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Abstract— This paper proposes a method for design of a
set-point regulation controller with integral action for an
underactuated robotic system. The robot is described as a
port-Hamiltonian system, and the control design is based on
a coordinate transformation and a dynamic extension. Both
the change of coordinates and the dynamic extension add
extra degrees of freedom that facilitate the solution of the
matching equation associated with interconnection and damp-
ing assignment passivity-based control designs (IDA-PBC). The
stability of the controlled system is proved using the closed
loop Hamiltonian as a Lyapunov candidate function. The
performance of the proposed controller is shown in simulation.

I. INTRODUCTION

The trend in the manufacturing towards high-rate produc-
tion and flexible configuration of production lines has lead to
the use of advanced automation of light robotics in different
industries. In many applications, the high-speed motion of
the robot manipulator can excite the resonant modes of the
reconfigurable base supporting the robot. This can result in
unwanted vibration that degrades the accuracy of the robot
and may compromise the quality of task. The base on which
the robot is mounted is usually passive (no actuators are used
to control the vibration of the base), and as a result the system
that comprise of the robot and the base can be classified as an
underactuated system—not every degree of freedom of the
system can be actuated. Specifically, let the configuration
variables of the mechanical system be denoted by q ∈ Q
and the conjugate momenta be p , ∂L/∂q̇ ∈ P , where L
is the Lagrangian. The system is called fully actuated if the
forces, τ ∈ F , produced by actuator configuration is such
that dimF = dimP . If dimF < dimP the system is said
to be underactuated [1]. In recent years, new control designs
have been proposed for the class of underactuated systems
(see e.g. [2], [3], [4], [5]).

Mechanical systems, as many engineering complex sys-
tems, can be written into port-Hamiltonian system (PHS)
form [6]. An interesting feature of PHS is that variables and
functions of the state-space representation have interpretation
in terms of the physical phenomena of the system. An
important control property of PHS is that of passivity. In
the port-Hamiltonian (PH) framework, these characteristics
have been exploited to develop control techniques based on
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passivity and energy, for example control by interconnection,
and interconnection and damping assignment passivity-based
control [7], [8], [9]. The IDA-PBC allows to shape both
potential and kinetic energy of the system, as well as to
inject damping and modified the interconnection structure of
the system. This method relies on the solution of the so-
called matching equation, which is set of partial differential
equations (PDE). In general, solving the matching equation
is not trivial and probably constitutes the most difficult step
in the design. For the set-point regulation problem of fully-
actuated mechanical system, can be solved by reshaping
only the potential energy such that the close-loop potential
energy has a minimum at the desired equilibrium state. If the
control system needs to reject constant disturbance forces, it
is necessary to add integral action. In the PH framework, the
addition of integral action has been discussed in [10] and
[11], and further specialised for fully-actuated mechanical
systems in [12]. These methods for adding integral action
do not apply to underactuated systems.

In this paper, we consider the control design problem for
an underactuated robotic system. We first derive a model
of the open-loop system in PHS form. We, then, design a
set-point regulation controller with integral action using a
state transformation and a dynamic extension. We proposed a
desired closed loop system that retains the PHS form, and we
add some degrees of freedom to solve the matching equation
via dynamic augmentation. We show that the control system
ensures regulation of the position references with internal
stability. The addition of integral action ensures that the sys-
tem is able to deal with problems such constant disturbance
and provides robustness to modelling uncertainty [13].

II. MECHANICAL SYSTEMS AND PORT HAMILTONIAN
MODELS

Some mechanical systems can be described using the
Euler-Lagrange equation with dissipation:

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) +

∂R(q̇)
∂q̇

= τ , (1)

where q and q̇ are the n-dimensional vectors of generalised
coordinates and velocities, and the m-dimensional vector τ
is the vector of generalised forces. The function R(q̇) is
called the Rayleigh dissipation function, which satisfies

q̇T ∂R(q̇)
∂q̇

≥ 0. (2)
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The Lagrangian L(q, q̇) is the difference between the kinetic
co-energy and the potential energy. For systems within the
realm of classical mechanics, the Lagrangian takes the form

L(q, q̇) = T (q, q̇)− V (q) =
1

2
q̇TM(q)q̇− V (q) (3)

where M(q) is the generalised mass matrix, which is sym-
metric and positive definite for all q.

