) determines the first row and

column of Dd,

b1 =
a1bB
mB

, (39a)

b2 =
−bB(a4 cos q2 + a5(q3 + `) sin q2)

mB(q3 + `)
, (39b)

b3 =
−bB(a5 cos q2 + a6(q3 + `) sin q2)

mB(q3 + `)
. (39c)
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Then, b4, b5 and b6 must be chosen to satisfy Dd > 0. We
will choose b5 = 0 to simplify the design. Then, the choice
b4 =

b22
b1

+ γ and b6 =
b23b4
γ + β leaves γ > 0 and β > 0 as

design parameters which guarantees Dd > 0.
Note that for this choice of z, ∂Tz

∂qs
is only full rank for

q3 + ` 6= 0, however this also corresponds to the singularity
in M(qs) so we do not expect any reduction in the region
of attraction compared to the previous case. We should
note however, that while the equilibrium is unique in z
coordinates, there are two solutions in qs coordinates. These
correspond to the cases of the extended arm q3 + ` > 0, and
the inverted arm q3 + ` < 0, and the corresponding angles,
q2, which differ by π. Unlike the design in the previous
section, where the equilibrium in qs is specified, assuming
that q3(0) + ` > 0 and target q∗3 + ` > 0 is not sufficient
to prevent the state trajectory from crossing the singularity.
This may be overcome by constraining q3 + ` > 0, however,
this is beyond the scope of the current paper.

C. Simulation Results

The plant parameters corresponding to the manipulator
shown in Figure 1 are given in the Appendix. The flexibility
of the base is exaggerated to appreciate the effect of the
controllers.

Three control designs are considered:
i) Potential energy shaping, that is, Md(z) = M(qs) and

z = qs
ii) Total energy shaping preserving open-loop shape vari-

ables, that is z = qs
iii) Total energy shaping with potential shape variables z =

x.
The controller parameters given in Table I. The initial

condition was p(0) = q(0) = 0, and the target was located
at x = 4 m and y = 3 m.

Figures 2 and 3 show the simulation results. We can
see that for the designs (i) and (ii), the q2 and q3 states
converge quickly to their steady-state values, and the control
action remains small thereafter. The natural base oscillation,
however, causes large errors in the tool position, which the
controller is not informed about. While additional freedom is
available in the design (ii), it was still not possible to improve
the transient response significantly over that achieved by only
shaping potential energy.

The controller for case (iii) can be seen to be using the q2
and q3 states to actively compensate for motion in the base.
The result is the tool error quickly converges to zero, while
the controller continues to produce control forces which
actively cancel the base motion at the tool position, until
the natural motion of the base decays due to the dissipative
forces in the base.

V. CONCLUSIONS

We have shown that by reducing the kinetic energy
matching PDE (over the unknown elements of Md) to one
involving potential shape variables z, we have both simplified
the design procedure for total energy shaping, and made
it easier to design admissible closed-loop potential energy
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Fig. 2. Tool positioning error (left) and control action (right) for potential
energy shaping (top), total energy shaping with z = qs (middle) and z = x
(bottom).
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Fig. 3. State variables: momenta (left) and displacements (right) for
potential energy shaping (top), total energy shaping with z = qs (middle)
and z = x (bottom).
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functions for this class of underactuated mechanical systems.
Once z has been chosen, we are able to choose the various
free functions of z in the elements of Md(z), subject to
algebraic constraints, rather than having to directly solve the
kinetic energy PDE (11c).

In a case study, we have shown how this controller can
be used for compensating vibration of a robotic manipulator
mounted on a flexible unactuated base. The proposed con-
troller shows improvement in performance relative to con-
trollers based on potential energy shaping and total energy
shaping preserving shape variables.

APPENDIX

The plant parameters are given by mB = 100 kg, mT =
10 kg, ` = 1 m, kA = 0 N/m, kB = 150 N/m and the open-
loop damping matrix is given by

D =

bB 0 0
0 bM 0
0 0 bA

 (40)

where bB = 30 Ns/m, bM = 1 Nms/rad and bA = 50 Ns/m.
The controller parameters are given in Table I.

TABLE I
CONTROLLER PARAMETERS.

Parameter PE TE (z = qs) TE (z = x)
a1 mB +mT 50 50
a4 mT (q3 + `)2 ∗ 5
a6 mT ∗ 1
α N/A 5 N/A
δ N/A 1 N/A
b1 30 ∗ ∗
b4 450 ∗ ∗
b5 200 0 0
γ N/A 8 8
β 250 10 10
kx 250 1500 1500
ky 250 1500 1500

∗ Expression given in Section IV
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[7] R. Ortega, M. Spong, F. Gómez-Estern, and G. Blankenstein, “Stabiliza-
tion of a class of underactuated mechanical systems via interconnection
and damping assignment,” Automatic Control, IEEE Transactions on,
vol. 47, no. 8, pp. 1218–1233, 2002.

[8] J. Acosta, R. Ortega, A. Astolfi, and A. Mahindrakar, “Interconnection
and damping assignment passivity-based control of mechanical systems
with underactuation degree one,” Automatic Control, IEEE Transactions
on, vol. 50, no. 12, pp. 1936–1955, 2005.

[9] G. Viola, R. Ortega, R. Banavar, J. Acosta, and A. Astolfi, “Total energy
shaping control of mechanical systems: simplifying the matching equa-
tions via coordinate changes,” Automatic Control, IEEE Transactions
on, vol. 52, no. 6, pp. 1093–1099, 2007.

4609