For these systems, the conjugate generalised momentum
takes the form p = ∂L

∂q̇ = M(q)q̇. Let us assume that the dis-
sipation force takes the form τ d = ∂R(q̇)

∂q̇ = R(q̇)q̇, where
R > 0. Using the momentum and the generalised coordinate
vector, the set of n second-order differential equations (1) can
be transformed, using the Legendre’s transformation, into a
set of 2n first-order differential equations [14]

ṗ = −∂H(p,q)

∂q
−R

∂H(p,q)

∂p
+ τ ,

q̇ =
∂H(p,q)

∂p
,

(4)

where the Hamiltonian is the sum of the kinetic energy
and the potential energy: H(p,q) = T (q, q̇) + V (q) =
1
2p

TM−1(q)p + V (q). This function represents the total
energy of the system. The equations (4) are called the
Hamiltonian equations of motion.

In the control literature, the Hamiltonian model (4) has
been generalised to what is known as a port-Hamiltonian
system [15]:

ẋ = [J(x)−R(x)]
∂H(x)

∂x
+ g(x)u, (5)

y = gT(x)
∂H(x)

∂x
, (6)

where x ∈ Rp is the state vector and the Hamiltonian H :
Rp → R may represent the total energy stored in the system.
The pair u,y ∈ Rm are the input and output variables.
These are conjugate variables; that is, their inner product
represents the power exchanged between the system and the
environment. The function J(x) = −JT(x) describes the
power preserving interconnection structure through which the
components of the system exchange energy. The symmetric
function R(x) ≥ 0 captures dissipative phenomena in the
system. The function g(x) weighs the action of the input on
the system and defines the conjugate output. From (5)-(6), it
follows that

dH

dt
= yTu− ∂HT(x)

∂x
R(x)

∂H(x)

∂x
≤ yTu, (7)

which shows passivity of the PHS model [6].

III. CONTROL OF MECHANICAL SYSTEM IN PORT
HAMILTONIAN FRAMEWORK

The system (4) can be written in the PHS form as follows[
ṗ
q̇

]
=

{[
0 −I
I 0

]
−
[
D 0
0 0

]}[∂H(p,q)
∂p

∂H(p,q)
∂q

]
+

[
G
0

]
τ , (8)

where

H(p,q) = T (p,q) + V (q) =
1

2
pTM−1(q)p+ V (q), (9)

q ∈ Rn, p ∈ Rn and τ ∈ Rm. The parameter D = DT ∈
Rn×n is the positive definite damping, and G ∈ Rn×m is
the input coupling matrix. For typical underactuated systems
rank(G) = m and m < n.

A controller for set point regulation can be designed such
that in closed-loop the system retains its PHS form and the
potential energy has a minimum at the desired equilibrium
state. This ensures that the closed loop is passive, and thus
inherits the robust properties of passive-based control system.
Also, stability can be shown using the Hamiltonian as a
Lyapunov candidate function.

The classical IDA-PBC technique aims to shape the energy
of the system so that it has a minimum at the desired
equilibrium. In addition, the new interconnection matrix and
dissipation function can be assigned for the closed loop
[8]. In particular, the desired closed loop for underactuated
mechanical systems takes the form (see e.g. [16])[

ṗ
q̇

]
=

[
−Dd −Md(q)M

−1(q)
M−1(q)Md(q) 0

][∂Hd

∂p
∂Hd

∂q

]
(10)

where Dd = Dd
T > 0 is the desired damping, and the

closed-loop Hamiltonian is

Hd(p,q) =
1

2
pTMd

−1(q)p+ Vd(q), (11)

and Md(q) = Md
T(q) > 0 is the desired mass matrix. The

potential energy Vd(q) is chosen to have a minimum at the
desired equilibrium.

The problem is to find a control τ that renders the open
loop (8) into the desired PHS (10). The classical procedure
to solve this problem is by matching the state equations from
(8) and (10). This result in the following so-called matching
equation

G⊥
{
DM−1(q)p−DdM

−1
d (q)p

+
∂H

∂q
−Md(q)M

−1(q)
∂Hd

∂q

}
= 0, (12)

where G⊥ is any full-rank left annihilator of G, that is,
G⊥G = 0 and rank(G⊥) = n−m. If (12) is satisfied, the
control law is readily computed as follows

τ =
(
GTG

)−1
GT

{
DM−1(q)p−DdMd

−1(q)p

+
∂H

∂q
−Md(q)M

−1(q)
∂Hd

∂q

}
. (13)

For underactuated system, (12) consists of n − m par-
tial differential equations on Hd. This set of PDE admits
solutions for a family of achievable desired Hamiltonian
functions, which in general is difficult to find. From this
family, we choose a particular solution that satisfied the
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minimum requirement, that is, (0,q∗) = argminHd, where
q∗ is the desired equilibrium position. The research in the
literature aims to provide techniques for solving the matching
equation for underactuated systems (see e.g. [17], [16], [18]).

It is known that passivity control designs are robust to
parametric uncertainties and unmodelled dynamics, in the
sense that stability is preserved provided that the closed-
loop is passive. However, external disturbances can shift
the desired equilibrium or, even worse, cause the system
to be unstable. A standard solution to deal with external
disturbances is the addition of integral action in the loop [13].
For PH control systems, integral control can be designed
using the approaches in [19], [10], [11], which have been
specialised for mechanical systems in [12]. However, the
these methods do not apply to underactuated systems in gen-
eral. Hence, in the next section, we consider this particular
problem.

IV. SET POINT REGULATION WITH INTEGRAL ACTION
OF AN UNDERACTUATED ROBOTIC SYSTEM

A. PHS Modelling

We consider the robot manipulator mounted on a flexible
base shown in Figure 1 [20]. The base only moves in the
vertical direction, and its position is described by q1, which
represent the displacement of the base from its natural rest
position when the tool is unmounted. The robot arm has two
degrees of freedom, which correspond to the rotation q2 and
extension q3 of the arm. The control torque τm drives the
arm, and the control force FA acts to extend the arm. The
task of the robot is to move a heavy tool of mass mT to a
particular position in the workspace. The port-Hamiltonian
model of the system has the form (8), with mass matrix

M(q) =

[
mB +mT mT (q3 + `) cos q2 mT sin q2

mT (q3 + `) cos q2 mT (q3 + `)2 0
mT sin q2 0 mT

]
,

and dissipation matrix D = diag(bB , bM , bA). The Hamilto-
nian function is

H(p,q) =
1

2
pTM−1(q)p+ V (q) (14)

with potential energy V (q) = 1
2kAq

2
3 + 1

2kBq
2
1 +mT gq1 +

mT g(q3 + `) sin q2. The input coupling matrix G and its
left-annihilator G⊥ are given by

G =

0 0
1 0
0 1

 , G⊥ =
[
1 0 0

]
. (15)

B. Control Design

The control task is to regulate the position q2 and q3 to
constant references q∗2 and q∗3 . The control system should
be designed to compensate for motion of the base, while
positioning the end effector at the desired references, and
rejecting external constant disturbance.

We proposed a control design that incorporates both set
point regulation and integral action for the underactuated

Fig. 1. Robotic manipulator mounted on a flexible base.

robotic system shown in Figure 1. Instrumental for our design
are the following tools:
i) (Coordinates transformation) A change of coordinates

zp = p− p∗(p,q, q∗1 , q
∗
2 , q
∗
3) (16)

zq = q− q∗(q∗1 , q
∗
2 , q
∗
3) (17)

where p∗ and q∗ are functions of the states and refer-
ences signals. These functions will be chosen to ensure
the stability of the closed loop. The form of the change
of coordinates is inspired in the state transformation
proposed in [21].

ii) (Closed-loop PHS) We then proposed a desired closed-
loop PHS system in the new coordinates z, which
include additional states ze ∈ R2 for integral action.
The closed loop preserves the classical form (10) but
with full dissipation, which has the formżpżq
że

 =


 0 −MdM

−1(q) −QT
1

M−1(q)Md 0 −KI

Q1 KI
T 0

−
Bpz 0 0

0 Bqz 0
0 0 Bze




∂Hdz(zp,zq,ze)
∂zp

∂Hdz(zp,zq,ze)
∂zq

∂Hdz(zp,zq,ze)
∂ze

 (18)

where Bpz ∈ R3×3, Bqz ∈ R3×3, and Bze ∈ R2×2

are positive definite and symmetric matrices. They rep-
resent the damping in the coordinates zp, zq , and ze
respectively. The matrices Q1 ∈ R2×3 and KI ∈ R3×2

set the integral action, as we will show later. The desired
closed-loop Hamiltonian in z coordinates is

Hdz =
1

2
zTpM

−1
d zp +

1

2
zTqKqzq +

1

2
zTeKeze (19)

where Md is the desired closed-loop mass matrix,
which is a constant, positive definite and symmetric
matrix. The constant and positive definite matrices
Kq ∈ R3×3 and Ke ∈ R2×2, are design parameters.
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iii) (Dynamic extension) We also add states q∗1 and q̇∗1 in
the controller, whose dynamics can be described as

Aq̈∗1 +Bq̇∗1 +Cq∗1 = F(z, q∗2 , q
∗
3) (20)

where A, B and C are positive constants. The function
F is bounded when its arguments are bounded, and
F(0, q∗2 , q

∗
3) = c, where c is a constant.

The design consists in finding a control law τ such that
the closed loop in coordinates z = [zp, zq, ze] has the form
(18), and the dynamics of q∗1 and q̇∗1 satisfies (20). Under this
conditions, it can be proved that since (18) is a PHS with a
energy minimum at the origin, then the trajectories z(t) con-
verge to zero, that is, z→ 0, hence F(z, q∗2 , q

∗
3)→ c. Finally,

the stability of the full control system is ensured by showing
bounded-input-bounded-state (BIBS) and convergent-input-
convergent-state (CICS) properties of the system (20), with
input F and states q∗1 and q̇∗1 . Indeed, since z → 0 and q∗1
converge to a constant value, then q→ q∗ = [q∗1 , q

∗
2 , q
∗
3 ] and

p→ 0, as desired.
To design the controller, we first make the time derivative

of the change of coordinate (17), and then we replace the
derivative of the states by their corresponding state equations
from (8) and (18), as follows

q̇− q̇∗ = M(q)−1p− q̇∗

≡ żq

= M(q)−1zp −KIKeze −BqzKqzq

= M(q)−1(p− p∗)−KIKeze −BqzKqzq (21)

which is satisfied by

p∗ = M(q)q̇∗ −M(q)KIKeze −M(q)BqzKqzq, (22)

then the dynamic of the position error (q − q∗) can be
represented by the desired state equation of zq in (18).

Second, we make the time derivative of the change of
coordinates (16), and then we replace the derivatives of the
states by their corresponding state equations from (8) and
(18), as follows

ṗ− ṗ∗ = −D∂H

∂p
− ∂H

∂q
+Gτ − ṗ∗

≡ żp

= −MdM
−1(q)

∂Hdz

∂zq
−QT

1

∂Hdz

ze
−Bpz

∂Hdz

∂zp
(23)

Multiplying (23) by G⊥ yields the matching equation

G⊥
{
D
∂H

∂p
+
∂H

∂q
−Bpz

∂Hdz

∂zp
−MdM(q)−1

∂Hdz

∂zq

−QT
1

∂Hdz

ze
+ ṗ∗

}
= 0. (24)

The function q∗1 , and its time derivatives q̇∗1 and q̈∗1 , which
have not yet been selected, may help to solve the matching
equation (24). Indeed, we can replace ṗ∗ by the time

derivative of (22) in (24), and then solve it for q∗1 . The
matching equation (24) is solved if q∗1 satisfies

Aq̈∗1 +Bq̇∗1 +Cq∗1 = F(z, q∗2 , q
∗
3), (25)

where A = mB +mT , B = bB and C = kB are positive
constants. The function F is continuous and bounded for
all constants q∗2 and q∗3 , and all bounded z in the robot
workspace, which implies q3 + ` > 0. In addition, F
converges to F(0, q∗2 , q

∗
3) = −mT g when z→ 0.

We add the dynamics (25) in the controller to compute the
signals q̈∗1 , q̇∗1 , and q∗1 , which are needed in the control law.
Note that q∗1 and q̇∗1 are not external references, but states of
the controller.

The control law is computed from (23) as follows

τ =
(
GTG

)−1
GT

{
D
∂H

∂p
+
∂H

∂q
−Bpz

∂Hdz

∂zp
−

MdM(q)−1
∂Hdz

∂zq
−QT

1

∂Hdz

ze
+ ṗ∗

}
. (26)

where ṗ∗ is replaced by the time derivative of (22), and
the time derivative of the states by their corresponding state
equations.

The integral action on the system is obtained through states
ze. The dynamics of the integral action is

że =Q1
∂Hdz

∂zp
+KI

T ∂Hdz

∂zq
−Bze

∂Hdz

∂ze

=Q1Md
−1zp +KIKqzq −BzeKeze

=Q1Md
−1[p− p∗

]
+KIKqzq −BzeKeze

=Q1Md
−1[p−M(q)q̇∗ +M(q)BpzKqzq

]
+

+KIKqzq (27)

where Q1 = Bze(KI
TKI)

−1KI
TM(q)−1Md is chosen to

eliminate ze from the integral action dynamics. Note that at
steady state, zq has to be zero since p and q̇∗ are zero. Thus,
integral action ensures set-point regulation of q.

C. Stability Analysis
The procedure in the previous section allows us to write

the closed-loop dynamics as the PHS (18) plus the dynamics
(25). In this section, we study the stability of this closed loop.

Proposition 1: The PHS (18) has an asymptotic stable
equilibrium at z = 0. Thus, momenta p and positions q,
converge to their references p∗ and q∗ respectively.

Proof: The Hamiltonian Hdz (19) has a minimum at
z = 0, which is also an equilibrium point since ∂Hdz

∂z

∣∣
z=0

=
0. We use Hdz as a Lyapunov candidate function, and we
compute its time derivative along the solution of (18) as
follows

Ḣdz =
∂THdz

∂zp
żp +

∂THdz

∂zq
żq +

∂THdz

∂ze
że

=− ∂THdz

∂zp
Bpz

∂Hdz

∂zp
− ∂THdz

∂zq
Bqz

∂Hdz

∂zq

−∂
THdz

∂ze
Bze

∂Hdz

∂ze
= −zTpM−1d BpzM

−1
d zp−

−zTqKqBqzKqzq − zTeKeBzeKeze < 0, (28)
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which establishes the asymptotic stability of the the equilib-
rium z = 0. Since the trajectories z(t)→ 0 as t→∞, then
trajectories p(t)→ p∗ and q(t)→ q∗, as desired.

Proposition 2: Consider the dynamics (25) with
bounded input F(z, q∗2 , q

∗
3). Assume that F(z, q∗2 , q

∗
3) →

F(0, q∗2 , q
∗
3) = −mT g as z → 0. Then, the trajectories of

the states q̇∗1(t) and q∗1(t) converge to 0 and −mT g
kB

.
Proof: Using the state transformation v1 = Aq̇∗1 and

v2 = q∗1 −
F(0,q∗2 ,q

∗
3 )

C , the dynamics (25) can be written as[
v̇1
v̇2

]
=

[
−B 1
1 0

] [∂W (v1,v2)
∂v1

∂W (v1,v2)
∂v2

]
+

[
F̃(z, q∗2 , q

∗
3)

0

]
(29)

with W (v1, v2) = 1
2A
−1v21 + 1

2Cv
2
2 , and F̃(z, q∗2 , q

∗
3) =

F(z, q∗2 , q
∗
3) − F(0, q∗2 , q

∗
3), which is bounded and

F̃(0, q∗2 , q
∗
3) = 0. For the unforced case, i.e. F̃ = 0, then,

the equilibrium point (v1, v2) = (0, 0) is asymptotically
stable. Indeed, using W as a Lyapunov candidate function,
it yields

Ẇ = −Bv21 ≤ 0,

and since the maximum invariance, under the dynamics
(29), contained in S = {(v1, v2)|Ẇ (v1, v2) = 0} is the
origin, then (v1, v2) = (0, 0) is an asymptotically stable
equilibrium. The stability property is global since W is
radially unbounded. Note that the system (29) is linear and
asymptotically stable, then it is input-to-state-stable (ISS)
(see e.g. [13, page 174]). ISS property ensures that the states
are bounded when the inputs are bounded, and that the states
converge to zero when the input converges to zero. Then, it
follows that F̃(z, q∗2 , q

∗
3)→ 0 as z→ 0⇒ (v1, v2)→ (0, 0),

and that the trajectories v1(t) and v2(t) are bounded since
F̃ is bounded. Thus, the trajectories q̇∗1(t) and q∗1(t) are
bounded and converge to 0 and −mT g

kB
respectively.

Corollary 1: Consider the robotic system shown in Fig-
ure 1 with Hamiltonian (14), and control law (26) with
integral action (27) and extended dynamics (25). Then, the
closed-loop system ensures output regulation with internal
stability.

Proof: The proof follows from the cascade representa-
tion of the closed loop. Indeed, the dynamics of the control
system can be written as the cascade of the PHS (18) with
the extended dynamics (25). Proposition 1 shows that the
states z converge to zero, and then (p,q) → (p∗,q∗).
Proposition 2 shows that q̇∗1(t) and q∗1(t) are bounded and
converge to 0 and −mT g

kB
as z→ 0. Then, from (22) and since

q̇∗ → 0 it follows that p∗ → 0. The vector q∗ converges
to (−mT g

kB
, q∗2 , q

∗
3), where q∗2 and q∗3 are the desired angular

position and extension of the robot arm.

V. SIMULATION RESULTS

In this section, we present simulations to evaluate the
performance of the control system. The robot manipulator
and controller parameters are given in the Appendix. The
initial conditions of the system are p(0) = q(0) = ze(0) =
0, and q∗1(0) = q̇∗1(0) = 0. The target position is located at
x = 4m and y = 3m that corresponds to q∗2 = 0.7rad and

q∗3 = 4.2m. We also inject a constant torque disturbance
of 500N·m in the arm at t = 20s, and a constant force
disturbance of 500N into coordinate q3 at t = 40s.

Figure 2 shows the time history of the configuration
variables q and the desired position q∗. As we can see, the
positions converge to their desired references, as predicted
by the theory. It can also be appreciated that the control
action drives the position q2 and q3 to their reference despite
the action of constant disturbances. The controller states that
produce the integral action are shown in right column of
Figure 3. The left column of Figure 3 shows the position
errors of the tool in the workspace xy. The tool is positioned
at the desired point in the workspace as the error converges
quickly to zero. Moreover, the control system rejects constant
disturbances added in the coordinates q2 and q3.

The plots show that both the control torque and con-
trol force are smooth and between acceptable bounds (see
Figure 4). Furthermore, the controller produces the control
inputs needed to reject the disturbance at 20s and 40s while
keeping set-point regulation.
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Fig. 2. Configuration variables q, desired position q∗, conjugate momenta
p and desired momenta p∗.

VI. CONCLUSION

In this paper, we propose a PHS design for set-point
position regulation and integral control for an underactuated
robotic system. This design extends the methods available
for PH mechanical system by allowing add integral action
on non-passive outputs for an underactuated mechanical
systems. Also, the ability of injecting damping in all the
coordinates of the closed-loop PHS is a key characteristic
that makes the Hamiltonian a strict Lyapunov function in
the transformed coordinates z. This can be useful to study
the robust properties of the closed loop in term of ISS theory,
and design tracking controllers for time-varying references.
These topics are the subject of our current research.
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Fig. 3. Tool position errors in xy-workspace (left), and controller states
for integral action (right).
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Fig. 4. Torque and force control commands.

APPENDIX

The plant parameters are given by mB = 100 kg, mT =
10 kg, ` = 1 m, kA = 0 N/m, kB = 150 N/m, bB = 50
Ns/m, bM = 1 Nms/rad and bA = 50 Ns/m. The values
of the controller parameters are Md = diag(a1, a4, a6),
Bpz = diag(bp1, bp4, bp6), Bqz = diag(bq1, bq4, bq6),
Bze = diag(bz1, bz2), Kq = diag(kq1, kq2, kq3), Ke =
diag(ke1, ke2) and KI is given as

KI =

 0 0
ki1 0
0 ki2

 (30)
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